mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-09 23:39:18 +00:00
1446 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
cac03ac368 |
Various fixes: a deadline scheduler fix, a migration fix, a Sparse fix and a comment fix.
Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLuvmwRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1gONQ/+KkkPTeKgGDvrahTfeYZlmRyvcI1R78r9 yooa8v+DtifznBW2eXDBc8WTruzqr78VyUY+1YSjfKS6FRQWYMficJ3qk3hxgBru 998KZbvl3jXBBlRkqgGeFlF5Ty2KaryEZgX97a7IF/0xWDgpm972jFkJ/KCo/YTY WSQrzutz2FKe71EjK4cAplYxPZIiy/zo2hSGTbsso4M7bO5VLc1Y4qMtFGcCZ7JB s9JYkj2Rfz+AS5wioDRcGuec4A4SrroxKszZA6QDDBuhMJukqexO02xs/fxZ2W4Z DF4U5MFOrtz9AWSGsf1P6XXbgJO8qTgQXZchFsEcJwypV13w8U0IViXQfD/Pvx2X y+WHdnZVIO2sDwOJ15ew7IuoJZ2LsVygrBNFJJaIFOtIz3RzprI0BJN7LeWFALOa IPmbtiY8hVwhKmjRgMHWDwJhMEHLuhGx3idiD89w1pknzTUnKDiwLyEUtyynxeGd ft9uCvPefrYQVx9AiH7wf0W+fg334FCccC+0f8LyduyftUyQCfZIZY6LUSKuKded Odm7k0ngLDPbdZwAHs0Nf/ilRwd91Z7b6hGt5U3ptx+8BPMKB+/k1VoKog7OISPc zGaP7DrtuC4sEdX4X6bqX+mEQhpkLcQw15gVGxhKoHqygWNSZrV634aSSXwfVXJx eT5m/K9a7L0= =CYl5 -----END PGP SIGNATURE----- Merge tag 'sched-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "Various fixes: a deadline scheduler fix, a migration fix, a Sparse fix and a comment fix" * tag 'sched-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/core: Do not requeue task on CPU excluded from cpus_mask sched/rt: Fix Sparse warnings due to undefined rt.c declarations exit: Fix typo in comment: s/sub-theads/sub-threads sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed |
||
Mel Gorman
|
751d4cbc43 |
sched/core: Do not requeue task on CPU excluded from cpus_mask
The following warning was triggered on a large machine early in boot on a distribution kernel but the same problem should also affect mainline. WARNING: CPU: 439 PID: 10 at ../kernel/workqueue.c:2231 process_one_work+0x4d/0x440 Call Trace: <TASK> rescuer_thread+0x1f6/0x360 kthread+0x156/0x180 ret_from_fork+0x22/0x30 </TASK> Commit c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu") optimises ttwu by queueing a task that is descheduling on the wakelist, but does not check if the task descheduling is still allowed to run on that CPU. In this warning, the problematic task is a workqueue rescue thread which checks if the rescue is for a per-cpu workqueue and running on the wrong CPU. While this is early in boot and it should be possible to create workers, the rescue thread may still used if the MAYDAY_INITIAL_TIMEOUT is reached or MAYDAY_INTERVAL and on a sufficiently large machine, the rescue thread is being used frequently. Tracing confirmed that the task should have migrated properly using the stopper thread to handle the migration. However, a parallel wakeup from udev running on another CPU that does not share CPU cache observes p->on_cpu and uses task_cpu(p), queues the task on the old CPU and triggers the warning. Check that the wakee task that is descheduling is still allowed to run on its current CPU and if not, wait for the descheduling to complete and select an allowed CPU. Fixes: c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu") Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20220804092119.20137-1-mgorman@techsingularity.net |
||
Waiman Long
|
b6e8d40d43 |
sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed
With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating that the cpuset will just use the effective CPUs of its parent. So cpuset_can_attach() can call task_can_attach() with an empty mask. This can lead to cpumask_any_and() returns nr_cpu_ids causing the call to dl_bw_of() to crash due to percpu value access of an out of bound CPU value. For example: [80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0 : [80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0 : [80468.207946] Call Trace: [80468.208947] cpuset_can_attach+0xa0/0x140 [80468.209953] cgroup_migrate_execute+0x8c/0x490 [80468.210931] cgroup_update_dfl_csses+0x254/0x270 [80468.211898] cgroup_subtree_control_write+0x322/0x400 [80468.212854] kernfs_fop_write_iter+0x11c/0x1b0 [80468.213777] new_sync_write+0x11f/0x1b0 [80468.214689] vfs_write+0x1eb/0x280 [80468.215592] ksys_write+0x5f/0xe0 [80468.216463] do_syscall_64+0x5c/0x80 [80468.224287] entry_SYSCALL_64_after_hwframe+0x44/0xae Fix that by using effective_cpus instead. For cgroup v1, effective_cpus is the same as cpus_allowed. For v2, effective_cpus is the real cpumask to be used by tasks within the cpuset anyway. Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to reflect the change. In addition, a check is added to task_can_attach() to guard against the possibility that cpumask_any_and() may return a value >= nr_cpu_ids. Fixes: 7f51412a415d ("sched/deadline: Fix bandwidth check/update when migrating tasks between exclusive cpusets") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220803015451.2219567-1-longman@redhat.com |
||
Linus Torvalds
|
7d9d077c78 |
RCU pull request for v5.20 (or whatever)
This pull request contains the following branches: doc.2022.06.21a: Documentation updates. fixes.2022.07.19a: Miscellaneous fixes. nocb.2022.07.19a: Callback-offload updates, perhaps most notably a new RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be offloaded at boot time, regardless of kernel boot parameters. This is useful to battery-powered systems such as ChromeOS and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot parameter prevents offloaded callbacks from interfering with real-time workloads and with energy-efficiency mechanisms. poll.2022.07.21a: Polled grace-period updates, perhaps most notably making these APIs account for both normal and expedited grace periods. rcu-tasks.2022.06.21a: Tasks RCU updates, perhaps most notably reducing the CPU overhead of RCU tasks trace grace periods by more than a factor of two on a system with 15,000 tasks. The reduction is expected to increase with the number of tasks, so it seems reasonable to hypothesize that a system with 150,000 tasks might see a 20-fold reduction in CPU overhead. torture.2022.06.21a: Torture-test updates. ctxt.2022.07.05a: Updates that merge RCU's dyntick-idle tracking into context tracking, thus reducing the overhead of transitioning to kernel mode from either idle or nohz_full userspace execution for kernels that track context independently of RCU. This is expected to be helpful primarily for kernels built with CONFIG_NO_HZ_FULL=y. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmLgMcgTHHBhdWxtY2tA a2VybmVsLm9yZwAKCRCevxLzctn7jArXD/0fjbCwqpRjHVTzjMY8jN4zDkqZZD6m g8Fx27hZ4ToNFwRptyHwNezrNj14skjAJEXfdjaVw32W62ivXvf0HINvSzsTLCSq k2kWyBdXLc9CwY5p5W4smnpn5VoAScjg5PoPL59INoZ/Zziji323C7Zepl/1DYJt 0T6bPCQjo1ZQoDUCyVpSjDmAqxnderWG0MeJVt74GkLqmnYLANg0GH8c7mH4+9LL kVGlLp5nlPgNJ4FEoFdMwNU8T/ETmaVld/m2dkiawjkXjJzB2XKtBigU91DDmXz5 7DIdV4ABrxiy4kGNqtIe/jFgnKyVD7xiDpyfjd6KTeDr/rDS8u2ZH7+1iHsyz3g0 Np/tS3vcd0KR+gI/d0eXxPbgm5sKlCmKw/nU2eArpW/+4LmVXBUfHTG9Jg+LJmBc JrUh6aEdIZJZHgv/nOQBNig7GJW43IG50rjuJxAuzcxiZNEG5lUSS23ysaA9CPCL PxRWKSxIEfK3kdmvVO5IIbKTQmIBGWlcWMTcYictFSVfBgcCXpPAksGvqA5JiUkc egW+xLFo/7K+E158vSKsVqlWZcEeUbsNJ88QOlpqnRgH++I2Yv/LhK41XfJfpH+Y ALxVaDd+mAq6v+qSHNVq9wT3ozXIPy/zK1hDlMIqx40h2YvaEsH4je+521oSoN9r vX60+QNxvUBLwA== =vUNm -----END PGP SIGNATURE----- Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU updates from Paul McKenney: - Documentation updates - Miscellaneous fixes - Callback-offload updates, perhaps most notably a new RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be offloaded at boot time, regardless of kernel boot parameters. This is useful to battery-powered systems such as ChromeOS and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot parameter prevents offloaded callbacks from interfering with real-time workloads and with energy-efficiency mechanisms - Polled grace-period updates, perhaps most notably making these APIs account for both normal and expedited grace periods - Tasks RCU updates, perhaps most notably reducing the CPU overhead of RCU tasks trace grace periods by more than a factor of two on a system with 15,000 tasks. The reduction is expected to increase with the number of tasks, so it seems reasonable to hypothesize that a system with 150,000 tasks might see a 20-fold reduction in CPU overhead - Torture-test updates - Updates that merge RCU's dyntick-idle tracking into context tracking, thus reducing the overhead of transitioning to kernel mode from either idle or nohz_full userspace execution for kernels that track context independently of RCU. This is expected to be helpful primarily for kernels built with CONFIG_NO_HZ_FULL=y * tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits) rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings rcu: Diagnose extended sync_rcu_do_polled_gp() loops rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings rcutorture: Test polled expedited grace-period primitives rcu: Add polled expedited grace-period primitives rcutorture: Verify that polled GP API sees synchronous grace periods rcu: Make Tiny RCU grace periods visible to polled APIs rcu: Make polled grace-period API account for expedited grace periods rcu: Switch polled grace-period APIs to ->gp_seq_polled rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty rcu/nocb: Add option to opt rcuo kthreads out of RT priority rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread() rcu/nocb: Add an option to offload all CPUs on boot rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order rcu/nocb: Add/del rdp to iterate from rcuog itself rcu/tree: Add comment to describe GP-done condition in fqs loop rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs() rcu/kvfree: Remove useless monitor_todo flag rcu: Cleanup RCU urgency state for offline CPU ... |
||
Linus Torvalds
|
b349b1181d |
for-5.20/io_uring-2022-07-29
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmLkm5gQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgpmKMD/4l3QIrLbjYIxlfrzQcHbmYuUkbQtj3SbZg 6ejbnGVhCs1P9DdXH8MgE2BxgpiXQE0CqOK7vbSoo5ep2n2UTLI2DIxAl74SMIo7 0wmJXtUJySuViKr3NYVHqlN180MkQYddBz0nGElhkQBPBCMhW8CrtPCeURr/YyHp 2RxSYBXiUx2gRyig+klnp6oPEqelcBZJUyNHdA9yVrgl/RhB/t2rKj7D++8ukQM3 Zuyh8WIkTeTfUz9hdGG7fuCEdZN4DlO2CCEc7uy0cKi6VRCKH4hYUCqClJ+/cfd2 43dUI2O7B6D1t/ObFh8AGIDXBDqVA6ePQohQU6gooRkfQiBPKkc9d0ts4yIhRqca AjkzNM+0Eve3A01loJ8J84w8oZnvNpYEv5n8/sZVLWcyU3UIs0I88nC2OBiFtoRq d77CtFLwOTo+r3STtAhnZOqez90rhS6BqKtqlUP346PCuFItl6/MbGtwdTbLYEFj CVNIb2pERWSr2NxGv4lFyXaX/cRwruxojWH7yc3rRYjr4Ykevd1pe/fMGNiMAnKw 5em/3QU3qq0ZVcXLMihksKeHHFIQwGDRMuyuv/fktV10+yYXQ0t16WzkJT3aR8Xo cqs0r8+6Jnj3uYcOMzj/FoLcpEPr21hnwAtzLto1mG1Wh4JRn/D7Nx5zqxPLxcW+ NiU6VihPOw== =gxeV -----END PGP SIGNATURE----- Merge tag 'for-5.20/io_uring-2022-07-29' of git://git.kernel.dk/linux-block Pull io_uring updates from Jens Axboe: - As per (valid) complaint in the last merge window, fs/io_uring.c has grown quite large these days. io_uring isn't really tied to fs either, as it supports a wide variety of functionality outside of that. Move the code to io_uring/ and split it into files that either implement a specific request type, and split some code into helpers as well. The code is organized a lot better like this, and io_uring.c is now < 4K LOC (me). - Deprecate the epoll_ctl opcode. It'll still work, just trigger a warning once if used. If we don't get any complaints on this, and I don't expect any, then we can fully remove it in a future release (me). - Improve the cancel hash locking (Hao) - kbuf cleanups (Hao) - Efficiency improvements to the task_work handling (Dylan, Pavel) - Provided buffer improvements (Dylan) - Add support for recv/recvmsg multishot support. This is similar to the accept (or poll) support for have for multishot, where a single SQE can trigger everytime data is received. For applications that expect to do more than a few receives on an instantiated socket, this greatly improves efficiency (Dylan). - Efficiency improvements for poll handling (Pavel) - Poll cancelation improvements (Pavel) - Allow specifiying a range for direct descriptor allocations (Pavel) - Cleanup the cqe32 handling (Pavel) - Move io_uring types to greatly cleanup the tracing (Pavel) - Tons of great code cleanups and improvements (Pavel) - Add a way to do sync cancelations rather than through the sqe -> cqe interface, as that's a lot easier to use for some use cases (me). - Add support to IORING_OP_MSG_RING for sending direct descriptors to a different ring. This avoids the usually problematic SCM case, as we disallow those. (me) - Make the per-command alloc cache we use for apoll generic, place limits on it, and use it for netmsg as well (me). - Various cleanups (me, Michal, Gustavo, Uros) * tag 'for-5.20/io_uring-2022-07-29' of git://git.kernel.dk/linux-block: (172 commits) io_uring: ensure REQ_F_ISREG is set async offload net: fix compat pointer in get_compat_msghdr() io_uring: Don't require reinitable percpu_ref io_uring: fix types in io_recvmsg_multishot_overflow io_uring: Use atomic_long_try_cmpxchg in __io_account_mem io_uring: support multishot in recvmsg net: copy from user before calling __get_compat_msghdr net: copy from user before calling __copy_msghdr io_uring: support 0 length iov in buffer select in compat io_uring: fix multishot ending when not polled io_uring: add netmsg cache io_uring: impose max limit on apoll cache io_uring: add abstraction around apoll cache io_uring: move apoll cache to poll.c io_uring: consolidate hash_locked io-wq handling io_uring: clear REQ_F_HASH_LOCKED on hash removal io_uring: don't race double poll setting REQ_F_ASYNC_DATA io_uring: don't miss setting REQ_F_DOUBLE_POLL io_uring: disable multishot recvmsg io_uring: only trace one of complete or overflow ... |
||
Linus Torvalds
|
b167fdffe9 |
This cycle's scheduler updates for v6.0 are:
Load-balancing improvements: ============================ - Improve NUMA balancing on AMD Zen systems for affine workloads. - Improve the handling of reduced-capacity CPUs in load-balancing. - Energy Model improvements: fix & refine all the energy fairness metrics (PELT), and remove the conservative threshold requiring 6% energy savings to migrate a task. Doing this improves power efficiency for most workloads, and also increases the reliability of energy-efficiency scheduling. - Optimize/tweak select_idle_cpu() to spend (much) less time searching for an idle CPU on overloaded systems. There's reports of several milliseconds spent there on large systems with large workloads ... [ Since the search logic changed, there might be behavioral side effects. ] - Improve NUMA imbalance behavior. On certain systems with spare capacity, initial placement of tasks is non-deterministic, and such an artificial placement imbalance can persist for a long time, hurting (and sometimes helping) performance. The fix is to make fork-time task placement consistent with runtime NUMA balancing placement. Note that some performance regressions were reported against this, caused by workloads that are not memory bandwith limited, which benefit from the artificial locality of the placement bug(s). Mel Gorman's conclusion, with which we concur, was that consistency is better than random workload benefits from non-deterministic bugs: "Given there is no crystal ball and it's a tradeoff, I think it's better to be consistent and use similar logic at both fork time and runtime even if it doesn't have universal benefit." - Improve core scheduling by fixing a bug in sched_core_update_cookie() that caused unnecessary forced idling. - Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs for newly woken tasks. - Fix a newidle balancing bug that introduced unnecessary wakeup latencies. ABI improvements/fixes: ======================= - Do not check capabilities and do not issue capability check denial messages when a scheduler syscall doesn't require privileges. (Such as increasing niceness.) - Add forced-idle accounting to cgroups too. - Fix/improve the RSEQ ABI to not just silently accept unknown flags. (No existing tooling is known to have learned to rely on the previous behavior.) - Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags. Optimizations: ============== - Optimize & simplify leaf_cfs_rq_list() - Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg(). Misc fixes & cleanups: ====================== - Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems. - Fix a full-NOHZ bug that can in some cases result in the tick not being re-enabled when the last SCHED_RT task is gone from a runqueue but there's still SCHED_OTHER tasks around. - Various PREEMPT_RT related fixes. - Misc cleanups & smaller fixes. Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLn2ywRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1iNfxAAhPJMwM4tYCpIM6PhmxKiHl6kkiT2tt42 HhEmiJVLjczLybWaWwmGA2dSFkv1f4+hG7nqdZTm9QYn0Pqat2UTSRcwoKQc+gpB x85Hwt2IUmnUman52fRl5r1miH9LTdCI6agWaFLQae5ds1XmOugFo52t2ahax+Gn dB8LxS2fa/GrKj229EhkJSPWAK4Y94asoTProwpKLuKEeXhDkqUNrOWbKhz+wEnA pVZySpA9uEOdNLVSr1s0VB6mZoh5/z6yQefj5YSNntsG71XWo9jxKCIm5buVdk2U wjdn6UzoTThOy/5Ygm64eYRexMHG71UamF1JYUdmvDeUJZ5fhG6RD0FECUQNVcJB Msu2fce6u1AV0giZGYtiooLGSawB/+e6MoDkjTl8guFHi/peve9CezKX1ZgDWPfE eGn+EbYkUS9RMafXCKuEUBAC1UUqAavGN9sGGN1ufyR4za6ogZplOqAFKtTRTGnT /Ne3fHTtvv73DLGW9ohO5vSS2Rp7zhAhB6FunhibhxCWlt7W6hA4Ze2vU9hf78Yn SJDLAJjOEilLaKUkRG/d9uM3FjKJM1tqxuT76+sUbM0MNxdyiKcviQlP1b8oq5Um xE1KNZUevnr/WXqOTGDKHH/HNPFgwxbwavMiP7dNFn8h/hEk4t9dkf5siDmVHtn4 nzDVOob1LgE= =xr2b -----END PGP SIGNATURE----- Merge tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "Load-balancing improvements: - Improve NUMA balancing on AMD Zen systems for affine workloads. - Improve the handling of reduced-capacity CPUs in load-balancing. - Energy Model improvements: fix & refine all the energy fairness metrics (PELT), and remove the conservative threshold requiring 6% energy savings to migrate a task. Doing this improves power efficiency for most workloads, and also increases the reliability of energy-efficiency scheduling. - Optimize/tweak select_idle_cpu() to spend (much) less time searching for an idle CPU on overloaded systems. There's reports of several milliseconds spent there on large systems with large workloads ... [ Since the search logic changed, there might be behavioral side effects. ] - Improve NUMA imbalance behavior. On certain systems with spare capacity, initial placement of tasks is non-deterministic, and such an artificial placement imbalance can persist for a long time, hurting (and sometimes helping) performance. The fix is to make fork-time task placement consistent with runtime NUMA balancing placement. Note that some performance regressions were reported against this, caused by workloads that are not memory bandwith limited, which benefit from the artificial locality of the placement bug(s). Mel Gorman's conclusion, with which we concur, was that consistency is better than random workload benefits from non-deterministic bugs: "Given there is no crystal ball and it's a tradeoff, I think it's better to be consistent and use similar logic at both fork time and runtime even if it doesn't have universal benefit." - Improve core scheduling by fixing a bug in sched_core_update_cookie() that caused unnecessary forced idling. - Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs for newly woken tasks. - Fix a newidle balancing bug that introduced unnecessary wakeup latencies. ABI improvements/fixes: - Do not check capabilities and do not issue capability check denial messages when a scheduler syscall doesn't require privileges. (Such as increasing niceness.) - Add forced-idle accounting to cgroups too. - Fix/improve the RSEQ ABI to not just silently accept unknown flags. (No existing tooling is known to have learned to rely on the previous behavior.) - Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags. Optimizations: - Optimize & simplify leaf_cfs_rq_list() - Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg(). Misc fixes & cleanups: - Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems. - Fix a full-NOHZ bug that can in some cases result in the tick not being re-enabled when the last SCHED_RT task is gone from a runqueue but there's still SCHED_OTHER tasks around. - Various PREEMPT_RT related fixes. - Misc cleanups & smaller fixes" * tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) rseq: Kill process when unknown flags are encountered in ABI structures rseq: Deprecate RSEQ_CS_FLAG_NO_RESTART_ON_* flags sched/core: Fix the bug that task won't enqueue into core tree when update cookie nohz/full, sched/rt: Fix missed tick-reenabling bug in dequeue_task_rt() sched/core: Always flush pending blk_plug sched/fair: fix case with reduced capacity CPU sched/core: Use try_cmpxchg in set_nr_{and_not,if}_polling sched/core: add forced idle accounting for cgroups sched/fair: Remove the energy margin in feec() sched/fair: Remove task_util from effective utilization in feec() sched/fair: Use the same cpumask per-PD throughout find_energy_efficient_cpu() sched/fair: Rename select_idle_mask to select_rq_mask sched, drivers: Remove max param from effective_cpu_util()/sched_cpu_util() sched/fair: Decay task PELT values during wakeup migration sched/fair: Provide u64 read for 32-bits arch helper sched/fair: Introduce SIS_UTIL to search idle CPU based on sum of util_avg sched: only perform capability check on privileged operation sched: Remove unused function group_first_cpu() sched/fair: Remove redundant word " *" selftests/rseq: check if libc rseq support is registered ... |
||
Jens Axboe
|
ed29b0b4fd |
io_uring: move to separate directory
In preparation for splitting io_uring up a bit, move it into its own top level directory. It didn't really belong in fs/ anyway, as it's not a file system only API. This adds io_uring/ and moves the core files in there, and updates the MAINTAINERS file for the new location. Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Paul E. McKenney
|
34bc7b454d |
Merge branch 'ctxt.2022.07.05a' into HEAD
ctxt.2022.07.05a: Linux-kernel memory model development branch. |
||
John Keeping
|
401e4963bf |
sched/core: Always flush pending blk_plug
With CONFIG_PREEMPT_RT, it is possible to hit a deadlock between two normal priority tasks (SCHED_OTHER, nice level zero): INFO: task kworker/u8:0:8 blocked for more than 491 seconds. Not tainted 5.15.49-rt46 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u8:0 state:D stack: 0 pid: 8 ppid: 2 flags:0x00000000 Workqueue: writeback wb_workfn (flush-7:0) [<c08a3a10>] (__schedule) from [<c08a3d84>] (schedule+0xdc/0x134) [<c08a3d84>] (schedule) from [<c08a65a0>] (rt_mutex_slowlock_block.constprop.0+0xb8/0x174) [<c08a65a0>] (rt_mutex_slowlock_block.constprop.0) from [<c08a6708>] +(rt_mutex_slowlock.constprop.0+0xac/0x174) [<c08a6708>] (rt_mutex_slowlock.constprop.0) from [<c0374d60>] (fat_write_inode+0x34/0x54) [<c0374d60>] (fat_write_inode) from [<c0297304>] (__writeback_single_inode+0x354/0x3ec) [<c0297304>] (__writeback_single_inode) from [<c0297998>] (writeback_sb_inodes+0x250/0x45c) [<c0297998>] (writeback_sb_inodes) from [<c0297c20>] (__writeback_inodes_wb+0x7c/0xb8) [<c0297c20>] (__writeback_inodes_wb) from [<c0297f24>] (wb_writeback+0x2c8/0x2e4) [<c0297f24>] (wb_writeback) from [<c0298c40>] (wb_workfn+0x1a4/0x3e4) [<c0298c40>] (wb_workfn) from [<c0138ab8>] (process_one_work+0x1fc/0x32c) [<c0138ab8>] (process_one_work) from [<c0139120>] (worker_thread+0x22c/0x2d8) [<c0139120>] (worker_thread) from [<c013e6e0>] (kthread+0x16c/0x178) [<c013e6e0>] (kthread) from [<c01000fc>] (ret_from_fork+0x14/0x38) Exception stack(0xc10e3fb0 to 0xc10e3ff8) 3fa0: 00000000 00000000 00000000 00000000 3fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 3fe0: 00000000 00000000 00000000 00000000 00000013 00000000 INFO: task tar:2083 blocked for more than 491 seconds. Not tainted 5.15.49-rt46 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:tar state:D stack: 0 pid: 2083 ppid: 2082 flags:0x00000000 [<c08a3a10>] (__schedule) from [<c08a3d84>] (schedule+0xdc/0x134) [<c08a3d84>] (schedule) from [<c08a41b0>] (io_schedule+0x14/0x24) [<c08a41b0>] (io_schedule) from [<c08a455c>] (bit_wait_io+0xc/0x30) [<c08a455c>] (bit_wait_io) from [<c08a441c>] (__wait_on_bit_lock+0x54/0xa8) [<c08a441c>] (__wait_on_bit_lock) from [<c08a44f4>] (out_of_line_wait_on_bit_lock+0x84/0xb0) [<c08a44f4>] (out_of_line_wait_on_bit_lock) from [<c0371fb0>] (fat_mirror_bhs+0xa0/0x144) [<c0371fb0>] (fat_mirror_bhs) from [<c0372a68>] (fat_alloc_clusters+0x138/0x2a4) [<c0372a68>] (fat_alloc_clusters) from [<c0370b14>] (fat_alloc_new_dir+0x34/0x250) [<c0370b14>] (fat_alloc_new_dir) from [<c03787c0>] (vfat_mkdir+0x58/0x148) [<c03787c0>] (vfat_mkdir) from [<c0277b60>] (vfs_mkdir+0x68/0x98) [<c0277b60>] (vfs_mkdir) from [<c027b484>] (do_mkdirat+0xb0/0xec) [<c027b484>] (do_mkdirat) from [<c0100060>] (ret_fast_syscall+0x0/0x1c) Exception stack(0xc2e1bfa8 to 0xc2e1bff0) bfa0: 01ee42f0 01ee4208 01ee42f0 000041ed 00000000 00004000 bfc0: 01ee42f0 01ee4208 00000000 00000027 01ee4302 00000004 000dcb00 01ee4190 bfe0: 000dc368 bed11924 0006d4b0 b6ebddfc Here the kworker is waiting on msdos_sb_info::s_lock which is held by tar which is in turn waiting for a buffer which is locked waiting to be flushed, but this operation is plugged in the kworker. The lock is a normal struct mutex, so tsk_is_pi_blocked() will always return false on !RT and thus the behaviour changes for RT. It seems that the intent here is to skip blk_flush_plug() in the case where a non-preemptible lock (such as a spinlock) has been converted to a rtmutex on RT, which is the case covered by the SM_RTLOCK_WAIT schedule flag. But sched_submit_work() is only called from schedule() which is never called in this scenario, so the check can simply be deleted. Looking at the history of the -rt patchset, in fact this change was present from v5.9.1-rt20 until being dropped in v5.13-rt1 as it was part of a larger patch [1] most of which was replaced by commit b4bfa3fcfe3b ("sched/core: Rework the __schedule() preempt argument"). As described in [1]: The schedule process must distinguish between blocking on a regular sleeping lock (rwsem and mutex) and a RT-only sleeping lock (spinlock and rwlock): - rwsem and mutex must flush block requests (blk_schedule_flush_plug()) even if blocked on a lock. This can not deadlock because this also happens for non-RT. There should be a warning if the scheduling point is within a RCU read section. - spinlock and rwlock must not flush block requests. This will deadlock if the callback attempts to acquire a lock which is already acquired. Similarly to being preempted, there should be no warning if the scheduling point is within a RCU read section. and with the tsk_is_pi_blocked() in the scheduler path, we hit the first issue. [1] https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git/tree/patches/0022-locking-rtmutex-Use-custom-scheduling-function-for-s.patch?h=linux-5.10.y-rt-patches Signed-off-by: John Keeping <john@metanate.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lkml.kernel.org/r/20220708162702.1758865-1-john@metanate.com |
||
Uros Bizjak
|
c02d5546ea |
sched/core: Use try_cmpxchg in set_nr_{and_not,if}_polling
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) != old in set_nr_{and_not,if}_polling. x86 cmpxchg returns success in ZF flag, so this change saves a compare after cmpxchg. The definition of cmpxchg based fetch_or was changed in the same way as atomic_fetch_##op definitions were changed in e6790e4b5d5e97dc287f3496dd2cf2dbabdfdb35. Also declare these two functions as inline to ensure inlining. In the case of set_nr_and_not_polling, the compiler (gcc) tries to outsmart itself by constructing the boolean return value with logic operations on the fetched value, and these extra operations enlarge the function over the inlining threshold value. Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220629151552.6015-1-ubizjak@gmail.com |
||
Frederic Weisbecker
|
24a9c54182 |
context_tracking: Split user tracking Kconfig
Context tracking is going to be used not only to track user transitions but also idle/IRQs/NMIs. The user tracking part will then become a separate feature. Prepare Kconfig for that. [ frederic: Apply Max Filippov feedback. ] Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Nicolas Saenz Julienne <nsaenz@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com> Cc: Yu Liao <liaoyu15@huawei.com> Cc: Phil Auld <pauld@redhat.com> Cc: Paul Gortmaker<paul.gortmaker@windriver.com> Cc: Alex Belits <abelits@marvell.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> |
||
Dietmar Eggemann
|
ec4fc801a0 |
sched/fair: Rename select_idle_mask to select_rq_mask
On 21/06/2022 11:04, Vincent Donnefort wrote: > From: Dietmar Eggemann <dietmar.eggemann@arm.com> https://lkml.kernel.org/r/202206221253.ZVyGQvPX-lkp@intel.com discovered that this patch doesn't build anymore (on tip sched/core or linux-next) because of commit f5b2eeb499910 ("sched/fair: Consider CPU affinity when allowing NUMA imbalance in find_idlest_group()"). New version of [PATCH v11 4/7] sched/fair: Rename select_idle_mask to select_rq_mask below. -- >8 -- Decouple the name of the per-cpu cpumask select_idle_mask from its usage in select_idle_[cpu/capacity]() of the CFS run-queue selection (select_task_rq_fair()). This is to support the reuse of this cpumask in the Energy Aware Scheduling (EAS) path (find_energy_efficient_cpu()) of the CFS run-queue selection. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Link: https://lkml.kernel.org/r/250691c7-0e2b-05ab-bedf-b245c11d9400@arm.com |
||
Dietmar Eggemann
|
bb44799949 |
sched, drivers: Remove max param from effective_cpu_util()/sched_cpu_util()
effective_cpu_util() already has a `int cpu' parameter which allows to retrieve the CPU capacity scale factor (or maximum CPU capacity) inside this function via an arch_scale_cpu_capacity(cpu). A lot of code calling effective_cpu_util() (or the shim sched_cpu_util()) needs the maximum CPU capacity, i.e. it will call arch_scale_cpu_capacity() already. But not having to pass it into effective_cpu_util() will make the EAS wake-up code easier, especially when the maximum CPU capacity reduced by the thermal pressure is passed through the EAS wake-up functions. Due to the asymmetric CPU capacity support of arm/arm64 architectures, arch_scale_cpu_capacity(int cpu) is a per-CPU variable read access via per_cpu(cpu_scale, cpu) on such a system. On all other architectures it is a a compile-time constant (SCHED_CAPACITY_SCALE). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Link: https://lkml.kernel.org/r/20220621090414.433602-4-vdonnefort@google.com |
||
Christian Göttsche
|
700a78335f |
sched: only perform capability check on privileged operation
sched_setattr(2) issues via kernel/sched/core.c:__sched_setscheduler() a CAP_SYS_NICE audit event unconditionally, even when the requested operation does not require that capability / is unprivileged, i.e. for reducing niceness. This is relevant in connection with SELinux, where a capability check results in a policy decision and by default a denial message on insufficient permission is issued. It can lead to three undesired cases: 1. A denial message is generated, even in case the operation was an unprivileged one and thus the syscall succeeded, creating noise. 2. To avoid the noise from 1. the policy writer adds a rule to ignore those denial messages, hiding future syscalls, where the task performs an actual privileged operation, leading to hidden limited functionality of that task. 3. To avoid the noise from 1. the policy writer adds a rule to allow the task the capability CAP_SYS_NICE, while it does not need it, violating the principle of least privilege. Conduct privilged/unprivileged categorization first and perform a capable test (and at most once) only if needed. Signed-off-by: Christian Göttsche <cgzones@googlemail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220615152505.310488-1-cgzones@googlemail.com |
||
Paul E. McKenney
|
e386b67257 |
rcu-tasks: Eliminate RCU Tasks Trace IPIs to online CPUs
Currently, the RCU Tasks Trace grace-period kthread IPIs each online CPU using smp_call_function_single() in order to track any tasks currently in RCU Tasks Trace read-side critical sections during which the corresponding task has neither blocked nor been preempted. These IPIs are annoying and are also not strictly necessary because any task that blocks or is preempted within its current RCU Tasks Trace read-side critical section will be tracked on one of the per-CPU rcu_tasks_percpu structure's ->rtp_blkd_tasks list. So the only time that this is a problem is if one of the CPUs runs through a long-duration RCU Tasks Trace read-side critical section without a context switch. Note that the task_call_func() function cannot help here because there is no safe way to identify the target task. Of course, the task_call_func() function will be very useful later, when processing the list of tasks, but it needs to know the task. This commit therefore creates a cpu_curr_snapshot() function that returns a pointer the task_struct structure of some task that happened to be running on the specified CPU more or less during the time that the cpu_curr_snapshot() function was executing. If there was no context switch during this time, this function will return a pointer to the task_struct structure of the task that was running throughout. If there was a context switch, then the outgoing task will be taken care of by RCU's context-switch hook, and the incoming task was either already taken care during some previous context switch, or it is not currently within an RCU Tasks Trace read-side critical section. And in this latter case, the grace period already started, so there is no need to wait on this task. This new cpu_curr_snapshot() function is invoked on each CPU early in the RCU Tasks Trace grace-period processing, and the resulting tasks are queued for later quiescent-state inspection. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Martin KaFai Lau <kafai@fb.com> Cc: KP Singh <kpsingh@kernel.org> |
||
Tianchen Ding
|
f3dd3f6745 |
sched: Remove the limitation of WF_ON_CPU on wakelist if wakee cpu is idle
Wakelist can help avoid cache bouncing and offload the overhead of waker cpu. So far, using wakelist within the same llc only happens on WF_ON_CPU, and this limitation could be removed to further improve wakeup performance. The commit 518cd6234178 ("sched: Only queue remote wakeups when crossing cache boundaries") disabled queuing tasks on wakelist when the cpus share llc. This is because, at that time, the scheduler must send IPIs to do ttwu_queue_wakelist. Nowadays, ttwu_queue_wakelist also supports TIF_POLLING, so this is not a problem now when the wakee cpu is in idle polling. Benefits: Queuing the task on idle cpu can help improving performance on waker cpu and utilization on wakee cpu, and further improve locality because the wakee cpu can handle its own rq. This patch helps improving rt on our real java workloads where wakeup happens frequently. Consider the normal condition (CPU0 and CPU1 share same llc) Before this patch: CPU0 CPU1 select_task_rq() idle rq_lock(CPU1->rq) enqueue_task(CPU1->rq) notify CPU1 (by sending IPI or CPU1 polling) resched() After this patch: CPU0 CPU1 select_task_rq() idle add to wakelist of CPU1 notify CPU1 (by sending IPI or CPU1 polling) rq_lock(CPU1->rq) enqueue_task(CPU1->rq) resched() We see CPU0 can finish its work earlier. It only needs to put task to wakelist and return. While CPU1 is idle, so let itself handle its own runqueue data. This patch brings no difference about IPI. This patch only takes effect when the wakee cpu is: 1) idle polling 2) idle not polling For 1), there will be no IPI with or without this patch. For 2), there will always be an IPI before or after this patch. Before this patch: waker cpu will enqueue task and check preempt. Since "idle" will be sure to be preempted, waker cpu must send a resched IPI. After this patch: waker cpu will put the task to the wakelist of wakee cpu, and send an IPI. Benchmark: We've tested schbench, unixbench, and hachbench on both x86 and arm64. On x86 (Intel Xeon Platinum 8269CY): schbench -m 2 -t 8 Latency percentiles (usec) before after 50.0000th: 8 6 75.0000th: 10 7 90.0000th: 11 8 95.0000th: 12 8 *99.0000th: 13 10 99.5000th: 15 11 99.9000th: 18 14 Unixbench with full threads (104) before after Dhrystone 2 using register variables 3011862938 3009935994 -0.06% Double-Precision Whetstone 617119.3 617298.5 0.03% Execl Throughput 27667.3 27627.3 -0.14% File Copy 1024 bufsize 2000 maxblocks 785871.4 784906.2 -0.12% File Copy 256 bufsize 500 maxblocks 210113.6 212635.4 1.20% File Copy 4096 bufsize 8000 maxblocks 2328862.2 2320529.1 -0.36% Pipe Throughput 145535622.8 145323033.2 -0.15% Pipe-based Context Switching 3221686.4 3583975.4 11.25% Process Creation 101347.1 103345.4 1.97% Shell Scripts (1 concurrent) 120193.5 123977.8 3.15% Shell Scripts (8 concurrent) 17233.4 17138.4 -0.55% System Call Overhead 5300604.8 5312213.6 0.22% hackbench -g 1 -l 100000 before after Time 3.246 2.251 On arm64 (Ampere Altra): schbench -m 2 -t 8 Latency percentiles (usec) before after 50.0000th: 14 10 75.0000th: 19 14 90.0000th: 22 16 95.0000th: 23 16 *99.0000th: 24 17 99.5000th: 24 17 99.9000th: 28 25 Unixbench with full threads (80) before after Dhrystone 2 using register variables 3536194249 3537019613 0.02% Double-Precision Whetstone 629383.6 629431.6 0.01% Execl Throughput 65920.5 65846.2 -0.11% File Copy 1024 bufsize 2000 maxblocks 1063722.8 1064026.8 0.03% File Copy 256 bufsize 500 maxblocks 322684.5 318724.5 -1.23% File Copy 4096 bufsize 8000 maxblocks 2348285.3 2328804.8 -0.83% Pipe Throughput 133542875.3 131619389.8 -1.44% Pipe-based Context Switching 3215356.1 3576945.1 11.25% Process Creation 108520.5 120184.6 10.75% Shell Scripts (1 concurrent) 122636.3 121888 -0.61% Shell Scripts (8 concurrent) 17462.1 17381.4 -0.46% System Call Overhead 4429998.9 4435006.7 0.11% hackbench -g 1 -l 100000 before after Time 4.217 2.916 Our patch has improvement on schbench, hackbench and Pipe-based Context Switching of unixbench when there exists idle cpus, and no obvious regression on other tests of unixbench. This can help improve rt in scenes where wakeup happens frequently. Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Link: https://lore.kernel.org/r/20220608233412.327341-3-dtcccc@linux.alibaba.com |
||
Tianchen Ding
|
28156108fe |
sched: Fix the check of nr_running at queue wakelist
The commit 2ebb17717550 ("sched/core: Offload wakee task activation if it the wakee is descheduling") checked rq->nr_running <= 1 to avoid task stacking when WF_ON_CPU. Per the ordering of writes to p->on_rq and p->on_cpu, observing p->on_cpu (WF_ON_CPU) in ttwu_queue_cond() implies !p->on_rq, IOW p has gone through the deactivate_task() in __schedule(), thus p has been accounted out of rq->nr_running. As such, the task being the only runnable task on the rq implies reading rq->nr_running == 0 at that point. The benchmark result is in [1]. [1] https://lore.kernel.org/all/e34de686-4e85-bde1-9f3c-9bbc86b38627@linux.alibaba.com/ Suggested-by: Valentin Schneider <vschneid@redhat.com> Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Link: https://lore.kernel.org/r/20220608233412.327341-2-dtcccc@linux.alibaba.com |
||
Peter Zijlstra
|
04193d590b |
sched: Fix balance_push() vs __sched_setscheduler()
The purpose of balance_push() is to act as a filter on task selection in the case of CPU hotplug, specifically when taking the CPU out. It does this by (ab)using the balance callback infrastructure, with the express purpose of keeping all the unlikely/odd cases in a single place. In order to serve its purpose, the balance_push_callback needs to be (exclusively) on the callback list at all times (noting that the callback always places itself back on the list the moment it runs, also noting that when the CPU goes down, regular balancing concerns are moot, so ignoring them is fine). And here-in lies the problem, __sched_setscheduler()'s use of splice_balance_callbacks() takes the callbacks off the list across a lock-break, making it possible for, an interleaving, __schedule() to see an empty list and not get filtered. Fixes: ae7927023243 ("sched: Optimize finish_lock_switch()") Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Jing-Ting Wu <jing-ting.wu@mediatek.com> Link: https://lkml.kernel.org/r/20220519134706.GH2578@worktop.programming.kicks-ass.net |
||
Linus Torvalds
|
67850b7bdc |
While looking at the ptrace problems with PREEMPT_RT and the problems
of Peter Zijlstra was encountering with ptrace in his freezer rewrite I identified some cleanups to ptrace_stop that make sense on their own and move make resolving the other problems much simpler. The biggest issue is the habbit of the ptrace code to change task->__state from the tracer to suppress TASK_WAKEKILL from waking up the tracee. No other code in the kernel does that and it is straight forward to update signal_wake_up and friends to make that unnecessary. Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying on the fact that all stopped states except the special stop states can tolerate spurious wake up and recover their state. The state of stopped and traced tasked is changed to be stored in task->jobctl as well as in task->__state. This makes it possible for the freezer to recover tasks in these special states, as well as serving as a general cleanup. With a little more work in that direction I believe TASK_STOPPED can learn to tolerate spurious wake ups and become an ordinary stop state. The TASK_TRACED state has to remain a special state as the registers for a process are only reliably available when the process is stopped in the scheduler. Fundamentally ptrace needs acess to the saved register values of a task. There are bunch of semi-random ptrace related cleanups that were found while looking at these issues. One cleanup that deserves to be called out is from commit 57b6de08b5f6 ("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This makes a change that is technically user space visible, in the handling of what happens to a tracee when a tracer dies unexpectedly. According to our testing and our understanding of userspace nothing cares that spurious SIGTRAPs can be generated in that case. The entire discussion can be found at: https://lkml.kernel.org/r/87a6bv6dl6.fsf_-_@email.froward.int.ebiederm.org Eric W. Biederman (11): signal: Rename send_signal send_signal_locked signal: Replace __group_send_sig_info with send_signal_locked ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP ptrace: Remove arch_ptrace_attach signal: Use lockdep_assert_held instead of assert_spin_locked ptrace: Reimplement PTRACE_KILL by always sending SIGKILL ptrace: Document that wait_task_inactive can't fail ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs ptrace: Don't change __state ptrace: Always take siglock in ptrace_resume Peter Zijlstra (1): sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state arch/ia64/include/asm/ptrace.h | 4 -- arch/ia64/kernel/ptrace.c | 57 ---------------- arch/um/include/asm/thread_info.h | 2 + arch/um/kernel/exec.c | 2 +- arch/um/kernel/process.c | 2 +- arch/um/kernel/ptrace.c | 8 +-- arch/um/kernel/signal.c | 4 +- arch/x86/kernel/step.c | 3 +- arch/xtensa/kernel/ptrace.c | 4 +- arch/xtensa/kernel/signal.c | 4 +- drivers/tty/tty_jobctrl.c | 4 +- include/linux/ptrace.h | 7 -- include/linux/sched.h | 10 ++- include/linux/sched/jobctl.h | 8 +++ include/linux/sched/signal.h | 20 ++++-- include/linux/signal.h | 3 +- kernel/ptrace.c | 87 ++++++++--------------- kernel/sched/core.c | 5 +- kernel/signal.c | 140 +++++++++++++++++--------------------- kernel/time/posix-cpu-timers.c | 6 +- 20 files changed, 140 insertions(+), 240 deletions(-) Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmKaXaYACgkQC/v6Eiaj j0CgoA/+JncSQ6PY2D5Jh1apvHzmnRsFXzr3DRvtv/CVx4oIebOXRQFyVDeD5tRn TmMgB29HpBlHRDLojlmlZRGAld1HR/aPEW9j8W1D3Sy/ZFO5L8lQitv9aDHO9Ntw 4lZvlhS1M0KhATudVVBqSPixiG6CnV5SsGmixqdOyg7xcXSY6G1l2nB7Zk9I3Tat ZlmhuZ6R5Z5qsm4MEq0vUSrnsHiGxYrpk6uQOaVz8Wkv8ZFmbutt6XgxF0tsyZNn mHSmWSiZzIgBjTlaibEmxi8urYJTPj3vGBeJQVYHblFwLFi6+Oy7bDxQbWjQvaZh DsgWPScfBF4Jm0+8hhCiSYpvPp8XnZuklb4LNCeok/VFr+KfSmpJTIhn00kagQ1u vxQDqLws8YLW4qsfGydfx9uUIFCbQE/V2VDYk5J3Re3gkUNDOOR1A56hPniKv6VB 2aqGO2Fl0RdBbUa3JF+XI5Pwq5y1WrqR93EUvj+5+u5W9rZL/8WLBHBMEz6gbmfD DhwFE0y8TG2WRlWJVEDRId+5zo3di/YvasH0vJZ5HbrxhS2RE/yIGAd+kKGx/lZO qWDJC7IHvFJ7Mw5KugacyF0SHeNdloyBM7KZW6HeXmgKn9IMJBpmwib92uUkRZJx D8j/bHHqD/zsgQ39nO+c4M0MmhO/DsPLG/dnGKrRCu7v1tmEnkY= =ZUuO -----END PGP SIGNATURE----- Merge tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull ptrace_stop cleanups from Eric Biederman: "While looking at the ptrace problems with PREEMPT_RT and the problems Peter Zijlstra was encountering with ptrace in his freezer rewrite I identified some cleanups to ptrace_stop that make sense on their own and move make resolving the other problems much simpler. The biggest issue is the habit of the ptrace code to change task->__state from the tracer to suppress TASK_WAKEKILL from waking up the tracee. No other code in the kernel does that and it is straight forward to update signal_wake_up and friends to make that unnecessary. Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying on the fact that all stopped states except the special stop states can tolerate spurious wake up and recover their state. The state of stopped and traced tasked is changed to be stored in task->jobctl as well as in task->__state. This makes it possible for the freezer to recover tasks in these special states, as well as serving as a general cleanup. With a little more work in that direction I believe TASK_STOPPED can learn to tolerate spurious wake ups and become an ordinary stop state. The TASK_TRACED state has to remain a special state as the registers for a process are only reliably available when the process is stopped in the scheduler. Fundamentally ptrace needs acess to the saved register values of a task. There are bunch of semi-random ptrace related cleanups that were found while looking at these issues. One cleanup that deserves to be called out is from commit 57b6de08b5f6 ("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This makes a change that is technically user space visible, in the handling of what happens to a tracee when a tracer dies unexpectedly. According to our testing and our understanding of userspace nothing cares that spurious SIGTRAPs can be generated in that case" * tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state ptrace: Always take siglock in ptrace_resume ptrace: Don't change __state ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs ptrace: Document that wait_task_inactive can't fail ptrace: Reimplement PTRACE_KILL by always sending SIGKILL signal: Use lockdep_assert_held instead of assert_spin_locked ptrace: Remove arch_ptrace_attach ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP signal: Replace __group_send_sig_info with send_signal_locked signal: Rename send_signal send_signal_locked |
||
Linus Torvalds
|
44d35720c9 |
sysctl changes for v5.19-rc1
For two kernel releases now kernel/sysctl.c has been being cleaned up slowly, since the tables were grossly long, sprinkled with tons of #ifdefs and all this caused merge conflicts with one susbystem or another. This tree was put together to help try to avoid conflicts with these cleanups going on different trees at time. So nothing exciting on this pull request, just cleanups. I actually had this sysctl-next tree up since v5.18 but I missed sending a pull request for it on time during the last merge window. And so these changes have been being soaking up on sysctl-next and so linux-next for a while. The last change was merged May 4th. Most of the compile issues were reported by 0day and fixed. To help avoid a conflict with bpf folks at Daniel Borkmann's request I merged bpf-next/pr/bpf-sysctl into sysctl-next to get the effor which moves the BPF sysctls from kernel/sysctl.c to BPF core. Possible merge conflicts and known resolutions as per linux-next: bfp: https://lkml.kernel.org/r/20220414112812.652190b5@canb.auug.org.au rcu: https://lkml.kernel.org/r/20220420153746.4790d532@canb.auug.org.au powerpc: https://lkml.kernel.org/r/20220520154055.7f964b76@canb.auug.org.au -----BEGIN PGP SIGNATURE----- iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmKOq8ASHG1jZ3JvZkBr ZXJuZWwub3JnAAoJEM4jHQowkoinDAkQAJVo5YVM9f74UwYp4PQhTpjxJBCjRoZD z1u9bp5rMj2ujTC8Fr7VmzKaHrb8+r1C1WvCvZtIzemYNB4lZUrHpVDYfXuXiPRB ihPmEjhlPO5PFBx6cVCpI3cu9bEhG00rLc1QXnABx/pXwNPcOTJAGZJVamZvqubk chjgZrb7N+adHPfvS55v1+zpwdeKfpp5U3zuu5qlT/nn0GS0HCVzOj5fj4oC4wtJ IqfUubo+FX50Ga58yQABWNrjaPD9Crykz5ohVazy3ElQl0hJ4VsK65ct3blqc2vz 1Bb8kPpWuv6aZ5nr1lCVE8qvF4ZIL33ySvpg5BSdWLQEDrBbSpzvJe9Yn7wgR+eq y7fhpO24+zRM82EoDMEvyxX9u1n1RsvoXRtf3ds9BGf63MUxk8a1cgjlU6vuyO2U JhDmfM1xzdKvPoY4COOnHzcAiIqzItTqKd09N5y0cahmYstROU8lvp9huhTAHqk1 SjQMbLIZG7OnX8ZeQcR1EB8sq/IOPZT48ejj0iJmQ8FyMaep71MOQLYyLPAq4lgh JHXm8P6QdB57jfJbqAeNSyZoK0qdxOUR/83Zcah7Jjns6vkju1DNatEsaEEI2y2M 4n7/rkHeZ3TyFHBUX4e9FomKvGLsAalDBRiqsuxLSOPMU8rGrNLAslOAtKwvp90X 4ht3M2VP098l =btwh -----END PGP SIGNATURE----- Merge tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux Pull sysctl updates from Luis Chamberlain: "For two kernel releases now kernel/sysctl.c has been being cleaned up slowly, since the tables were grossly long, sprinkled with tons of #ifdefs and all this caused merge conflicts with one susbystem or another. This tree was put together to help try to avoid conflicts with these cleanups going on different trees at time. So nothing exciting on this pull request, just cleanups. Thanks a lot to the Uniontech and Huawei folks for doing some of this nasty work" * tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (28 commits) sched: Fix build warning without CONFIG_SYSCTL reboot: Fix build warning without CONFIG_SYSCTL kernel/kexec_core: move kexec_core sysctls into its own file sysctl: minor cleanup in new_dir() ftrace: fix building with SYSCTL=y but DYNAMIC_FTRACE=n fs/proc: Introduce list_for_each_table_entry for proc sysctl mm: fix unused variable kernel warning when SYSCTL=n latencytop: move sysctl to its own file ftrace: fix building with SYSCTL=n but DYNAMIC_FTRACE=y ftrace: Fix build warning ftrace: move sysctl_ftrace_enabled to ftrace.c kernel/do_mount_initrd: move real_root_dev sysctls to its own file kernel/delayacct: move delayacct sysctls to its own file kernel/acct: move acct sysctls to its own file kernel/panic: move panic sysctls to its own file kernel/lockdep: move lockdep sysctls to its own file mm: move page-writeback sysctls to their own file mm: move oom_kill sysctls to their own file kernel/reboot: move reboot sysctls to its own file sched: Move energy_aware sysctls to topology.c ... |
||
Linus Torvalds
|
6f3f04c190 |
Scheduler changes in this cycle were:
- Updates to scheduler metrics: - PELT fixes & enhancements - PSI fixes & enhancements - Refactor cpu_util_without() - Updates to instrumentation/debugging: - Remove sched_trace_*() helper functions - can be done via debug info - Fix double update_rq_clock() warnings - Introduce & use "preemption model accessors" to simplify some of the Kconfig complexity. - Make softirq handling RT-safe. - Misc smaller fixes & cleanups. Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmKLvXYRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1hcXg//fJ1jAB9pQOg/Su9wwwbcOeaXNUpQA38e 970nXdK6i7w+YeAT2x1ikIQZq5S/px7k9S4Fzks8U9LMhnKPxhjdnG6J69h5XLuB z1BtRJBB6W8BAYWzAeq1M+R8whQylciOMZOBSjeTIEdpYBK7c9QA/R1DkDqPRlBA 7nW0mFbpYcK8Q1n1ItjP0wkpiHG4q8orp+BXiPG8rjiHdCa3GFt7g38hiqNls64H fOQ/Ka25tBSYrmeqQY3QsWKnKNHKQRLNareHAwI/x4V8F8d4tn/OmJzmWGDdtprn 6/gi/E99ej1j5Do8sgx/oTp/aVg4j8AsurrpGFd4/er+euoG4UyHr42UhX6zmFM6 /KIinp0Z/V2n9okgI9LUZ2x7mD682iXDilNDgiSAwu1bNDUvxBXPD30gThh+KasA HxeKxTzb4/dZV4ih4xUMsCOjUT4NFZT2rmiMorUystgyNRk28DtFCdBMtrs/zVtG qAktb7v5g76pKAmV4nQu4imZeSD+f+RJP2fuSUYQCJbCxQfthTZkn8GfCMYEdY7Y sDyBx4Te8Vu/dcnal9qMpY/m5EPruPQAkvC9zK4YvkvLUmGC742PG/xHfCdC9J2m Adbl/Cmn7tD9dOGYbHPsrViqwIiZUcjbnBlMN5DjJXQF6kWNOIXUEguZpBocminP 1CSy0+gyI6o= =GY8N -----END PGP SIGNATURE----- Merge tag 'sched-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Updates to scheduler metrics: - PELT fixes & enhancements - PSI fixes & enhancements - Refactor cpu_util_without() - Updates to instrumentation/debugging: - Remove sched_trace_*() helper functions - can be done via debug info - Fix double update_rq_clock() warnings - Introduce & use "preemption model accessors" to simplify some of the Kconfig complexity. - Make softirq handling RT-safe. - Misc smaller fixes & cleanups. * tag 'sched-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: topology: Remove unused cpu_cluster_mask() sched: Reverse sched_class layout sched/deadline: Remove superfluous rq clock update in push_dl_task() sched/core: Avoid obvious double update_rq_clock warning smp: Make softirq handling RT safe in flush_smp_call_function_queue() smp: Rename flush_smp_call_function_from_idle() sched: Fix missing prototype warnings sched/fair: Remove cfs_rq_tg_path() sched/fair: Remove sched_trace_*() helper functions sched/fair: Refactor cpu_util_without() sched/fair: Revise comment about lb decision matrix sched/psi: report zeroes for CPU full at the system level sched/fair: Delete useless condition in tg_unthrottle_up() sched/fair: Fix cfs_rq_clock_pelt() for throttled cfs_rq sched/fair: Move calculate of avg_load to a better location mailmap: Update my email address to @redhat.com MAINTAINERS: Add myself as scheduler topology reviewer psi: Fix trigger being fired unexpectedly at initial ftrace: Use preemption model accessors for trace header printout kcsan: Use preemption model accessors |
||
Linus Torvalds
|
1e57930e9f |
RCU pull request for v5.19
This pull request contains the following branches: docs.2022.04.20a: Documentation updates. fixes.2022.04.20a: Miscellaneous fixes. nocb.2022.04.11b: Callback-offloading updates, mainly simplifications. rcu-tasks.2022.04.11b: RCU-tasks updates, including some -rt fixups, handling of systems with sparse CPU numbering, and a fix for a boot-time race-condition failure. srcu.2022.05.03a: Put SRCU on a memory diet in order to reduce the size of the srcu_struct structure. torture.2022.04.11b: Torture-test updates fixing some bugs in tests and closing some testing holes. torture-tasks.2022.04.20a: Torture-test updates for the RCU tasks flavors, most notably ensuring that building rcutorture and friends does not change the RCU-tasks-related Kconfig options. torturescript.2022.04.20a: Torture-test scripting updates. exp.2022.05.11a: Expedited grace-period updates, most notably providing milliseconds-scale (not all that) soft real-time response from synchronize_rcu_expedited(). This is also the first time in almost 30 years of RCU that someone other than me has pushed for a reduction in the RCU CPU stall-warning timeout, in this case by more than three orders of magnitude from 21 seconds to 20 milliseconds. This tighter timeout applies only to expedited grace periods. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmKG2zcTHHBhdWxtY2tA a2VybmVsLm9yZwAKCRCevxLzctn7jGXgD/90xtRtZyN0umlN/IOBBn8fIOM+BAMu 5k3ef6wLsXKXlLO13WTjSitypX9LEFwytTeVhEyN4ODeX0cI9mUmts6Z8/6sV92D fN8vqTavveE7m5YfFfLRvDRfVHpB0LpLMM+V0qWPu/F8dWPDKA0225rX9IC7iICP LkxCuNVNzJ0cLaVTvsUWlxMdHcogydXZb1gPDVRhnR6iVFWCBtL4RRpU41CoSNh4 fWRSLQak6OhZRFE7hVoLQhZyLE0GIw1fuUJgj2fCllhgGogDx78FQ8jHdDzMEhVk cD4Yel5vUPiy2AKphGfi28bKFYcyhVBnD/Jq733VJV0/szyddxNbz0xKpEA0/8qh w1T7IjBN6MAKHSh0uUitm6U24VN13m4r30HrUQSpp71VFZkUD4QS6TismKsaRNjR lK4q2QKBprBb3Hv7KPAGYT1Us3aS7qLPrgPf3gzSxL1aY5QV0A5UpPP6RKTLbWPl CEQxEno6g5LTHwKd5QD74dG8ccphg9377lDMJpeesYShBqlLNrNWCxqJoZk2HnSf f2dTQeQWrtRJjeTGy/4cfONCGZTghE0Pch43XMzLLt3ZTuDc8FVM0t3Xs9J5Kg22 zmThQh6LRXTGjrb1vLiOrjPf5JaTnX2Sz8OUJTo/ZxwcixxP/mj8Ja+W81NjfqnK LLZ1D6UN4a8n9A== =4spH -----END PGP SIGNATURE----- Merge tag 'rcu.2022.05.19a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU update from Paul McKenney: - Documentation updates - Miscellaneous fixes - Callback-offloading updates, mainly simplifications - RCU-tasks updates, including some -rt fixups, handling of systems with sparse CPU numbering, and a fix for a boot-time race-condition failure - Put SRCU on a memory diet in order to reduce the size of the srcu_struct structure - Torture-test updates fixing some bugs in tests and closing some testing holes - Torture-test updates for the RCU tasks flavors, most notably ensuring that building rcutorture and friends does not change the RCU-tasks-related Kconfig options - Torture-test scripting updates - Expedited grace-period updates, most notably providing milliseconds-scale (not all that) soft real-time response from synchronize_rcu_expedited(). This is also the first time in almost 30 years of RCU that someone other than me has pushed for a reduction in the RCU CPU stall-warning timeout, in this case by more than three orders of magnitude from 21 seconds to 20 milliseconds. This tighter timeout applies only to expedited grace periods * tag 'rcu.2022.05.19a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (80 commits) rcu: Move expedited grace period (GP) work to RT kthread_worker rcu: Introduce CONFIG_RCU_EXP_CPU_STALL_TIMEOUT srcu: Drop needless initialization of sdp in srcu_gp_start() srcu: Prevent expedited GPs and blocking readers from consuming CPU srcu: Add contention check to call_srcu() srcu_data ->lock acquisition srcu: Automatically determine size-transition strategy at boot rcutorture: Make torture.sh allow for --kasan rcutorture: Make torture.sh refscale and rcuscale specify Tasks Trace RCU rcutorture: Make kvm.sh allow more memory for --kasan runs torture: Save "make allmodconfig" .config file scftorture: Remove extraneous "scf" from per_version_boot_params rcutorture: Adjust scenarios' Kconfig options for CONFIG_PREEMPT_DYNAMIC torture: Enable CSD-lock stall reports for scftorture torture: Skip vmlinux check for kvm-again.sh runs scftorture: Adjust for TASKS_RCU Kconfig option being selected rcuscale: Allow rcuscale without RCU Tasks Rude/Trace rcuscale: Allow rcuscale without RCU Tasks refscale: Allow refscale without RCU Tasks Rude/Trace refscale: Allow refscale without RCU Tasks rcutorture: Allow specifying per-scenario stat_interval ... |
||
Peter Zijlstra
|
546a3fee17 |
sched: Reverse sched_class layout
Because GCC-12 is fully stupid about array bounds and it's just really hard to get a solid array definition from a linker script, flip the array order to avoid needing negative offsets :-/ This makes the whole relational pointer magic a little less obvious, but alas. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/YoOLLmLG7HRTXeEm@hirez.programming.kicks-ass.net |
||
Delyan Kratunov
|
9c2136be08 |
sched/tracing: Append prev_state to tp args instead
Commit fa2c3254d7cf (sched/tracing: Don't re-read p->state when emitting sched_switch event, 2022-01-20) added a new prev_state argument to the sched_switch tracepoint, before the prev task_struct pointer. This reordering of arguments broke BPF programs that use the raw tracepoint (e.g. tp_btf programs). The type of the second argument has changed and existing programs that assume a task_struct* argument (e.g. for bpf_task_storage access) will now fail to verify. If we instead append the new argument to the end, all existing programs would continue to work and can conditionally extract the prev_state argument on supported kernel versions. Fixes: fa2c3254d7cf (sched/tracing: Don't re-read p->state when emitting sched_switch event, 2022-01-20) Signed-off-by: Delyan Kratunov <delyank@fb.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lkml.kernel.org/r/c8a6930dfdd58a4a5755fc01732675472979732b.camel@fb.com |
||
Eric W. Biederman
|
2500ad1c7f |
ptrace: Don't change __state
Stop playing with tsk->__state to remove TASK_WAKEKILL while a ptrace command is executing. Instead remove TASK_WAKEKILL from the definition of TASK_TRACED, and implement a new jobctl flag TASK_PTRACE_FROZEN. This new flag is set in jobctl_freeze_task and cleared when ptrace_stop is awoken or in jobctl_unfreeze_task (when ptrace_stop remains asleep). In signal_wake_up add __TASK_TRACED to state along with TASK_WAKEKILL when the wake up is for a fatal signal. Skip adding __TASK_TRACED when TASK_PTRACE_FROZEN is not set. This has the same effect as changing TASK_TRACED to __TASK_TRACED as all of the wake_ups that use TASK_KILLABLE go through signal_wake_up. Handle a ptrace_stop being called with a pending fatal signal. Previously it would have been handled by schedule simply failing to sleep. As TASK_WAKEKILL is no longer part of TASK_TRACED schedule will sleep with a fatal_signal_pending. The code in signal_wake_up guarantees that the code will be awaked by any fatal signal that codes after TASK_TRACED is set. Previously the __state value of __TASK_TRACED was changed to TASK_RUNNING when woken up or back to TASK_TRACED when the code was left in ptrace_stop. Now when woken up ptrace_stop now clears JOBCTL_PTRACE_FROZEN and when left sleeping ptrace_unfreezed_traced clears JOBCTL_PTRACE_FROZEN. Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-10-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> |
||
Hao Jia
|
2679a83731 |
sched/core: Avoid obvious double update_rq_clock warning
When we use raw_spin_rq_lock() to acquire the rq lock and have to update the rq clock while holding the lock, the kernel may issue a WARN_DOUBLE_CLOCK warning. Since we directly use raw_spin_rq_lock() to acquire rq lock instead of rq_lock(), there is no corresponding change to rq->clock_update_flags. In particular, we have obtained the rq lock of other CPUs, the rq->clock_update_flags of this CPU may be RQCF_UPDATED at this time, and then calling update_rq_clock() will trigger the WARN_DOUBLE_CLOCK warning. So we need to clear RQCF_UPDATED of rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. For the sched_rt_period_timer() and migrate_task_rq_dl() cases we simply replace raw_spin_rq_lock()/raw_spin_rq_unlock() with rq_lock()/rq_unlock(). For the {pull,push}_{rt,dl}_task() cases, we add the double_rq_clock_clear_update() function to clear RQCF_UPDATED of rq->clock_update_flags, and call double_rq_clock_clear_update() before double_lock_balance()/double_rq_lock() returns to avoid the WARN_DOUBLE_CLOCK warning. Some call trace reports: Call Trace 1: <IRQ> sched_rt_period_timer+0x10f/0x3a0 ? enqueue_top_rt_rq+0x110/0x110 __hrtimer_run_queues+0x1a9/0x490 hrtimer_interrupt+0x10b/0x240 __sysvec_apic_timer_interrupt+0x8a/0x250 sysvec_apic_timer_interrupt+0x9a/0xd0 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x12/0x20 Call Trace 2: <TASK> activate_task+0x8b/0x110 push_rt_task.part.108+0x241/0x2c0 push_rt_tasks+0x15/0x30 finish_task_switch+0xaa/0x2e0 ? __switch_to+0x134/0x420 __schedule+0x343/0x8e0 ? hrtimer_start_range_ns+0x101/0x340 schedule+0x4e/0xb0 do_nanosleep+0x8e/0x160 hrtimer_nanosleep+0x89/0x120 ? hrtimer_init_sleeper+0x90/0x90 __x64_sys_nanosleep+0x96/0xd0 do_syscall_64+0x34/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Call Trace 3: <TASK> deactivate_task+0x93/0xe0 pull_rt_task+0x33e/0x400 balance_rt+0x7e/0x90 __schedule+0x62f/0x8e0 do_task_dead+0x3f/0x50 do_exit+0x7b8/0xbb0 do_group_exit+0x2d/0x90 get_signal+0x9df/0x9e0 ? preempt_count_add+0x56/0xa0 ? __remove_hrtimer+0x35/0x70 arch_do_signal_or_restart+0x36/0x720 ? nanosleep_copyout+0x39/0x50 ? do_nanosleep+0x131/0x160 ? audit_filter_inodes+0xf5/0x120 exit_to_user_mode_prepare+0x10f/0x1e0 syscall_exit_to_user_mode+0x17/0x30 do_syscall_64+0x40/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Call Trace 4: update_rq_clock+0x128/0x1a0 migrate_task_rq_dl+0xec/0x310 set_task_cpu+0x84/0x1e4 try_to_wake_up+0x1d8/0x5c0 wake_up_process+0x1c/0x30 hrtimer_wakeup+0x24/0x3c __hrtimer_run_queues+0x114/0x270 hrtimer_interrupt+0xe8/0x244 arch_timer_handler_phys+0x30/0x50 handle_percpu_devid_irq+0x88/0x140 generic_handle_domain_irq+0x40/0x60 gic_handle_irq+0x48/0xe0 call_on_irq_stack+0x2c/0x60 do_interrupt_handler+0x80/0x84 Steps to reproduce: 1. Enable CONFIG_SCHED_DEBUG when compiling the kernel 2. echo 1 > /sys/kernel/debug/clear_warn_once echo "WARN_DOUBLE_CLOCK" > /sys/kernel/debug/sched/features echo "NO_RT_PUSH_IPI" > /sys/kernel/debug/sched/features 3. Run some rt/dl tasks that periodically work and sleep, e.g. Create 2*n rt or dl (90% running) tasks via rt-app (on a system with n CPUs), and Dietmar Eggemann reports Call Trace 4 when running on PREEMPT_RT kernel. Signed-off-by: Hao Jia <jiahao.os@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20220430085843.62939-2-jiahao.os@bytedance.com |
||
YueHaibing
|
494dcdf46e |
sched: Fix build warning without CONFIG_SYSCTL
IF CONFIG_SYSCTL is n, build warn: kernel/sched/core.c:1782:12: warning: ‘sysctl_sched_uclamp_handler’ defined but not used [-Wunused-function] static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, ^~~~~~~~~~~~~~~~~~~~~~~~~~~ sysctl_sched_uclamp_handler() is used while CONFIG_SYSCTL enabled, wrap all related code with CONFIG_SYSCTL to fix this. Fixes: 3267e0156c33 ("sched: Move uclamp_util sysctls to core.c") Signed-off-by: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Ingo Molnar
|
d70522fc54 |
Linux 5.18-rc5
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmJu9FYeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGAyEH/16xtJSpLmLwrQzG o+4ToQxSQ+/9UHyu0RTEvHg2THm9/8emtIuYyc/5FgdoWctcSa3AaDcveWmuWmkS KYcdhfJsaEqjNHS3OPYXN84fmo9Hel7263shu5+IYmP/sN0DfQp6UWTryX1q4B3Q 4Pdutkuq63Uwd8nBZ5LXQBumaBrmkkuMgWEdT4+6FOo1mPzwdIGBxCuz1UsNNl5k chLWxkQfe2eqgWbYJrgCQfrVdORXVtoU2fGilZUNrHRVGkkldXkkz5clJfapyZD3 odmZCEbrE4GPKgZwCmDERMfD1hzhZDtYKiHfOQ506szH5ykJjPBcOjHed7dA60eB J3+wdek= =39Ca -----END PGP SIGNATURE----- Merge tag 'v5.18-rc5' into sched/core to pull in fixes & to resolve a conflict - sched/core is on a pretty old -rc1 base - refresh it to include recent fixes. - this also allows up to resolve a (trivial) .mailmap conflict Conflicts: .mailmap Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Thomas Gleixner
|
16bf5a5e1e |
smp: Rename flush_smp_call_function_from_idle()
This is invoked from the stopper thread too, which is definitely not idle. Rename it to flush_smp_call_function_queue() and fixup the callers. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220413133024.305001096@linutronix.de |
||
Thomas Gleixner
|
d664e39912 |
sched: Fix missing prototype warnings
A W=1 build emits more than a dozen missing prototype warnings related to scheduler and scheduler specific includes. Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220413133024.249118058@linutronix.de |
||
Zhen Ni
|
3267e0156c |
sched: Move uclamp_util sysctls to core.c
move uclamp_util sysctls to core.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Zhen Ni
|
d9ab0e63fa |
sched: Move rt_period/runtime sysctls to rt.c
move rt_period/runtime sysctls to rt.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Zhen Ni
|
f5ef06d58b |
sched: Move schedstats sysctls to core.c
move schedstats sysctls to core.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Valentin Schneider
|
cfe43f478b |
preempt/dynamic: Introduce preemption model accessors
CONFIG_PREEMPT{_NONE, _VOLUNTARY} designate either: o The build-time preemption model when !PREEMPT_DYNAMIC o The default boot-time preemption model when PREEMPT_DYNAMIC IOW, using those on PREEMPT_DYNAMIC kernels is meaningless - the actual model could have been set to something else by the "preempt=foo" cmdline parameter. Same problem applies to CONFIG_PREEMPTION. Introduce a set of helpers to determine the actual preemption model used by the live kernel. Suggested-by: Marco Elver <elver@google.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Marco Elver <elver@google.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20211112185203.280040-3-valentin.schneider@arm.com |
||
Sebastian Andrzej Siewior
|
386ef214c3 |
sched: Teach the forced-newidle balancer about CPU affinity limitation.
try_steal_cookie() looks at task_struct::cpus_mask to decide if the task could be moved to `this' CPU. It ignores that the task might be in a migration disabled section while not on the CPU. In this case the task must not be moved otherwise per-CPU assumption are broken. Use is_cpu_allowed(), as suggested by Peter Zijlstra, to decide if the a task can be moved. Fixes: d2dfa17bc7de6 ("sched: Trivial forced-newidle balancer") Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/YjNK9El+3fzGmswf@linutronix.de |
||
Peter Zijlstra
|
5b6547ed97 |
sched/core: Fix forceidle balancing
Steve reported that ChromeOS encounters the forceidle balancer being ran from rt_mutex_setprio()'s balance_callback() invocation and explodes. Now, the forceidle balancer gets queued every time the idle task gets selected, set_next_task(), which is strictly too often. rt_mutex_setprio() also uses set_next_task() in the 'change' pattern: queued = task_on_rq_queued(p); /* p->on_rq == TASK_ON_RQ_QUEUED */ running = task_current(rq, p); /* rq->curr == p */ if (queued) dequeue_task(...); if (running) put_prev_task(...); /* change task properties */ if (queued) enqueue_task(...); if (running) set_next_task(...); However, rt_mutex_setprio() will explicitly not run this pattern on the idle task (since priority boosting the idle task is quite insane). Most other 'change' pattern users are pidhash based and would also not apply to idle. Also, the change pattern doesn't contain a __balance_callback() invocation and hence we could have an out-of-band balance-callback, which *should* trigger the WARN in rq_pin_lock() (which guards against this exact anti-pattern). So while none of that explains how this happens, it does indicate that having it in set_next_task() might not be the most robust option. Instead, explicitly queue the forceidle balancer from pick_next_task() when it does indeed result in forceidle selection. Having it here, ensures it can only be triggered under the __schedule() rq->lock instance, and hence must be ran from that context. This also happens to clean up the code a little, so win-win. Fixes: d2dfa17bc7de ("sched: Trivial forced-newidle balancer") Reported-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: T.J. Alumbaugh <talumbau@chromium.org> Link: https://lkml.kernel.org/r/20220330160535.GN8939@worktop.programming.kicks-ass.net |
||
Linus Torvalds
|
3bf03b9a08 |
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton: - A few misc subsystems: kthread, scripts, ntfs, ocfs2, block, and vfs - Most the MM patches which precede the patches in Willy's tree: kasan, pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap, sparsemem, vmalloc, pagealloc, memory-failure, mlock, hugetlb, userfaultfd, vmscan, compaction, mempolicy, oom-kill, migration, thp, cma, autonuma, psi, ksm, page-poison, madvise, memory-hotplug, rmap, zswap, uaccess, ioremap, highmem, cleanups, kfence, hmm, and damon. * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (227 commits) mm/damon/sysfs: remove repeat container_of() in damon_sysfs_kdamond_release() Docs/ABI/testing: add DAMON sysfs interface ABI document Docs/admin-guide/mm/damon/usage: document DAMON sysfs interface selftests/damon: add a test for DAMON sysfs interface mm/damon/sysfs: support DAMOS stats mm/damon/sysfs: support DAMOS watermarks mm/damon/sysfs: support schemes prioritization mm/damon/sysfs: support DAMOS quotas mm/damon/sysfs: support DAMON-based Operation Schemes mm/damon/sysfs: support the physical address space monitoring mm/damon/sysfs: link DAMON for virtual address spaces monitoring mm/damon: implement a minimal stub for sysfs-based DAMON interface mm/damon/core: add number of each enum type values mm/damon/core: allow non-exclusive DAMON start/stop Docs/damon: update outdated term 'regions update interval' Docs/vm/damon/design: update DAMON-Idle Page Tracking interference handling Docs/vm/damon: call low level monitoring primitives the operations mm/damon: remove unnecessary CONFIG_DAMON option mm/damon/paddr,vaddr: remove damon_{p,v}a_{target_valid,set_operations}() mm/damon/dbgfs-test: fix is_target_id() change ... |
||
Huang Ying
|
c574bbe917 |
NUMA balancing: optimize page placement for memory tiering system
With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are usually different. In such system, because of the memory accessing pattern changing etc, some pages in the slow memory may become hot globally. So in this patch, the NUMA balancing mechanism is enhanced to optimize the page placement among the different memory types according to hot/cold dynamically. In a typical memory tiering system, there are CPUs, fast memory and slow memory in each physical NUMA node. The CPUs and the fast memory will be put in one logical node (called fast memory node), while the slow memory will be put in another (faked) logical node (called slow memory node). That is, the fast memory is regarded as local while the slow memory is regarded as remote. So it's possible for the recently accessed pages in the slow memory node to be promoted to the fast memory node via the existing NUMA balancing mechanism. The original NUMA balancing mechanism will stop to migrate pages if the free memory of the target node becomes below the high watermark. This is a reasonable policy if there's only one memory type. But this makes the original NUMA balancing mechanism almost do not work to optimize page placement among different memory types. Details are as follows. It's the common cases that the working-set size of the workload is larger than the size of the fast memory nodes. Otherwise, it's unnecessary to use the slow memory at all. So, there are almost always no enough free pages in the fast memory nodes, so that the globally hot pages in the slow memory node cannot be promoted to the fast memory node. To solve the issue, we have 2 choices as follows, a. Ignore the free pages watermark checking when promoting hot pages from the slow memory node to the fast memory node. This will create some memory pressure in the fast memory node, thus trigger the memory reclaiming. So that, the cold pages in the fast memory node will be demoted to the slow memory node. b. Define a new watermark called wmark_promo which is higher than wmark_high, and have kswapd reclaiming pages until free pages reach such watermark. The scenario is as follows: when we want to promote hot-pages from a slow memory to a fast memory, but fast memory's free pages would go lower than high watermark with such promotion, we wake up kswapd with wmark_promo watermark in order to demote cold pages and free us up some space. So, next time we want to promote hot-pages we might have a chance of doing so. The choice "a" may create high memory pressure in the fast memory node. If the memory pressure of the workload is high, the memory pressure may become so high that the memory allocation latency of the workload is influenced, e.g. the direct reclaiming may be triggered. The choice "b" works much better at this aspect. If the memory pressure of the workload is high, the hot pages promotion will stop earlier because its allocation watermark is higher than that of the normal memory allocation. So in this patch, choice "b" is implemented. A new zone watermark (WMARK_PROMO) is added. Which is larger than the high watermark and can be controlled via watermark_scale_factor. In addition to the original page placement optimization among sockets, the NUMA balancing mechanism is extended to be used to optimize page placement according to hot/cold among different memory types. So the sysctl user space interface (numa_balancing) is extended in a backward compatible way as follow, so that the users can enable/disable these functionality individually. The sysctl is converted from a Boolean value to a bits field. The definition of the flags is, - 0: NUMA_BALANCING_DISABLED - 1: NUMA_BALANCING_NORMAL - 2: NUMA_BALANCING_MEMORY_TIERING We have tested the patch with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. Thanks Andrew Morton to help fix the document format error. Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
3fe2f7446f |
Changes in this cycle were:
- Cleanups for SCHED_DEADLINE - Tracing updates/fixes - CPU Accounting fixes - First wave of changes to optimize the overhead of the scheduler build, from the fast-headers tree - including placeholder *_api.h headers for later header split-ups. - Preempt-dynamic using static_branch() for ARM64 - Isolation housekeeping mask rework; preperatory for further changes - NUMA-balancing: deal with CPU-less nodes - NUMA-balancing: tune systems that have multiple LLC cache domains per node (eg. AMD) - Updates to RSEQ UAPI in preparation for glibc usage - Lots of RSEQ/selftests, for same - Add Suren as PSI co-maintainer Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI5rg8RHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1hGrw/+M3QOk6fH7G48wjlNnBvcOife6ls+Ni4k ixOAcF4JKoixO8HieU5vv0A7yf/83tAa6fpeXeMf1hkCGc0NSlmLtuIux+WOmoAL LzCyDEYfiP8KnVh0A1Tui/lK0+AkGo21O6ADhQE2gh8o2LpslOHQMzvtyekSzeeb mVxMYQN+QH0m518xdO2D8IQv9ctOYK0eGjmkqdNfntOlytypPZHeNel/tCzwklP/ dElJUjNiSKDlUgTBPtL3DfpoLOI/0mHF2p6NEXvNyULxSOqJTu8pv9Z2ADb2kKo1 0D56iXBDngMi9MHIJLgvzsA8gKzHLFSuPbpODDqkTZCa28vaMB9NYGhJ643NtEie IXTJEvF1rmNkcLcZlZxo0yjL0fjvPkczjw4Vj27gbrUQeEBfb4mfuI4BRmij63Ep qEkgQTJhduCqqrQP1rVyhwWZRk1JNcVug+F6N42qWW3fg1xhj0YSrLai2c9nPez6 3Zt98H8YGS1Z/JQomSw48iGXVqfTp/ETI7uU7jqHK8QcjzQ4lFK5H4GZpwuqGBZi NJJ1l97XMEas+rPHiwMEN7Z1DVhzJLCp8omEj12QU+tGLofxxwAuuOVat3CQWLRk f80Oya3TLEgd22hGIKDRmHa22vdWnNQyS0S15wJotawBzQf+n3auS9Q3/rh979+t ES/qvlGxTIs= =Z8uT -----END PGP SIGNATURE----- Merge tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Cleanups for SCHED_DEADLINE - Tracing updates/fixes - CPU Accounting fixes - First wave of changes to optimize the overhead of the scheduler build, from the fast-headers tree - including placeholder *_api.h headers for later header split-ups. - Preempt-dynamic using static_branch() for ARM64 - Isolation housekeeping mask rework; preperatory for further changes - NUMA-balancing: deal with CPU-less nodes - NUMA-balancing: tune systems that have multiple LLC cache domains per node (eg. AMD) - Updates to RSEQ UAPI in preparation for glibc usage - Lots of RSEQ/selftests, for same - Add Suren as PSI co-maintainer * tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (81 commits) sched/headers: ARM needs asm/paravirt_api_clock.h too sched/numa: Fix boot crash on arm64 systems headers/prep: Fix header to build standalone: <linux/psi.h> sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y cgroup: Fix suspicious rcu_dereference_check() usage warning sched/preempt: Tell about PREEMPT_DYNAMIC on kernel headers sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity() sched/deadline,rt: Remove unused functions for !CONFIG_SMP sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy() sched/deadline: Move bandwidth mgmt and reclaim functions into sched class source file sched/deadline: Remove unused def_dl_bandwidth sched/tracing: Report TASK_RTLOCK_WAIT tasks as TASK_UNINTERRUPTIBLE sched/tracing: Don't re-read p->state when emitting sched_switch event sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race sched/cpuacct: Remove redundant RCU read lock sched/cpuacct: Optimize away RCU read lock sched/cpuacct: Fix charge percpu cpuusage sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h dependencies ... |
||
Linus Torvalds
|
616355cc81 |
for-5.18/block-2022-03-18
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmI0+GcQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgprUpD/9aTJEnj7VCw7UouSsg098sdjtoy9ilslU3 ew47K8CIXHbCB4CDqLnFyvCwAdG1XGgS+fUmFAxvTr29R9SZeS5d+bXL6sZzEo0C bwxsJy9MM2QRtMvB+giAt1myXbwB8cG+ketMBWXqwXXRHRzPbbQfMZia7FqWMnfY KQanH9IwYHp1oa5U/W6Qcjm4oCnLgBMRwqByzUCtiF3y9qgaLkK+3IgkNwjJQjLA DTeUJ/9CgxGQQbzA+LPktbw2xfTqiUfcKq0mWx6Zt4wwNXn1ClqUDUXX6QSM8/5u 3OimbscSkEPPTIYZbVBPkhFnAlQb4JaJEgOrbXvYKVV2Dh+eZY81XwNeE/E8gdBY TnHOTOCjkN/4sR3hIrWazlJzPLdpPA0eOYrhguCraQsX9mcsYNxlJ9otRv/Ve99g uqL0RZg3+NoK84fm79FCGy/ZmPQJvJttlBT9CKVwylv/Lky42xWe7AdM3OipKluY 2nh+zN5Ai7WxZdTKXQFRhCSWfWQ+1qW51tB3dcGW+BooZr/oox47qKQVcHsEWbq1 RNR45F5a4AuPwYUHF/P36WviLnEuq9AvX7OTTyYOplyVQohKIoDXp9chVzLNzBiZ KBR00W6MLKKKN+8foalQWgNyb2i2PH7Ib4xRXvXj/22Vwxg5UmUoBmSDSas9SZUS +dMo7CtNgA== =DpgP -----END PGP SIGNATURE----- Merge tag 'for-5.18/block-2022-03-18' of git://git.kernel.dk/linux-block Pull block updates from Jens Axboe: - BFQ cleanups and fixes (Yu, Zhang, Yahu, Paolo) - blk-rq-qos completion fix (Tejun) - blk-cgroup merge fix (Tejun) - Add offline error return value to distinguish it from an IO error on the device (Song) - IO stats fixes (Zhang, Christoph) - blkcg refcount fixes (Ming, Yu) - Fix for indefinite dispatch loop softlockup (Shin'ichiro) - blk-mq hardware queue management improvements (Ming) - sbitmap dead code removal (Ming, John) - Plugging merge improvements (me) - Show blk-crypto capabilities in sysfs (Eric) - Multiple delayed queue run improvement (David) - Block throttling fixes (Ming) - Start deprecating auto module loading based on dev_t (Christoph) - bio allocation improvements (Christoph, Chaitanya) - Get rid of bio_devname (Christoph) - bio clone improvements (Christoph) - Block plugging improvements (Christoph) - Get rid of genhd.h header (Christoph) - Ensure drivers use appropriate flush helpers (Christoph) - Refcounting improvements (Christoph) - Queue initialization and teardown improvements (Ming, Christoph) - Misc fixes/improvements (Barry, Chaitanya, Colin, Dan, Jiapeng, Lukas, Nian, Yang, Eric, Chengming) * tag 'for-5.18/block-2022-03-18' of git://git.kernel.dk/linux-block: (127 commits) block: cancel all throttled bios in del_gendisk() block: let blkcg_gq grab request queue's refcnt block: avoid use-after-free on throttle data block: limit request dispatch loop duration block/bfq-iosched: Fix spelling mistake "tenative" -> "tentative" sr: simplify the local variable initialization in sr_block_open() block: don't merge across cgroup boundaries if blkcg is enabled block: fix rq-qos breakage from skipping rq_qos_done_bio() block: flush plug based on hardware and software queue order block: ensure plug merging checks the correct queue at least once block: move rq_qos_exit() into disk_release() block: do more work in elevator_exit block: move blk_exit_queue into disk_release block: move q_usage_counter release into blk_queue_release block: don't remove hctx debugfs dir from blk_mq_exit_queue block: move blkcg initialization/destroy into disk allocation/release handler sr: implement ->free_disk to simplify refcounting sd: implement ->free_disk to simplify refcounting sd: delay calling free_opal_dev sd: call sd_zbc_release_disk before releasing the scsi_device reference ... |
||
Ingo Molnar
|
a7b2553b5e |
sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y
This header is not (yet) standalone. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
ccacfe56d7 |
Merge branch 'sched/fast-headers' into sched/core
Merge the scheduler build speedup of the fast-headers tree. Cumulative scheduler (kernel/sched/) build time speedup on a Linux distribution's config, which enables all scheduler features, compared to the vanilla kernel: _____________________________________________________________________________ | | Vanilla kernel (v5.13-rc7): |_____________________________________________________________________________ | | Performance counter stats for 'make -j96 kernel/sched/' (3 runs): | | 126,975,564,374 instructions # 1.45 insn per cycle ( +- 0.00% ) | 87,637,847,671 cycles # 3.959 GHz ( +- 0.30% ) | 22,136.96 msec cpu-clock # 7.499 CPUs utilized ( +- 0.29% ) | | 2.9520 +- 0.0169 seconds time elapsed ( +- 0.57% ) |_____________________________________________________________________________ | | Patched kernel: |_____________________________________________________________________________ | | Performance counter stats for 'make -j96 kernel/sched/' (3 runs): | | 50,420,496,914 instructions # 1.47 insn per cycle ( +- 0.00% ) | 34,234,322,038 cycles # 3.946 GHz ( +- 0.31% ) | 8,675.81 msec cpu-clock # 3.053 CPUs utilized ( +- 0.45% ) | | 2.8420 +- 0.0181 seconds time elapsed ( +- 0.64% ) |_____________________________________________________________________________ Summary: - CPU time used to build the scheduler dropped by -60.9%, a reduction from 22.1 clock-seconds to 8.7 clock-seconds. - Wall-clock time to build the scheduler dropped by -3.9%, a reduction from 2.95 seconds to 2.84 seconds. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Dietmar Eggemann
|
772b6539fd |
sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
Both functions are doing almost the same, that is checking if admission control is still respected. With exclusive cpusets, dl_task_can_attach() checks if the destination cpuset (i.e. its root domain) has enough CPU capacity to accommodate the task. dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in case the CPU is hot-plugged out. dl_task_can_attach() is used to check if a task can be admitted while dl_cpu_busy() is used to check if a CPU can be hotplugged out. Make dl_cpu_busy() able to deal with a task and use it instead of dl_task_can_attach() in task_can_attach(). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com |
||
Dietmar Eggemann
|
eb77cf1c15 |
sched/deadline: Remove unused def_dl_bandwidth
Since commit 1724813d9f2c ("sched/deadline: Remove the sysctl_sched_dl knobs") the default deadline bandwidth control structure has no purpose. Remove it. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-2-dietmar.eggemann@arm.com |
||
Valentin Schneider
|
fa2c3254d7 |
sched/tracing: Don't re-read p->state when emitting sched_switch event
As of commit c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu") the following sequence becomes possible: p->__state = TASK_INTERRUPTIBLE; __schedule() deactivate_task(p); ttwu() READ !p->on_rq p->__state=TASK_WAKING trace_sched_switch() __trace_sched_switch_state() task_state_index() return 0; TASK_WAKING isn't in TASK_REPORT, so the task appears as TASK_RUNNING in the trace event. Prevent this by pushing the value read from __schedule() down the trace event. Reported-by: Abhijeet Dharmapurikar <adharmap@quicinc.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20220120162520.570782-2-valentin.schneider@arm.com |
||
Ingo Molnar
|
e66f6481a8 |
sched/headers: Reorganize, clean up and optimize kernel/sched/core.c dependencies
Use all generic headers from kernel/sched/sched.h that are required for it to build. Sort the sections alphabetically. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org> |
||
Ingo Molnar
|
b9e9c6ca6e |
sched/headers: Standardize kernel/sched/sched.h header dependencies
kernel/sched/sched.h is a weird mix of ad-hoc headers included in the middle of the header. Two of them rely on being included in the middle of kernel/sched/sched.h, due to definitions they require: - "stat.h" needs the rq definitions. - "autogroup.h" needs the task_group definition. Move the inclusion of these two files out of kernel/sched/sched.h, and include them in all files that require them. Move of the rest of the header dependencies to the top of the kernel/sched/sched.h file. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org> |
||
Ingo Molnar
|
6255b48aeb |
Linux 5.17-rc5
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmISrYgeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGg20IAKDZr7rfSHBopjQV Cocw744tom0XuxpvSZpp2GGOOXF+tkswcNNaRIrbGOl1mkyxA7eBZCTMpDeDS9aQ wB0D0Gxx8QBAJp4KgB1W7TB+hIGes/rs8Ve+6iO4ulLLdCVWX/q2boI0aZ7QX9O9 qNi8OsoZQtk6falRvciZFHwV5Av1p2Sy1AW57udQ7DvJ4H98AfKf1u8/z208WWW8 1ixC+qJxQcUcM9vI+7P9Tt7NbFSKv8SvAmqjFY7P+DxQAsVw6KXoqVXykDzeOv0t fUNOE/t0oFZafwtn8h7KBQnwS9lH03+3KkslVZs+iMFyUj/Bar+NVVyKoDhWXtVg /PuMhEg= =eU1o -----END PGP SIGNATURE----- Merge tag 'v5.17-rc5' into sched/core, to resolve conflicts New conflicts in sched/core due to the following upstream fixes: 44585f7bc0cb ("psi: fix "defined but not used" warnings when CONFIG_PROC_FS=n") a06247c6804f ("psi: Fix uaf issue when psi trigger is destroyed while being polled") Conflicts: include/linux/psi_types.h kernel/sched/psi.c Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mark Rutland
|
99cf983cc8 |
sched/preempt: Add PREEMPT_DYNAMIC using static keys
Where an architecture selects HAVE_STATIC_CALL but not HAVE_STATIC_CALL_INLINE, each static call has an out-of-line trampoline which will either branch to a callee or return to the caller. On such architectures, a number of constraints can conspire to make those trampolines more complicated and potentially less useful than we'd like. For example: * Hardware and software control flow integrity schemes can require the addition of "landing pad" instructions (e.g. `BTI` for arm64), which will also be present at the "real" callee. * Limited branch ranges can require that trampolines generate or load an address into a register and perform an indirect branch (or at least have a slow path that does so). This loses some of the benefits of having a direct branch. * Interaction with SW CFI schemes can be complicated and fragile, e.g. requiring that we can recognise idiomatic codegen and remove indirections understand, at least until clang proves more helpful mechanisms for dealing with this. For PREEMPT_DYNAMIC, we don't need the full power of static calls, as we really only need to enable/disable specific preemption functions. We can achieve the same effect without a number of the pain points above by using static keys to fold early returns into the preemption functions themselves rather than in an out-of-line trampoline, effectively inlining the trampoline into the start of the function. For arm64, this results in good code generation. For example, the dynamic_cond_resched() wrapper looks as follows when enabled. When disabled, the first `B` is replaced with a `NOP`, resulting in an early return. | <dynamic_cond_resched>: | bti c | b <dynamic_cond_resched+0x10> // or `nop` | mov w0, #0x0 | ret | mrs x0, sp_el0 | ldr x0, [x0, #8] | cbnz x0, <dynamic_cond_resched+0x8> | paciasp | stp x29, x30, [sp, #-16]! | mov x29, sp | bl <preempt_schedule_common> | mov w0, #0x1 | ldp x29, x30, [sp], #16 | autiasp | ret ... compared to the regular form of the function: | <__cond_resched>: | bti c | mrs x0, sp_el0 | ldr x1, [x0, #8] | cbz x1, <__cond_resched+0x18> | mov w0, #0x0 | ret | paciasp | stp x29, x30, [sp, #-16]! | mov x29, sp | bl <preempt_schedule_common> | mov w0, #0x1 | ldp x29, x30, [sp], #16 | autiasp | ret Any architecture which implements static keys should be able to use this to implement PREEMPT_DYNAMIC with similar cost to non-inlined static calls. Since this is likely to have greater overhead than (inlined) static calls, PREEMPT_DYNAMIC is only defaulted to enabled when HAVE_PREEMPT_DYNAMIC_CALL is selected. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20220214165216.2231574-6-mark.rutland@arm.com |
||
Mark Rutland
|
33c64734be |
sched/preempt: Decouple HAVE_PREEMPT_DYNAMIC from GENERIC_ENTRY
Now that the enabled/disabled states for the preemption functions are declared alongside their definitions, the core PREEMPT_DYNAMIC logic is no longer tied to GENERIC_ENTRY, and can safely be selected so long as an architecture provides enabled/disabled states for irqentry_exit_cond_resched(). Make it possible to select HAVE_PREEMPT_DYNAMIC without GENERIC_ENTRY. For existing users of HAVE_PREEMPT_DYNAMIC there should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20220214165216.2231574-5-mark.rutland@arm.com |