Serial port is attached to XTFPGA boards as native endian device, mark
it as such in DTS and pass correct endianness in platform data.
Set register width in DTS to 4, this way it matches the platform data
and works correctly on big-endian CPUs.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Query compiler for the CPU endianness and add corresponding definition
to KBUILD_CPPFLAGS. This allows using 'native-endian' property in DTS.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Disabling pagefault makes little sense there, preemption disabling is
what was meant.
Cc: stable@vger.kernel.org
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Simulator stdin may be connected to a file, when its end is reached
kernel hangs in infinite loop inside rs_poll, because simc_poll always
signals that descriptor 0 is readable and simc_read always returns 0.
Check simc_read return value and exit loop if it's not positive. Also
don't rewind polling timer if it's zero.
Cc: stable@vger.kernel.org
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Currently on i386 and on X86_64 when emulating X86_32 in legacy mode, only
the stack and the executable are randomized but not other mmapped files
(libraries, vDSO, etc.). This patch enables randomization for the
libraries, vDSO and mmap requests on i386 and in X86_32 in legacy mode.
By default on i386 there are 8 bits for the randomization of the libraries,
vDSO and mmaps which only uses 1MB of VA.
This patch preserves the original randomness, using 1MB of VA out of 3GB or
4GB. We think that 1MB out of 3GB is not a big cost for having the ASLR.
The first obvious security benefit is that all objects are randomized (not
only the stack and the executable) in legacy mode which highly increases
the ASLR effectiveness, otherwise the attackers may use these
non-randomized areas. But also sensitive setuid/setgid applications are
more secure because currently, attackers can disable the randomization of
these applications by setting the ulimit stack to "unlimited". This is a
very old and widely known trick to disable the ASLR in i386 which has been
allowed for too long.
Another trick used to disable the ASLR was to set the ADDR_NO_RANDOMIZE
personality flag, but fortunately this doesn't work on setuid/setgid
applications because there is security checks which clear Security-relevant
flags.
This patch always randomizes the mmap_legacy_base address, removing the
possibility to disable the ASLR by setting the stack to "unlimited".
Signed-off-by: Hector Marco-Gisbert <hecmargi@upv.es>
Acked-by: Ismael Ripoll Ripoll <iripoll@upv.es>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/1457639460-5242-1-git-send-email-hecmargi@upv.es
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge the ftrace changes to support -mprofile-kernel on ppc64le. This is
a prerequisite for live patching, the support for which will be merged
via the livepatch tree based on this topic branch.
The bus always starts at 0. Due to alignment and down-casting, this
happened to work before, but looked alarmingly incorrect in kernel logs.
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Comment the less obvious portion of the code for setting up memory windows,
and the platform dependency for initializing the h/w with appropriate
resources.
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Add PCI support to ARC and update drivers/pci Makefile enabling the ARC
arch to use the generic PCI setup functions.
[bhelgaas: fold in Joao's pci-dma-compat.h & pci-bridge.h build fix (I
should have caught this myself, sorry]
Signed-off-by: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
is a bit larger because the surrounding code needed a cleanup, but
nothing worrisome.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJW4UwZAAoJEL/70l94x66DG3YH/0PfUr4sW0jnWRVXmYlPVka4
sNFYrdtYnx08PwXu2sWMm1F+OBXlF/t0ZSJXJ9OBF8WdKIu8TU4yBOINRAvGO/oE
slrivjktLTKgicTtIXP5BpRR14ohwHIGcuiIlppxvnhmQz1/rMtig7fvhZxYI545
lJyIbyquNR86tiVdUSG9/T9+ulXXXCvOspYv8jPXZx7VKBXKTvp5P5qavSqciRb+
O9RqY+GDCR/5vrw+MV0J7H9ZydeEJeD02LcWguTGMATTm0RCrhydvSbou42UcKfY
osWii0kwt2LhcM/sTOz+cWnLJ6gwU9T+ZtJTTbLvYWXWDLP/+icp9ACMkwNciNo=
=/y4V
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"A few simple fixes for ARM, x86, PPC and generic code.
The x86 MMU fix is a bit larger because the surrounding code needed a
cleanup, but nothing worrisome"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: MMU: fix reserved bit check for ept=0/CR0.WP=0/CR4.SMEP=1/EFER.NX=0
KVM: MMU: fix ept=0/pte.u=1/pte.w=0/CR0.WP=0/CR4.SMEP=1/EFER.NX=0 combo
kvm: cap halt polling at exactly halt_poll_ns
KVM: s390: correct fprs on SIGP (STOP AND) STORE STATUS
KVM: VMX: disable PEBS before a guest entry
KVM: PPC: Book3S HV: Sanitize special-purpose register values on guest exit
- Temporarily disable huge pages built using contiguous ptes
- Ensure vmemmap region is sufficiently aligned for sparsemem sections
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJW4FSYAAoJELescNyEwWM0cp4H/0+9iMTqb3KowIW1vQPNnOG2
BG/RVsGlCPAwBu0V4FdcY7eK4fQ9J+/UCmVd5/SrlpjNpblinxRPihbIzs4bToqa
It02wNk7ISPm0oYtyGrRu1TpC5AvMykcluZkU/CUk0sjZlBAi8WSaJiqftFuZSGH
lhyhARO4KscbAUUhwDDYNKuWmLbmyOpt9RM2fziNQdjSp+8czCoCR9G+JXiPQFsJ
ORU10BqBDCyFpp8/NhM55qA76FJo6RCBUWx/6L1oJJxjvahkmPba/hhnfI7+Xj1u
3FKAntJ6wVZeKqRsIkOlECoU/mrgjlTByTFN+o3KhOky8ZYBHoveIQWtsqNMFd4=
=7d1o
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"I thought we were done for 4.5, but then the 64k-page chaps came
crawling out of the woodwork. *sigh*
The vmemmap fix I sent for -rc7 caused a regression with 64k pages and
sparsemem and at some point during the release cycle the new hugetlb
code using contiguous ptes started failing the libhugetlbfs tests with
64k pages enabled.
So here are a couple of patches that fix the vmemmap alignment and
disable the new hugetlb page sizes whilst a proper fix is being
developed:
- Temporarily disable huge pages built using contiguous ptes
- Ensure vmemmap region is sufficiently aligned for sparsemem
sections"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: hugetlb: partial revert of 66b3923a1a0f
arm64: account for sparsemem section alignment when choosing vmemmap offset
Pull s390 fixes from Martin Schwidefsky:
"Three bug fixes:
- The fix for the page table corruption (CVE-2016-2143)
- The diagnose statistics introduced a regression for the dasd diag
driver
- Boot crash on systems without the set-program-parameters facility"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/mm: four page table levels vs. fork
s390/cpumf: Fix lpp detection
s390/dasd: fix diag 0x250 inline assembly
Commit abd4f7505baf ("x86: i386-show-unhandled-signals-v3") did turn on
the showing-unhandled-signal behaviour for i386 for some exception handlers,
but for no reason do_trap() is left out (my naive guess is because turning it on
for do_trap() would be too noisy since do_trap() is shared by several exceptions).
And since the same commit make "show_unhandled_signals" a debug tunable(in
/proc/sys/debug/exception-trace), and x86 by default turning it on.
So it would be strange for i386 users who turing it on manually and expect
seeing the unhandled signal output in log, but nothing.
This patch turns it on for i386 in do_trap() as well.
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Cc: dave.hansen@linux.intel.com
Cc: heukelum@fastmail.fm
Cc: jbeulich@novell.com
Cc: jdike@addtoit.com
Cc: joe@perches.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/1457612398-4568-1-git-send-email-nasa4836@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- add watchdog diagnose to trace event decoder
- better handle the cpu timer when not inside the guest
- only provide STFLE if the CPU model has STFLE
- reduce DMA page usage
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJW3/XrAAoJEBF7vIC1phx8D7cP/RGZqjVQF8S0tOpzGl2EHRYd
8MyTA2b53wUQx1cR35U1Tx1mKoTBoAcwADVJljCsCzCuGp/Bae9kT+T1kz4/aWEv
vlQqE7+63VkPsgQxFCcKA6CKagFLz+2QBmNFMdYStjHjN/MNBDwfo58I9Y9g2DdB
r7cjdExKC1WhCUguDv8eREtNWGRGC8IDV8ID02xTABTSk7LYcIGok0YIRjsZaV5b
W1gchW5GicOTp/mktkCsNPhnFg28owsG2LVcb5zeGQuq0TowvrSvRzxCOrHM1lKS
WU28FDvFn64bPvSAu1w894YKMsMxvm9SX5SWQ7nA5JkDko5lQ49H77M2YipMLUXY
F+KN9TlS352fzGr5i7TaPUOLAtFDhdtM0NAicUf5+ydR73DLetQOvMqqenmmP1Mw
K9hgAviFtKfnScIomCPrmeel5ddIl0OTshiZMGIbS6/lAGRZ5aJuXPxUgMhFiz95
YgjH2tb16eR0eYAs2PIt2bsJVis4x2MfFi+PExYzWP5vERxzMthE879Ra42NBfT1
tswxtvvQtXgXrkakwYkCTXqnja0JLNOhfKvIL73/am9DbwUmikWfVYOoq/yEe/w9
Gf5ZHzACrokHDqeKbMT6xzGEk4C1QEn7VRc4H4MX47xseVVXb2GxPYFNASgL2SSU
Qe6+IILH9uDhDkXVHIJD
=n2MS
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-4.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
KVM: s390: Fixes and features for kvm/next (4.6) part 2
- add watchdog diagnose to trace event decoder
- better handle the cpu timer when not inside the guest
- only provide STFLE if the CPU model has STFLE
- reduce DMA page usage
There is a tricky interaction between the machine check handler
and the critical sections of load_fpu_regs and save_fpu_regs
functions. If the machine check interrupts one of the two
functions the critical section cleanup will complete the function
before the machine check handler s390_do_machine_check is called.
Trouble is that the machine check handler needs to validate the
floating point registers *before* and not *after* the completion
of load_fpu_regs/save_fpu_regs.
The simplest solution is to rewind the PSW to the start of the
load_fpu_regs/save_fpu_regs and retry the function after the
return from the machine check handler.
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: <stable@vger.kernel.org> # 4.3+
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add the missing lpp magic initialization for cpu 0. Without this all
samples on cpu 0 do not have the most significant bit set in the
program parameter field, which we use to distinguish between guest and
host samples if the pid is also 0.
We did initialize the lpp magic in the absolute zero lowcore but
forgot that when switching to the allocated lowcore on cpu 0 only.
Reported-by: Shu Juan Zhang <zhshuj@cn.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: stable@vger.kernel.org # v4.4+
Fixes: e22cf8ca6f75 ("s390/cpumf: rework program parameter setting to detect guest samples")
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The current comment in pmao_restore_workaround() regarding
hard_irq_disable() is wrong. It should say to hard *disable* interrupts
instead of *enable*. Fix it.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The Physical Core events of the 24x7 PMU can be monitored across various
domains (physical core, vcpu home core, vcpu home node etc). For each of
these core events, we currently create multiple events in sysfs, one for
each domain the event can be monitored in. These events are distinguished
by their suffixes like __PHYS_CORE, __VCPU_HOME_CORE etc.
Rather than creating multiple such entries, we could let the user specify
make 'domain' index a required parameter and let the user specify a value
for it (like they currently specify the core index).
$ cat /sys/bus/event_source/devices/hv_24x7/events/HPM_CCYC
domain=?,offset=0x98,core=?,lpar=0x0
$ perf stat -C 0 -e hv_24x7/HPM_CCYC,domain=2,core=1/ true
(the 'domain=?' and 'core=?' in sysfs tell perf tool to enforce them as
required parameters).
This simplifies the interface and allows users to identify events by the
name specified in the catalog (User can determine the domain index by
referring to '/sys/bus/event_source/devices/hv_24x7/interface/domains').
Eliminating the event suffix eliminates several functions and simplifies
code.
Note that Physical Chip events can only be monitored in the chip domain
so those events have the domain set to 1 (rather than =?) and users don't
need to specify the domain index for the Chip events.
$ cat /sys/bus/event_source/devices/hv_24x7/events/PM_XLINK_CYCLES
domain=1,offset=0x230,chip=?,lpar=0x0
$ perf stat -C 0 -e hv_24x7/PM_XLINK_CYCLES,chip=1/ true
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
To help users determine domains, display the domain indices used by the
kernel in sysfs.
$ cat /sys/bus/event_source/devices/hv_24x7/interface/domains
1: Physical Chip
2: Physical Core
3: VCPU Home Core
4: VCPU Home Chip
5: VCPU Home Node
6: VCPU Remote Node
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
For 24x7 counters, perf displays the raw value of the 24x7 counter, which
is a monotonically increasing value.
perf stat -C 0 -e \
'hv_24x7/HPM_0THRD_NON_IDLE_CCYC__PHYS_CORE,core=1/' \
sleep 1
Performance counter stats for 'CPU(s) 0':
9,105,403,170 hv_24x7/HPM_0THRD_NON_IDLE_CCYC__PHYS_CORE,core=1/
0.000425751 seconds time elapsed
In the typical usage of 'perf stat' this counter value is not as useful
as the _change_ in the counter value over the duration of the application.
Have h_24x7_event_init() set the event's prev_count to the raw value of
the 24x7 counter at the time of initialization. When the application
terminates, hv_24x7_event_read() will compute the change in value and
report to the perf tool. Similarly, for the transaction interface, clear
the event count to 0 at the beginning of the transaction.
perf stat -C 0 -e \
'hv_24x7/HPM_0THRD_NON_IDLE_CCYC__PHYS_CORE,core=1/' \
sleep 1
Performance counter stats for 'CPU(s) 0':
245,758 hv_24x7/HPM_0THRD_NON_IDLE_CCYC__PHYS_CORE,core=1/
1.006366383 seconds time elapsed
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
24x7 counters can belong to different domains (core, chip, virtual CPU
etc). For events in the 'chip' domain, sysfs entry currently looks like:
$ cd /sys/bus/event_source/devices/hv_24x7/events
$ cat PM_XLINK_CYCLES__PHYS_CHIP
domain=0x1,offset=0x230,core=?,lpar=0x0
where the required parameter, 'core=?' is specified with perf as:
perf stat -C 0 -e hv_24x7/PM_XLINK_CYCLES__PHYS_CHIP,core=1/ \
/bin/true
This is inconsistent in that 'core' is a required parameter for a chip
event. Instead, have the the sysfs entry display 'chip=?' for chip
events:
$ cd /sys/bus/event_source/devices/hv_24x7/events
$ cat PM_XLINK_CYCLES__PHYS_CHIP
domain=0x1,offset=0x230,chip=?,lpar=0x0
We also need to add a 'chip' entry in the sysfs format directory:
$ ls /sys/bus/event_source/devices/hv_24x7/format
chip core domain lpar offset vcpu
^^^^
(new)
so the perf tool can automatically check usage and format the chip
parameter correctly:
$ perf stat -C 0 -v -e hv_24x7/PM_XLINK_CYCLES__PHYS_CHIP/ \
/bin/true
Required parameter 'chip' not specified
invalid or unsupported event: 'hv_24x7/PM_XLINK_CYCLES__PHYS_CHIP/'
$ perf stat -C 0 -v -e hv_24x7/PM_XLINK_CYCLES__PHYS_CHIP,chip=1/ \
/bin/true
hv_24x7/PM_XLINK_CYCLES__PHYS_CHIP,chip=1/: 0 6628908 6628908
Performance counter stats for 'CPU(s) 0':
0 hv_24x7/PM_XLINK_CYCLES__PHYS_CHIP,chip=1/
0.006606970 seconds time elapsed
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Power8 supports a large number of events in each susbystem so when a
user runs:
perf stat -e branch-instructions sleep 1
perf stat -e L1-dcache-loads sleep 1
it is not clear as to which PMU events were monitored.
Export the generic hardware and cache perf events for Power8 to sysfs,
so users can precisely determine the PMU event monitored by the generic
event.
Eg:
cat /sys/bus/event_source/devices/cpu/events/branch-instructions
event=0x10068
$ cat /sys/bus/event_source/devices/cpu/events/L1-dcache-loads
event=0x100ee
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We used the PME_ prefix earlier to avoid some macro/variable name
collisions. We have since changed the way we define/use the event
macros so we no longer need the prefix.
By dropping the prefix, we keep the the event macros consistent with
their official names.
Reported-by: Michael Ellerman <ellerman@au1.ibm.com>
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We do use this_cpu_ptr(&cpu_tss) as a cacheline-aligned, seldomly
accessed per-cpu var as the MONITORX target in delay_mwaitx(). However,
when called in preemptible context, this_cpu_ptr -> smp_processor_id() ->
debug_smp_processor_id() fires:
BUG: using smp_processor_id() in preemptible [00000000] code: udevd/312
caller is delay_mwaitx+0x40/0xa0
But we don't care about that check - we only need cpu_tss as a MONITORX
target and it doesn't really matter which CPU's var we're touching as
we're going idle anyway. Fix that.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: spg_linux_kernel@amd.com
Link: http://lkml.kernel.org/r/20160309205622.GG6564@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
KVM has special logic to handle pages with pte.u=1 and pte.w=0 when
CR0.WP=1. These pages' SPTEs flip continuously between two states:
U=1/W=0 (user and supervisor reads allowed, supervisor writes not allowed)
and U=0/W=1 (supervisor reads and writes allowed, user writes not allowed).
When SMEP is in effect, however, U=0 will enable kernel execution of
this page. To avoid this, KVM also sets NX=1 in the shadow PTE together
with U=0, making the two states U=1/W=0/NX=gpte.NX and U=0/W=1/NX=1.
When guest EFER has the NX bit cleared, the reserved bit check thinks
that the latter state is invalid; teach it that the smep_andnot_wp case
will also use the NX bit of SPTEs.
Cc: stable@vger.kernel.org
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.inel.com>
Fixes: c258b62b264fdc469b6d3610a907708068145e3b
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Yes, all of these are needed. :) This is admittedly a bit odd, but
kvm-unit-tests access.flat tests this if you run it with "-cpu host"
and of course ept=0.
KVM runs the guest with CR0.WP=1, so it must handle supervisor writes
specially when pte.u=1/pte.w=0/CR0.WP=0. Such writes cause a fault
when U=1 and W=0 in the SPTE, but they must succeed because CR0.WP=0.
When KVM gets the fault, it sets U=0 and W=1 in the shadow PTE and
restarts execution. This will still cause a user write to fault, while
supervisor writes will succeed. User reads will fault spuriously now,
and KVM will then flip U and W again in the SPTE (U=1, W=0). User reads
will be enabled and supervisor writes disabled, going back to the
originary situation where supervisor writes fault spuriously.
When SMEP is in effect, however, U=0 will enable kernel execution of
this page. To avoid this, KVM also sets NX=1 in the shadow PTE together
with U=0. If the guest has not enabled NX, the result is a continuous
stream of page faults due to the NX bit being reserved.
The fix is to force EFER.NX=1 even if the CPU is taking care of the EFER
switch. (All machines with SMEP have the CPU_LOAD_IA32_EFER vm-entry
control, so they do not use user-return notifiers for EFER---if they did,
EFER.NX would be forced to the same value as the host).
There is another bug in the reserved bit check, which I've split to a
separate patch for easier application to stable kernels.
Cc: stable@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Fixes: f6577a5fa15d82217ca73c74cd2dcbc0f6c781dd
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that slow-path syscalls always enter C before enabling
interrupts, it's straightforward to call enter_from_user_mode() before
enabling interrupts rather than doing it as part of entry tracing.
With this change, we should finally be able to retire exception_enter().
This will also enable optimizations based on knowing that we never
change context tracking state with interrupts on.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/bc376ecf87921a495e874ff98139b1ca2f5c5dd7.1457558566.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want all of the syscall entries to run with interrupts off so that
we can efficiently run context tracking before enabling interrupts.
This will regress int $0x80 performance on 32-bit kernels by a
couple of cycles. This shouldn't matter much -- int $0x80 is not a
fast path.
This effectively reverts:
657c1eea0019 ("x86/entry/32: Fix entry_INT80_32() to expect interrupts to be on")
... and fixes the same issue differently.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/59b4f90c9ebfccd8c937305dbbbca680bc74b905.1457558566.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Leonid Shatz noticed that the SDM interpretation of the following
recent commit:
394db20ca240741 ("x86/fpu: Disable AVX when eagerfpu is off")
... is incorrect and that the original behavior of the FPU code was correct.
Because AVX is not stated in CR0 TS bit description, it was mistakenly
believed to be not supported for lazy context switch. This turns out
to be false:
Intel Software Developer's Manual Vol. 3A, Sec. 2.5 Control Registers:
'TS Task Switched bit (bit 3 of CR0) -- Allows the saving of the x87 FPU/
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be delayed until
an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is actually executed
by the new task.'
Intel Software Developer's Manual Vol. 2A, Sec. 2.4 Instruction Exception
Specification:
'AVX instructions refer to exceptions by classes that include #NM
"Device Not Available" exception for lazy context switch.'
So revert the commit.
Reported-by: Leonid Shatz <leonid.shatz@ravellosystems.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1457569734-3785-1-git-send-email-yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ingo suggested that the comments should explain when the various
entries are used. This adds these explanations and improves other
parts of the comments.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/9524ecef7a295347294300045d08354d6a57c6e7.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that SYSENTER with TF set puts X86_EFLAGS_TF directly into
regs->flags, we don't need a TIF_SINGLESTEP fixup in the syscall
entry code. Remove it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2d15f24da52dafc9d2f0b8d76f55544f4779c517.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The first instruction of the SYSENTER entry runs on its own tiny
stack. That stack can be used if a #DB or NMI is delivered before
the SYSENTER prologue switches to a real stack.
We have code in place to prevent us from overflowing the tiny stack.
For added paranoia, add a canary to the stack and check it in
do_debug() -- that way, if something goes wrong with the #DB logic,
we'll eventually notice.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6ff9a806f39098b166dc2c41c1db744df5272f29.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Right after SYSENTER, we can get a #DB or NMI. On x86_32, there's no IST,
so the exception handler is invoked on the temporary SYSENTER stack.
Because the SYSENTER stack is very small, we have a fixup to switch
off the stack quickly when this happens. The old fixup had several issues:
1. It checked the interrupt frame's CS and EIP. This wasn't
obviously correct on Xen or if vm86 mode was in use [1].
2. In the NMI handler, it did some frightening digging into the
stack frame. I'm not convinced this digging was correct.
3. The fixup didn't switch stacks and then switch back. Instead, it
synthesized a brand new stack frame that would redirect the IRET
back to the SYSENTER code. That frame was highly questionable.
For one thing, if NMI nested inside #DB, we would effectively
abort the #DB prologue, which was probably safe but was
frightening. For another, the code used PUSHFL to write the
FLAGS portion of the frame, which was simply bogus -- by the time
PUSHFL was called, at least TF, NT, VM, and all of the arithmetic
flags were clobbered.
Simplify this considerably. Instead of looking at the saved frame
to see where we came from, check the hardware ESP register against
the SYSENTER stack directly. Malicious user code cannot spoof the
kernel ESP register, and by moving the check after SAVE_ALL, we can
use normal PER_CPU accesses to find all the relevant addresses.
With this patch applied, the improved syscall_nt_32 test finally
passes on 32-bit kernels.
[1] It isn't obviously correct, but it is nonetheless safe from vm86
shenanigans as far as I can tell. A user can't point EIP at
entry_SYSENTER_32 while in vm86 mode because entry_SYSENTER_32,
like all kernel addresses, is greater than 0xffff and would thus
violate the CS segment limit.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/b2cdbc037031c07ecf2c40a96069318aec0e7971.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The SYSENTER stack is only used on 32-bit kernels. Remove it on 64-bit kernels.
( We may end up using it down the road on 64-bit kernels. If so,
we'll re-enable it for CONFIG_IA32_EMULATION. )
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/9dbd18429f9ff61a76b6eda97a9ea20510b9f6ba.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to a blatant design error, SYSENTER doesn't clear TF (single-step).
As a result, if a user does SYSENTER with TF set, we will single-step
through the kernel until something clears TF. There is absolutely
nothing we can do to prevent this short of turning off SYSENTER [1].
Simplify the handling considerably with two changes:
1. We already sanitize EFLAGS in SYSENTER to clear NT and AC. We can
add TF to that list of flags to sanitize with no overhead whatsoever.
2. Teach do_debug() to ignore single-step traps in the SYSENTER prologue.
That's all we need to do.
Don't get too excited -- our handling is still buggy on 32-bit
kernels. There's nothing wrong with the SYSENTER code itself, but
the #DB prologue has a clever fixup for traps on the very first
instruction of entry_SYSENTER_32, and the fixup doesn't work quite
correctly. The next two patches will fix that.
[1] We could probably prevent it by forcing BTF on at all times and
making sure we clear TF before any branches in the SYSENTER
code. Needless to say, this is a bad idea.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a30d2ea06fe4b621fe6a9ef911b02c0f38feb6f2.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Leaving any bits set in DR6 on return from a debug exception is
asking for trouble. Prevent it by writing zero right away and
clarify the comment.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3857676e1be8fb27db4b89bbb1e2052b7f435ff4.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The SDM says that debug exceptions clear BTF, and we need to keep
TIF_BLOCKSTEP in sync with BTF. Clear it unconditionally and improve
the comment.
I suspect that the fact that kmemcheck could cause TIF_BLOCKSTEP not
to be cleared was just an oversight.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/fa86e55d196e6dde5b38839595bde2a292c52fdc.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We weren't restoring FLAGS at all on SYSEXIT. Apparently no one cared.
With this patch applied, native kernels should always honor
task_pt_regs()->flags, which opens the door for some sys_iopl()
cleanups. I'll do those as a separate series, though, since getting
it right will involve tweaking some paravirt ops.
( The short version is that, before this patch, sys_iopl(), invoked via
SYSENTER, wasn't guaranteed to ever transfer the updated
regs->flags, so sys_iopl() had to change the hardware flags register
as well. )
Reported-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3f98b207472dc9784838eb5ca2b89dcc845ce269.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This makes the 32-bit code work just like the 64-bit code. It should
speed up syscalls on 32-bit kernels on Skylake by something like 20
cycles (by analogy to the 64-bit compat case).
It also cleans up NT just like we do for the 64-bit case.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/07daef3d44bd1ed62a2c866e143e8df64edb40ee.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CLAC is slow, and the SYSENTER code already has an unlikely path
that runs if unusual flags are set. Drop the CLAC and instead rely
on the unlikely path to clear AC.
This seems to save ~24 cycles on my Skylake laptop. (Hey, Intel,
make this faster please!)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/90d6db2189f9add83bc7bddd75a0c19ebbd676b2.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The fork of a process with four page table levels is broken since
git commit 6252d702c5311ce9 "[S390] dynamic page tables."
All new mm contexts are created with three page table levels and
an asce limit of 4TB. If the parent has four levels dup_mmap will
add vmas to the new context which are outside of the asce limit.
The subsequent call to copy_page_range will walk the three level
page table structure of the new process with non-zero pgd and pud
indexes. This leads to memory clobbers as the pgd_index *and* the
pud_index is added to the mm->pgd pointer without a pgd_deref
in between.
The init_new_context() function is selecting the number of page
table levels for a new context. The function is used by mm_init()
which in turn is called by dup_mm() and mm_alloc(). These two are
used by fork() and exec(). The init_new_context() function can
distinguish the two cases by looking at mm->context.asce_limit,
for fork() the mm struct has been copied and the number of page
table levels may not change. For exec() the mm_alloc() function
set the new mm structure to zero, in this case a three-level page
table is created as the temporary stack space is located at
STACK_TOP_MAX = 4TB.
This fixes CVE-2016-2143.
Reported-by: Marcin Kościelnicki <koriakin@0x04.net>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poison prior to returning.
In the case of cpuidle, CPUs exit the kernel a number of levels deep in
C code. Any instrumented functions on this critical path will leave
portions of the stack shadow poisoned.
If CPUs lose context and return to the kernel via a cold path, we
restore a prior context saved in __cpu_suspend_enter are forgotten, and
we never remove the poison they placed in the stack shadow area by
functions calls between this and the actual exit of the kernel.
Thus, (depending on stackframe layout) subsequent calls to instrumented
functions may hit this stale poison, resulting in (spurious) KASAN
splats to the console.
To avoid this, clear any stale poison from the idle thread for a CPU
prior to bringing a CPU online.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a write is directed at a known bad block perform the following:
1/ write the data
2/ send a clear poison command
3/ invalidate the poison out of the cache hierarchy
Cc: <x86@kernel.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Force the DRA7xx Ethernet internal clock source to stay enabled
per TI erratum i877:
http://www.ti.com/lit/er/sprz429h/sprz429h.pdf
Otherwise, if the Ethernet internal clock source is disabled, the
chip will age prematurely, and the RGMII I/O timing will soon
fail to meet the delay time and skew specifications for 1000Mbps
Ethernet.
This fix should go in as soon as possible.
Basic build, boot, and PM test results are available here:
http://www.pwsan.com/omap/testlogs/omap-critical-fixes-for-v4.5-rc/20160307014209/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW3UuoAAoJEMePsQ0LvSpL4JIP/j9A1ax1c6kGfNujSzBMrVL3
I68l27ohfbo/MKMc/KsqkdahzGimIUmqkJGxrnA19UMhfyMb6l3pzlVswxfUUd10
EXl/aKlPDa+Xl+A+TCwK78C69ZXHk4nqsNDSixuoIVfxM2uTZZZmNK3FOR+/EaQ8
kUq3zwkg31HgsYxIyvqcCwpsxmDwKXx6fQ3sX5A6tQGvtsdeNofWJOVoGpZe0Ott
tmt09VEvSGvXVEL1Um6U5A+8Mw6GPWa9/wih8nYaE70BswuOmIMUxeCkrShDadpn
4Z8rqZg1Q8sdnI7ZCARS2WZ63+wrcjq04Yycf7m8feUc7cIDqlahWnrIWKuvpPAz
P20LgrwRQDgifM2TzJupPRUKX+7BoACOXTIt2A3HuOIsZRfqysFx4qoOEdQNBlVq
mOOwA/o8ly8hJI7uym8elrPY4MjZ4f6l2h/mFom0XrlS/1NcxXwuGqi9SJNneFSm
ALyCIW7YnemoOex0tUcHUg2fiGaRceWlSmzHxI0WgVyOj86hrXc8OnpjnPmuhMQV
i4pkL4Y1/UxZepd0b6QOTUC+LQvsWL008XLUr0SPm1d2Co9sxyzN8i0pXh07bsm0
sOflS6DtwWSNenX/OVVQWk0r5amNwiFFpiw7tBWIeXYi4glhyizqdGjbzxRjxJUf
QfFex23RAWtf/1ZrvqQO
=kJw8
-----END PGP SIGNATURE-----
Merge tag 'for-v4.5-rc/omap-critical-fixes-a' of git://git.kernel.org/pub/scm/linux/kernel/git/pjw/omap-pending into fixes
ARM: OMAP2+: critical DRA7xx fix for v4.5-rc
Force the DRA7xx Ethernet internal clock source to stay enabled
per TI erratum i877:
http://www.ti.com/lit/er/sprz429h/sprz429h.pdf
Otherwise, if the Ethernet internal clock source is disabled, the
chip will age prematurely, and the RGMII I/O timing will soon
fail to meet the delay time and skew specifications for 1000Mbps
Ethernet.
This fix should go in as soon as possible.
Basic build, boot, and PM test results are available here:
http://www.pwsan.com/omap/testlogs/omap-critical-fixes-for-v4.5-rc/20160307014209/
* tag 'for-v4.5-rc/omap-critical-fixes-a' of git://git.kernel.org/pub/scm/linux/kernel/git/pjw/omap-pending:
ARM: dts: dra7: do not gate cpsw clock due to errata i877
ARM: OMAP2+: hwmod: Introduce ti,no-idle dt property
Signed-off-by: Olof Johansson <olof@lixom.net>
add the missing RAID Engine device node for p5040.
otherwise, the device can not be detected.
Signed-off-by: Xuelin Shi <xuelin.shi@nxp.com>
Signed-off-by: Scott Wood <oss@buserror.net>
csum_partial is often called for small fixed length packets
for which it is suboptimal to use the generic csum_partial()
function.
For instance, in my configuration, I got:
* One place calling it with constant len 4
* Seven places calling it with constant len 8
* Three places calling it with constant len 14
* One place calling it with constant len 20
* One place calling it with constant len 24
* One place calling it with constant len 32
This patch renames csum_partial() to __csum_partial() and
implements csum_partial() as a wrapper inline function which
* uses csum_add() for small 16bits multiple constant length
* uses ip_fast_csum() for other 32bits multiple constant
* uses __csum_partial() in all other cases
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>