Move memcg LRU code into a dedicated section. Improve the design doc to
outline its architecture.
Link: https://lkml.kernel.org/r/20230118001827.1040870-5-talumbau@google.com
Signed-off-by: T.J. Alumbaugh <talumbau@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move Bloom filters code into a dedicated section. Improve the design doc
to explain Bloom filter usage and connection between aging and eviction in
their use.
Link: https://lkml.kernel.org/r/20230118001827.1040870-4-talumbau@google.com
Signed-off-by: T.J. Alumbaugh <talumbau@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add a section for lru_gen_look_around() in the code and the design doc.
Link: https://lkml.kernel.org/r/20230118001827.1040870-3-talumbau@google.com
Signed-off-by: T.J. Alumbaugh <talumbau@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: multi-gen LRU: improve".
This patch series improves a few MGLRU functions, collects related
functions, and adds additional documentation.
This patch (of 7):
Add a section for working set protection in the code and the design doc.
The admin doc already contains its usage.
Link: https://lkml.kernel.org/r/20230118001827.1040870-1-talumbau@google.com
Link: https://lkml.kernel.org/r/20230118001827.1040870-2-talumbau@google.com
Signed-off-by: T.J. Alumbaugh <talumbau@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We should use highmem replace higmem.
Link: https://lkml.kernel.org/r/20230118025403.1531-1-wangdeming@inspur.com
Signed-off-by: Deming Wang <wangdeming@inspur.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: "Fabio M. De Francesco" <fmdefrancesco@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Remove hard coded limit on the maximum number of physical pages
per-zspage.
This will allow tuning of zsmalloc pool as zspage chain size changes
`pages per-zspage` and `objects per-zspage` characteristics of size
classes which also affects size classes clustering (the way size classes
are merged).
Link: https://lkml.kernel.org/r/20230118005210.2814763-4-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All callers now have a folio and can call munlock_vma_folio(). Update the
documentation to refer to munlock_vma_folio().
Link: https://lkml.kernel.org/r/20230116192827.2146732-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All callers now have a folio and can call mlock_vma_folio(). Update the
documentation to refer to mlock_vma_folio().
Link: https://lkml.kernel.org/r/20230116192827.2146732-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
__GFP_ATOMIC serves little purpose. Its main effect is to set
ALLOC_HARDER which adds a few little boosts to increase the chance of an
allocation succeeding, one of which is to lower the water-mark at which it
will succeed.
It is *always* paired with __GFP_HIGH which sets ALLOC_HIGH which also
adjusts this watermark. It is probable that other users of __GFP_HIGH
should benefit from the other little bonuses that __GFP_ATOMIC gets.
__GFP_ATOMIC also gives a warning if used with __GFP_DIRECT_RECLAIM.
There is little point to this. We already get a might_sleep() warning if
__GFP_DIRECT_RECLAIM is set.
__GFP_ATOMIC allows the "watermark_boost" to be side-stepped. It is
probable that testing ALLOC_HARDER is a better fit here.
__GFP_ATOMIC is used by tegra-smmu.c to check if the allocation might
sleep. This should test __GFP_DIRECT_RECLAIM instead.
This patch:
- removes __GFP_ATOMIC
- allows __GFP_HIGH allocations to ignore watermark boosting as well
as GFP_ATOMIC requests.
- makes other adjustments as suggested by the above.
The net result is not change to GFP_ATOMIC allocations. Other
allocations that use __GFP_HIGH will benefit from a few different extra
privileges. This affects:
xen, dm, md, ntfs3
the vermillion frame buffer
hibernation
ksm
swap
all of which likely produce more benefit than cost if these selected
allocation are more likely to succeed quickly.
[mgorman: Minor adjustments to rework on top of a series]
Link: https://lkml.kernel.org/r/163712397076.13692.4727608274002939094@noble.neil.brown.name
Link: https://lkml.kernel.org/r/20230113111217.14134-7-mgorman@techsingularity.net
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Thierry Reding <thierry.reding@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We now pass folios to these functions, so update the documentation
accordingly.
Additionally, correct the outdated reference to __pagevec_lru_add_fn(),
the referenced action occurs in __munlock_folio() directly now, replace
reference to lru_cache_add_inactive_or_unevictable() with the modern folio
equivalent folio_add_lru_vma() and reference folio flags by the flag name
rather than accessor.
Link: https://lkml.kernel.org/r/898c487169d98a7f09c1c1e57a7dfdc2b3f6bf0f.1673526881.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now that both callers use a folio, pass the folio in and save a call to
compound_head().
Link: https://lkml.kernel.org/r/20230111142915.1001531-28-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Document the basic policies and expectations for DAMON development.
Link: https://lkml.kernel.org/r/20230110190400.119388-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
What DAMON aims to do is not only access monitoring but efficient and
effective access-aware system operations. And DAMon-based Operation
Schemes (DAMOS) is the important feature of DAMON for the goal. Make the
intro of DAMON documentation to emphasize the goal and mention DAMOS.
Link: https://lkml.kernel.org/r/20230110190400.119388-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kmap() and kmap_atomic() have been deprecated. kmap_local_page() should
always be used in new code and the call sites of the two deprecated
functions should be converted. This latter task can lead to errors if it
is not carried out with the necessary attention to the context around and
between the maps and unmaps.
Therefore, add further information to the Highmem's documentation for the
purpose to make it clearer that (1) kmap() and kmap_atomic() must not any
longer be called in new code and (2) developers doing conversions from
kmap() amd kmap_atomic() are expected to take care of the context around
and between the maps and unmaps, in order to not break the code.
Relevant parts of this patch have been taken from messages exchanged
privately with Ira Weiny (thanks!).
[fmdefrancesco@gmail.com: merge two sentences into one, per Bagas]
Link: https://lkml.kernel.org/r/20230119123945.10471-1-fmdefrancesco@gmail.com
Link: https://lkml.kernel.org/r/20221207225308.8290-1-fmdefrancesco@gmail.com
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Rename tools/vm to tools/mm for being more consistent with the code and
documentation directories, and won't be confused with virtual machines.
Link: https://lkml.kernel.org/r/20230103180754.129637-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
lru_gen_folio will be chained into per-node lists by the coming
lrugen->list.
Link: https://lkml.kernel.org/r/20221222041905.2431096-3-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
- More userfaultfs work from Peter Xu.
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying.
- Some filemap cleanups from Vishal Moola.
- David Hildenbrand added the ability to selftest anon memory COW handling.
- Some cpuset simplifications from Liu Shixin.
- Addition of vmalloc tracing support by Uladzislau Rezki.
- Some pagecache folioifications and simplifications from Matthew Wilcox.
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use it.
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword. This series shold have been in the
non-MM tree, my bad.
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages.
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages.
- Peter Xu utilized the PTE marker code for handling swapin errors.
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient.
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand.
- zram support for multiple compression streams from Sergey Senozhatsky.
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway.
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations.
- Vishal Moola removed the try_to_release_page() wrapper.
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache.
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking.
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend.
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range().
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen.
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect.
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages().
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting.
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines.
- Many singleton patches, as usual.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY5j6ZwAKCRDdBJ7gKXxA
jkDYAP9qNeVqp9iuHjZNTqzMXkfmJPsw2kmy2P+VdzYVuQRcJgEAgoV9d7oMq4ml
CodAgiA51qwzId3GRytIo/tfWZSezgA=
=d19R
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
Although pmd_present() might seem to indicate a valid and mapped pmd
entry, in reality it returns true when pmd_page() points to a valid page
in memory , regardless whether the pmd entry is mapped or not. Andrea
Arcangeli had earlier explained [1] the required semantics for
pmd_present(). This just updates the documentation for pmd_present() as
required.
[1] https://lore.kernel.org/lkml/20181017020930.GN30832@redhat.com/
Link: https://lkml.kernel.org/r/20221123051319.1312582-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Can the lock_compound_mapcount() bit_spin_lock apparatus be removed now?
Yes. Not by atomic64_t or cmpxchg games, those get difficult on 32-bit;
but if we slightly abuse subpages_mapcount by additionally demanding that
one bit be set there when the compound page is PMD-mapped, then a cascade
of two atomic ops is able to maintain the stats without bit_spin_lock.
This is harder to reason about than when bit_spin_locked, but I believe
safe; and no drift in stats detected when testing. When there are racing
removes and adds, of course the sequence of operations is less well-
defined; but each operation on subpages_mapcount is atomically good. What
might be disastrous, is if subpages_mapcount could ever fleetingly appear
negative: but the pte lock (or pmd lock) these rmap functions are called
under, ensures that a last remove cannot race ahead of a first add.
Continue to make an exception for hugetlb (PageHuge) pages, though that
exception can be easily removed by a further commit if necessary: leave
subpages_mapcount 0, don't bother with COMPOUND_MAPPED in its case, just
carry on checking compound_mapcount too in folio_mapped(), page_mapped().
Evidence is that this way goes slightly faster than the previous
implementation in all cases (pmds after ptes now taking around 103ms); and
relieves us of worrying about contention on the bit_spin_lock.
Link: https://lkml.kernel.org/r/3978f3ca-5473-55a7-4e14-efea5968d892@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm,thp,rmap: rework the use of subpages_mapcount", v2.
This patch (of 3):
Following suggestion from Linus, instead of counting every PTE map of a
compound page in subpages_mapcount, just count how many of its subpages
are PTE-mapped: this yields the exact number needed for NR_ANON_MAPPED and
NR_FILE_MAPPED stats, without any need for a locked scan of subpages; and
requires updating the count less often.
This does then revert total_mapcount() and folio_mapcount() to needing a
scan of subpages; but they are inherently racy, and need no locking, so
Linus is right that the scans are much better done there. Plus (unlike in
6.1 and previous) subpages_mapcount lets us avoid the scan in the common
case of no PTE maps. And page_mapped() and folio_mapped() remain scanless
and just as efficient with the new meaning of subpages_mapcount: those are
the functions which I most wanted to remove the scan from.
The updated page_dup_compound_rmap() is no longer suitable for use by anon
THP's __split_huge_pmd_locked(); but page_add_anon_rmap() can be used for
that, so long as its VM_BUG_ON_PAGE(!PageLocked) is deleted.
Evidence is that this way goes slightly faster than the previous
implementation for most cases; but significantly faster in the (now
scanless) pmds after ptes case, which started out at 870ms and was brought
down to 495ms by the previous series, now takes around 105ms.
Link: https://lkml.kernel.org/r/a5849eca-22f1-3517-bf29-95d982242742@google.com
Link: https://lkml.kernel.org/r/eec17e16-4e1-7c59-f1bc-5bca90dac919@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Fix the races in maintaining compound_mapcount, subpages_mapcount and
subpage _mapcount by using PG_locked in the first tail of any compound
page for a bit_spin_lock() on such modifications; skipping the usual
atomic operations on those fields in this case.
Bring page_remove_file_rmap() and page_remove_anon_compound_rmap() back
into page_remove_rmap() itself. Rearrange page_add_anon_rmap() and
page_add_file_rmap() and page_remove_rmap() to follow the same "if
(compound) {lock} else if (PageCompound) {lock} else {atomic}" pattern
(with a PageTransHuge in the compound test, like before, to avoid BUG_ONs
and optimize away that block when THP is not configured). Move all the
stats updates outside, after the bit_spin_locked section, so that it is
sure to be a leaf lock.
Add page_dup_compound_rmap() to manage compound locking versus atomics in
sync with the rest. In particular, hugetlb pages are still using the
atomics: to avoid unnecessary interference there, and because they never
have subpage mappings; but this exception can easily be changed.
Conveniently, page_dup_compound_rmap() turns out to suit an anon THP's
__split_huge_pmd_locked() too.
bit_spin_lock() is not popular with PREEMPT_RT folks: but PREEMPT_RT
sensibly excludes TRANSPARENT_HUGEPAGE already, so its only exposure is to
the non-hugetlb non-THP pte-mapped compound pages (with large folios being
currently dependent on TRANSPARENT_HUGEPAGE). There is never any scan of
subpages in this case; but we have chosen to use PageCompound tests rather
than PageTransCompound tests to gate the use of lock_compound_mapcounts(),
so that page_mapped() is correct on all compound pages, whether or not
TRANSPARENT_HUGEPAGE is enabled: could that be a problem for PREEMPT_RT,
when there is contention on the lock - under heavy concurrent forking for
example? If so, then it can be turned into a sleeping lock (like
folio_lock()) when PREEMPT_RT.
A simple 100 X munmap(mmap(2GB, MAP_SHARED|MAP_POPULATE, tmpfs), 2GB) took
18 seconds on small pages, and used to take 1 second on huge pages, but
now takes 115 milliseconds on huge pages. Mapping by pmds a second time
used to take 860ms and now takes 86ms; mapping by pmds after mapping by
ptes (when the scan is needed) used to take 870ms and now takes 495ms.
Mapping huge pages by ptes is largely unaffected but variable: between 5%
faster and 5% slower in what I've recorded. Contention on the lock is
likely to behave worse than contention on the atomics behaved.
Link: https://lkml.kernel.org/r/1b42bd1a-8223-e827-602f-d466c2db7d3c@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Compound page (folio) mapcount calculations have been different for anon
and file (or shmem) THPs, and involved the obscure PageDoubleMap flag.
And each huge mapping and unmapping of a file (or shmem) THP involved
atomically incrementing and decrementing the mapcount of every subpage of
that huge page, dirtying many struct page cachelines.
Add subpages_mapcount field to the struct folio and first tail page, so
that the total of subpage mapcounts is available in one place near the
head: then page_mapcount() and total_mapcount() and page_mapped(), and
their folio equivalents, are so quick that anon and file and hugetlb don't
need to be optimized differently. Delete the unloved PageDoubleMap.
page_add and page_remove rmap functions must now maintain the
subpages_mapcount as well as the subpage _mapcount, when dealing with pte
mappings of huge pages; and correct maintenance of NR_ANON_MAPPED and
NR_FILE_MAPPED statistics still needs reading through the subpages, using
nr_subpages_unmapped() - but only when first or last pmd mapping finds
subpages_mapcount raised (double-map case, not the common case).
But are those counts (used to decide when to split an anon THP, and in
vmscan's pagecache_reclaimable heuristic) correctly maintained? Not
quite: since page_remove_rmap() (and also split_huge_pmd()) is often
called without page lock, there can be races when a subpage pte mapcount
0<->1 while compound pmd mapcount 0<->1 is scanning - races which the
previous implementation had prevented. The statistics might become
inaccurate, and even drift down until they underflow through 0. That is
not good enough, but is better dealt with in a followup patch.
Update a few comments on first and second tail page overlaid fields.
hugepage_add_new_anon_rmap() has to "increment" compound_mapcount, but
subpages_mapcount and compound_pincount are already correctly at 0, so
delete its reinitialization of compound_pincount.
A simple 100 X munmap(mmap(2GB, MAP_SHARED|MAP_POPULATE, tmpfs), 2GB) took
18 seconds on small pages, and used to take 1 second on huge pages, but
now takes 119 milliseconds on huge pages. Mapping by pmds a second time
used to take 860ms and now takes 92ms; mapping by pmds after mapping by
ptes (when the scan is needed) used to take 870ms and now takes 495ms.
But there might be some benchmarks which would show a slowdown, because
tail struct pages now fall out of cache until final freeing checks them.
Link: https://lkml.kernel.org/r/47ad693-717-79c8-e1ba-46c3a6602e48@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In (060807f841ac mm, slub: make remaining slub_debug related attributes
read-only) failslab was made read-only.
I think it became a collateral victim to the two other options for which
the reasons are perfectly valid.
Here is why:
- sanity_checks and trace are slab internal debug options,
failslab is used for fault injection.
- for fault injections, which by presumption are random, it
does not matter if it is not set atomically. And you need to
set atleast one more option to trigger fault injection.
- in a testing scenario you may need to change it at runtime
example: module loading - you test all allocations limited
by the space option. Then you move to test only your module's
own slabs.
- when set by command line flags it effectively disables all
cache merges.
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Jann Horn <jannh@google.com>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Link: http://lkml.kernel.org/r/20200610163135.17364-5-vbabka@suse.cz
Signed-off-by: Alexander Atanasov <alexander.atanasov@virtuozzo.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
catching the Chinese translation up with the front-page rework.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAmNIPyAPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Y6UMH/2ZLziHH0jQkoBAIhxyUzU3ZfXLlq5Xqo6vS
oBYfJlYLClY/dmfTc3HAI6UhhJLGTcTNDaC1H4YQdgeP6RVJruFThOYF9WgW0FFl
SgsBKhTbi3dpfdzjID8bJM7ytkbIvV4voNh52J9L1TA3z/CPxKSiXCScFAH/o12t
E+CMjtmgi2P8w3kqgX59FMavp3W8M8HsT6u/wVoKb+zXjjqXGFYEXTjjKUxufRf6
QWkaQGb0PHq9+2hAhgF4vdy4tWB9lr7r2ENZ8YKUkYUYfv5KGAqt39J7A4rC+g7w
4Rvzznd0BJv3nuZ4rdxom7cOJ77i3lmWSJ65FoDHNeQ/8VBNuZc=
=UpLC
-----END PGP SIGNATURE-----
Merge tag 'docs-6.1-2' of git://git.lwn.net/linux
Pull documentation fixes from Jonathan Corbet:
"A handful of relatively simple documentation fixes, plus a set of
patches catching the Chinese translation up with the front-page
rework"
* tag 'docs-6.1-2' of git://git.lwn.net/linux:
Documentation: rtla: Correct command line example
docs/zh_CN: add a man-pages link to zh_CN/index.rst
docs/zh_CN: Rewrite the Chinese translation front page
docs/zh_CN: add zh_CN/arch.rst
docs/zh_CN: promote the title of zh_CN/process/index.rst
docs/zh_CN: Update the translation of page_owner to 6.0-rc7
docs/zh_CN: Update the translation of ksm to 6.0-rc7
docs/howto: Replace abundoned URL of gmane.org
Documentation: ubifs: Fix compression idiom
Documentation/mm/page_owner.rst: delete frequently changing experimental data
docs/zh_CN: Fix build warning
docs: ftrace: Correct access mode
linux-next for a couple of months without, to my knowledge, any negative
reports (or any positive ones, come to that).
- Also the Maple Tree from Liam R. Howlett. An overlapping range-based
tree for vmas. It it apparently slight more efficient in its own right,
but is mainly targeted at enabling work to reduce mmap_lock contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
(https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
This has yet to be addressed due to Liam's unfortunately timed
vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down to
the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
=xfWx
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
The kernel size changes due to many factors, such as compiler
version, configuration, and the build environment. This makes
size comparison figures irrelevant to reader's setup.
Remove these figures and describe the effects of page owner
to the kernel size in general instead.
Thanks for Jonathan Corbet, Bagas Sanjaya and Mike Rapoport's
constructive suggestions.
Signed-off-by: Yixuan Cao <caoyixuan2019@email.szu.edu.cn>
Link: https://lore.kernel.org/r/20221005145525.10359-1-caoyixuan2019@email.szu.edu.cn
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEjUuTAak14xi+SF7M4CHKc/GJqRAFAmM6/BMACgkQ4CHKc/GJ
qRBqBAgAh+5JdVkYBxW4MvGEolRw0RDIBNwEwmyJI7WeAegL8FaGI3jmA5Kcww4c
yA+lL/jcS9zQ/qwwHHoCqZoCLDFa43oiDMjSW4MI6oZpV+T6lx5uaH5kXBKsmxy5
2dONP7kYG/eFfBGB6F9qQOLJnCz0CXeY7+O99D1Nldx0yKKUVCK0krb018p5oI6a
RTVRASSVuEGkxvJGo4BbIR1H40s1BKTyRO9eZCKEHSanYM5SVXdBy9GTh5VQWTPk
WLwvXmd0DehZzlPrgg3PMVPBTNGO/yplWibugWyzUqGcPIhQPk6Z76aWE4vojI2q
f0w+86BYR2U7SBV2ZaNrGrxk/PZJyg==
=aDgU
-----END PGP SIGNATURE-----
Merge tag 'slab-for-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab fixes from Vlastimil Babka:
- The "common kmalloc v4" series [1] by Hyeonggon Yoo.
While the plan after LPC is to try again if it's possible to get rid
of SLOB and SLAB (and if any critical aspect of those is not possible
to achieve with SLUB today, modify it accordingly), it will take a
while even in case there are no objections.
Meanwhile this is a nice cleanup and some parts (e.g. to the
tracepoints) will be useful even if we end up with a single slab
implementation in the future:
- Improves the mm/slab_common.c wrappers to allow deleting
duplicated code between SLAB and SLUB.
- Large kmalloc() allocations in SLAB are passed to page allocator
like in SLUB, reducing number of kmalloc caches.
- Removes the {kmem_cache_alloc,kmalloc}_node variants of
tracepoints, node id parameter added to non-_node variants.
- Addition of kmalloc_size_roundup()
The first two patches from a series by Kees Cook [2] that introduce
kmalloc_size_roundup(). This will allow merging of per-subsystem
patches using the new function and ultimately stop (ab)using ksize()
in a way that causes ongoing trouble for debugging functionality and
static checkers.
- Wasted kmalloc() memory tracking in debugfs alloc_traces
A patch from Feng Tang that enhances the existing debugfs
alloc_traces file for kmalloc caches with information about how much
space is wasted by allocations that needs less space than the
particular kmalloc cache provides.
- My series [3] to fix validation races for caches with enabled
debugging:
- By decoupling the debug cache operation more from non-debug
fastpaths, extra locking simplifications were possible and thus
done afterwards.
- Additional cleanup of PREEMPT_RT specific code on top, by Thomas
Gleixner.
- A late fix for slab page leaks caused by the series, by Feng
Tang.
- Smaller fixes and cleanups:
- Unneeded variable removals, by ye xingchen
- A cleanup removing a BUG_ON() in create_unique_id(), by Chao Yu
Link: https://lore.kernel.org/all/20220817101826.236819-1-42.hyeyoo@gmail.com/ [1]
Link: https://lore.kernel.org/all/20220923202822.2667581-1-keescook@chromium.org/ [2]
Link: https://lore.kernel.org/all/20220823170400.26546-1-vbabka@suse.cz/ [3]
* tag 'slab-for-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: (30 commits)
mm/slub: fix a slab missed to be freed problem
slab: Introduce kmalloc_size_roundup()
slab: Remove __malloc attribute from realloc functions
mm/slub: clean up create_unique_id()
mm/slub: enable debugging memory wasting of kmalloc
slub: Make PREEMPT_RT support less convoluted
mm/slub: simplify __cmpxchg_double_slab() and slab_[un]lock()
mm/slub: convert object_map_lock to non-raw spinlock
mm/slub: remove slab_lock() usage for debug operations
mm/slub: restrict sysfs validation to debug caches and make it safe
mm/sl[au]b: check if large object is valid in __ksize()
mm/slab_common: move declaration of __ksize() to mm/slab.h
mm/slab_common: drop kmem_alloc & avoid dereferencing fields when not using
mm/slab_common: unify NUMA and UMA version of tracepoints
mm/sl[au]b: cleanup kmem_cache_alloc[_node]_trace()
mm/sl[au]b: generalize kmalloc subsystem
mm/slub: move free_debug_processing() further
mm/sl[au]b: introduce common alloc/free functions without tracepoint
mm/slab: kmalloc: pass requests larger than order-1 page to page allocator
mm/slab_common: cleanup kmalloc_large()
...
In order to prevent the name of the private structure of ksm from being
the same as the name of the common structure used in subsequent patches,
prefix their names with ksm in advance.
Link: https://lkml.kernel.org/r/20220831031951.43152-5-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since commit b3ac04132c4b ("mm/rmap: Turn page_referenced() into
folio_referenced()") the page_referenced function name was modified,
so fix it up to use the correct one.
Signed-off-by: Vernon Yang <vernon2gm@gmail.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Link: https://lore.kernel.org/r/20220926152032.74621-1-vernon2gm@gmail.com
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
kmalloc's API family is critical for mm, with one nature that it will
round up the request size to a fixed one (mostly power of 2). Say
when user requests memory for '2^n + 1' bytes, actually 2^(n+1) bytes
could be allocated, so in worst case, there is around 50% memory
space waste.
The wastage is not a big issue for requests that get allocated/freed
quickly, but may cause problems with objects that have longer life
time.
We've met a kernel boot OOM panic (v5.10), and from the dumped slab
info:
[ 26.062145] kmalloc-2k 814056KB 814056KB
From debug we found there are huge number of 'struct iova_magazine',
whose size is 1032 bytes (1024 + 8), so each allocation will waste
1016 bytes. Though the issue was solved by giving the right (bigger)
size of RAM, it is still nice to optimize the size (either use a
kmalloc friendly size or create a dedicated slab for it).
And from lkml archive, there was another crash kernel OOM case [1]
back in 2019, which seems to be related with the similar slab waste
situation, as the log is similar:
[ 4.332648] iommu: Adding device 0000:20:02.0 to group 16
[ 4.338946] swapper/0 invoked oom-killer: gfp_mask=0x6040c0(GFP_KERNEL|__GFP_COMP), nodemask=(null), order=0, oom_score_adj=0
...
[ 4.857565] kmalloc-2048 59164KB 59164KB
The crash kernel only has 256M memory, and 59M is pretty big here.
(Note: the related code has been changed and optimised in recent
kernel [2], these logs are just picked to demo the problem, also
a patch changing its size to 1024 bytes has been merged)
So add an way to track each kmalloc's memory waste info, and
leverage the existing SLUB debug framework (specifically
SLUB_STORE_USER) to show its call stack of original allocation,
so that user can evaluate the waste situation, identify some hot
spots and optimize accordingly, for a better utilization of memory.
The waste info is integrated into existing interface:
'/sys/kernel/debug/slab/kmalloc-xx/alloc_traces', one example of
'kmalloc-4k' after boot is:
126 ixgbe_alloc_q_vector+0xbe/0x830 [ixgbe] waste=233856/1856 age=280763/281414/282065 pid=1330 cpus=32 nodes=1
__kmem_cache_alloc_node+0x11f/0x4e0
__kmalloc_node+0x4e/0x140
ixgbe_alloc_q_vector+0xbe/0x830 [ixgbe]
ixgbe_init_interrupt_scheme+0x2ae/0xc90 [ixgbe]
ixgbe_probe+0x165f/0x1d20 [ixgbe]
local_pci_probe+0x78/0xc0
work_for_cpu_fn+0x26/0x40
...
which means in 'kmalloc-4k' slab, there are 126 requests of
2240 bytes which got a 4KB space (wasting 1856 bytes each
and 233856 bytes in total), from ixgbe_alloc_q_vector().
And when system starts some real workload like multiple docker
instances, there could are more severe waste.
[1]. https://lkml.org/lkml/2019/8/12/266
[2]. https://lore.kernel.org/lkml/2920df89-9975-5785-f79b-257d3052dfaf@huawei.com/
[Thanks Hyeonggon for pointing out several bugs about sorting/format]
[Thanks Vlastimil for suggesting way to reduce memory usage of
orig_size and keep it only for kmalloc objects]
Signed-off-by: Feng Tang <feng.tang@intel.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: John Garry <john.garry@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
It is too slow to dump all the pages, in some usage we just want to dump a
given start pfn, for example: a CMA range or a single page.
To speed up and save time, this change allows specifying of a start pfn by
adding llseek for page_owner.
Link: https://lkml.kernel.org/r/20220818022425.31056-1-quic_yingangl@quicinc.com
Signed-off-by: Kassey Li <quic_yingangl@quicinc.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
What happens if a thread is preempted after mapping pages with
kmap_local_page() was questioned recently.[1]
Commit f3ba3c710ac5 ("mm/highmem: Provide kmap_local*") from Thomas
Gleixner explains clearly that on context switch, the maps of an outgoing
task are removed and the map of the incoming task are restored and that
kmap_local_page() can be invoked from both preemptible and atomic
contexts.[2]
Therefore, for the purpose to make it clearer that users can call
kmap_local_page() from contexts that allow preemption, rework a couple of
sentences and add further information in highmem.rst.
[1] https://lore.kernel.org/lkml/5303077.Sb9uPGUboI@opensuse/
[2] https://lore.kernel.org/all/20201118204007.468533059@linutronix.de/
Link: https://lkml.kernel.org/r/20220728154844.10874-8-fmdefrancesco@gmail.com
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The reasoning for converting kmap() to kmap_local_page() was questioned
recently.[1]
There are two main problems with kmap(): (1) It comes with an overhead as
mapping space is restricted and protected by a global lock for
synchronization and (2) kmap() also requires global TLB invalidation when
its pool wraps and it might block when the mapping space is fully utilized
until a slot becomes available.
Warn users to avoid the use of kmap() and instead use kmap_local_page(),
by designing their code to map pages in the same context the mapping will
be used.
[1] https://lore.kernel.org/lkml/1891319.taCxCBeP46@opensuse/
Link: https://lkml.kernel.org/r/20220728154844.10874-6-fmdefrancesco@gmail.com
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Users of kmap_local_page() must be absolutely sure to not hand kernel
virtual address obtained calling kmap_local_page() on highmem pages to
other contexts because those pointers are thread local, therefore, they
are no longer valid across different contexts.
Extend the documentation of kmap_local_page() to warn users about the
above-mentioned potential invalid use of pointers returned by
kmap_local_page().
Link: https://lkml.kernel.org/r/20220728154844.10874-5-fmdefrancesco@gmail.com
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There is no need to kmap*() pages which are guaranteed to come from
ZONE_NORMAL (or lower). Linux has currently several call sites of
kmap{,_atomic,_local_page}() on pages which are clearly known which can't
come from ZONE_HIGHMEM.
Therefore, add a paragraph to highmem.rst, to explain better that a plain
page_address() may be used for getting the address of pages which cannot
come from ZONE_HIGHMEM, although it is always safe to use
kmap_local_page() / kunmap_local() also on those pages.
Link: https://lkml.kernel.org/r/20220728154844.10874-4-fmdefrancesco@gmail.com
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All the comments which explains how HVO works are moved to
vmemmap_dedup.rst since
commit 4917f55b4ef9 ("mm/sparse-vmemmap: improve memory savings for compound devmaps")
except some comments above page_fixed_fake_head(). This commit moves
those comments to vmemmap_dedup.rst and improve vmemmap_dedup.rst as well.
Link: https://lkml.kernel.org/r/20220628092235.91270-8-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It it inconvenient to mention the feature of optimizing vmemmap pages
associated with HugeTLB pages when communicating with others since there
is no specific or abbreviated name for it when it is first introduced.
Let us give it a name HVO (HugeTLB Vmemmap Optimization) from now.
This commit also updates the document about "hugetlb_free_vmemmap" by the
way discussed in thread [1].
Link: https://lore.kernel.org/all/21aae898-d54d-cc4b-a11f-1bb7fddcfffa@redhat.com/ [1]
Link: https://lkml.kernel.org/r/20220628092235.91270-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Will Deacon <will@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve latency
and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA
jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/
SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE=
=w/UH
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
so it will be consistent with code mm directory and with
Documentation/admin-guide/mm and won't be confused with virtual machines.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Jonathan Corbet <corbet@lwn.net>
Acked-by: Wu XiangCheng <bobwxc@email.cn>