When CONFIG_KEXEC_FILE is set for riscv platform, the compilation of
kernel/kexec_file.c generate build error:
kernel/kexec_file.c: In function 'crash_prepare_elf64_headers':
./arch/riscv/include/asm/page.h:110:71: error: request for member 'virt_addr' in something not a structure or union
110 | ((x) >= PAGE_OFFSET && (!IS_ENABLED(CONFIG_64BIT) || (x) < kernel_map.virt_addr))
| ^
./arch/riscv/include/asm/page.h:131:2: note: in expansion of macro 'is_linear_mapping'
131 | is_linear_mapping(_x) ? \
| ^~~~~~~~~~~~~~~~~
./arch/riscv/include/asm/page.h:140:31: note: in expansion of macro '__va_to_pa_nodebug'
140 | #define __phys_addr_symbol(x) __va_to_pa_nodebug(x)
| ^~~~~~~~~~~~~~~~~~
./arch/riscv/include/asm/page.h:143:24: note: in expansion of macro '__phys_addr_symbol'
143 | #define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
| ^~~~~~~~~~~~~~~~~~
kernel/kexec_file.c:1327:36: note: in expansion of macro '__pa_symbol'
1327 | phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
This occurs is because the "kernel_map" referenced in macro
is_linear_mapping() is suppose to be the one of struct kernel_mapping
defined in arch/riscv/mm/init.c, but the 2nd argument of
crash_prepare_elf64_header() has same symbol name, in expansion of macro
is_linear_mapping in function crash_prepare_elf64_header(), "kernel_map"
actually is the local variable.
Signed-off-by: Liao Chang <liaochang1@huawei.com>
Link: https://lore.kernel.org/r/20220408100914.150110-2-lizhengyu3@huawei.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Let's add a flag that corresponds to IORESOURCE_SYSRAM_DRIVER_MANAGED,
indicating that we're dealing with a memory region that is never
indicated in the firmware-provided memory map, but always detected and
added by a driver.
Similar to MEMBLOCK_HOTPLUG, most infrastructure has to treat such
memory regions like ordinary MEMBLOCK_NONE memory regions -- for
example, when selecting memory regions to add to the vmcore for dumping
in the crashkernel via for_each_mem_range().
However, especially kexec_file is not supposed to select such memblocks
via for_each_free_mem_range() / for_each_free_mem_range_reverse() to
place kexec images, similar to how we handle
IORESOURCE_SYSRAM_DRIVER_MANAGED without CONFIG_ARCH_KEEP_MEMBLOCK.
We'll make sure that memory hotplug code sets the flag where applicable
(IORESOURCE_SYSRAM_DRIVER_MANAGED) next. This prepares architectures
that need CONFIG_ARCH_KEEP_MEMBLOCK, such as arm64, for virtio-mem
support.
Note that kexec *must not* indicate this memory to the second kernel and
*must not* place kexec-images on this memory. Let's add a comment to
kexec_walk_memblock(), documenting how we handle MEMBLOCK_DRIVER_MANAGED
now just like using IORESOURCE_SYSRAM_DRIVER_MANAGED in
locate_mem_hole_callback() for kexec_walk_resources().
Also note that MEMBLOCK_HOTPLUG cannot be reused due to different
semantics:
MEMBLOCK_HOTPLUG: memory is indicated as "System RAM" in the
firmware-provided memory map and added to the system early during
boot; kexec *has to* indicate this memory to the second kernel and
can place kexec-images on this memory. After memory hotunplug,
kexec has to be re-armed. We mostly ignore this flag when
"movable_node" is not set on the kernel command line, because
then we're told to not care about hotunpluggability of such
memory regions.
MEMBLOCK_DRIVER_MANAGED: memory is not indicated as "System RAM" in
the firmware-provided memory map; this memory is always detected
and added to the system by a driver; memory might not actually be
physically hotunpluggable. kexec *must not* indicate this memory to
the second kernel and *must not* place kexec-images on this memory.
Link: https://lkml.kernel.org/r/20211004093605.5830-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Jianyong Wu <Jianyong.Wu@arm.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Shahab Vahedi <shahab@synopsys.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When vzalloc() returns NULL to sha_regions, no error return code of
kexec_calculate_store_digests() is assigned. To fix this bug, ret is
assigned with -ENOMEM in this case.
Link: https://lkml.kernel.org/r/20210309083904.24321-1-baijiaju1990@gmail.com
Fixes: a43cac0d9d ("kexec: split kexec_file syscall code to kexec_file.c")
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reported-by: TOTE Robot <oslab@tsinghua.edu.cn>
Acked-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
IMA allocates kernel virtual memory to carry forward the measurement
list, from the current kernel to the next kernel on kexec system call,
in ima_add_kexec_buffer() function. This buffer is not freed before
completing the kexec system call resulting in memory leak.
Add ima_buffer field in "struct kimage" to store the virtual address
of the buffer allocated for the IMA measurement list.
Free the memory allocated for the IMA measurement list in
kimage_file_post_load_cleanup() function.
Signed-off-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Suggested-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Reviewed-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Fixes: 7b8589cc29 ("ima: on soft reboot, save the measurement list")
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Currently <crypto/sha.h> contains declarations for both SHA-1 and SHA-2,
and <crypto/sha3.h> contains declarations for SHA-3.
This organization is inconsistent, but more importantly SHA-1 is no
longer considered to be cryptographically secure. So to the extent
possible, SHA-1 shouldn't be grouped together with any of the other SHA
versions, and usage of it should be phased out.
Therefore, split <crypto/sha.h> into two headers <crypto/sha1.h> and
<crypto/sha2.h>, and make everyone explicitly specify whether they want
the declarations for SHA-1, SHA-2, or both.
This avoids making the SHA-1 declarations visible to files that don't
want anything to do with SHA-1. It also prepares for potentially moving
sha1.h into a new insecure/ or dangerous/ directory.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
IORESOURCE_MEM_DRIVER_MANAGED currently uses an unused PnP bit, which is
always set to 0 by hardware. This is far from beautiful (and confusing),
and the bit only applies to SYSRAM. So let's move it out of the
bus-specific (PnP) defined bits.
We'll add another SYSRAM specific bit soon. If we ever need more bits for
other purposes, we can steal some from "desc", or reshuffle/regroup what
we have.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Grall <julien@xen.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Roger Pau Monné <roger.pau@citrix.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20200911103459.10306-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To perform partial reads, callers of kernel_read_file*() must have a
non-NULL file_size argument and a preallocated buffer. The new "offset"
argument can then be used to seek to specific locations in the file to
fill the buffer to, at most, "buf_size" per call.
Where possible, the LSM hooks can report whether a full file has been
read or not so that the contents can be reasoned about.
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20201002173828.2099543-14-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In preparation for adding partial read support, add an optional output
argument to kernel_read_file*() that reports the file size so callers
can reason more easily about their reading progress.
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Scott Branden <scott.branden@broadcom.com>
Link: https://lore.kernel.org/r/20201002173828.2099543-8-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In preparation for refactoring kernel_read_file*(), remove the redundant
"size" argument which is not needed: it can be included in the return
code, with callers adjusted. (VFS reads already cannot be larger than
INT_MAX.)
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Scott Branden <scott.branden@broadcom.com>
Link: https://lore.kernel.org/r/20201002173828.2099543-6-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Move kernel_read_file* out of linux/fs.h to its own linux/kernel_read_file.h
include file. That header gets pulled in just about everywhere
and doesn't really need functions not related to the general fs interface.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Scott Branden <scott.branden@broadcom.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Link: https://lore.kernel.org/r/20200706232309.12010-2-scott.branden@broadcom.com
Link: https://lore.kernel.org/r/20201002173828.2099543-4-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
- Fix mitigation state sysfs output
- Fix an FPU xstate/sxave code assumption bug triggered by Architectural LBR support
- Fix Lightning Mountain SoC TSC frequency enumeration bug
- Fix kexec debug output
- Fix kexec memory range assumption bug
- Fix a boundary condition in the crash kernel code
- Optimize porgatory.ro generation a bit
- Enable ACRN guests to use X2APIC mode
- Reduce a __text_poke() IRQs-off critical section for the benefit of PREEMPT_RT
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl83ybgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iJnQ/+OAkE5hiQ+F1ikQ4rKyjaT6FjvynReNUA
ysQjcCypGB4x+slR8o3k5yrzYJ9WbDfOz7a0uekZtNHvJ80+3yheV5Yvf+Uz3EYM
Jj/OubCNMNnvS5cJMNXs196SGd/ELLWBbCjwUWPsiWJ0ZMTgKmpZz1LgB1QZjhyw
fbAc1WgTLVO+emE5FwBrmFzvgBxn5EtiFoLhegFtACHadNcJLiKpXpiK3NKkEirO
owF1/Qg6mn6MowKDBDkWgmwi0HVYbraqu0hXRrCq9o105CVwgwUdORTwjK3rnUNs
et10Zz2UmSpjXJOhKZdZLFCtYOmrADmS4pnoXF6W6cLLFvkq4b2ducnlFBtNKqMh
ljPkIT04sF99gIKijEYWsru+MgS4qO1VNHtJxkr/ZCUjqahsa1nN9F0lP0QOXjwf
hbK4h1NrML3UiCGAe2hjIh9zY2c8s2Q90PyCvZkKNKquSQ1E011hzcEE2RIoBBYB
mc1d6lgfCFWVkbgRA5sx1CVtgnAvHk2wu9w/8N9XTGjPgiQJRr3I8cNUZw59gaMH
43auWyvpVAA4vdfbKJrPVrTLhTTnQYv0A966l7/i0d8MkGN4u09sAiB3ZevZMEK9
45b7IXWluCi0ikBAmCvQ+qEzhg7pApCziVKuaZ/4j+qPLTDAutGwz7YuaXyOKrUX
Aj/uCev6D6c=
=fvpv
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-08-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
"Misc fixes and small updates all around the place:
- Fix mitigation state sysfs output
- Fix an FPU xstate/sxave code assumption bug triggered by
Architectural LBR support
- Fix Lightning Mountain SoC TSC frequency enumeration bug
- Fix kexec debug output
- Fix kexec memory range assumption bug
- Fix a boundary condition in the crash kernel code
- Optimize porgatory.ro generation a bit
- Enable ACRN guests to use X2APIC mode
- Reduce a __text_poke() IRQs-off critical section for the benefit of
PREEMPT_RT"
* tag 'x86-urgent-2020-08-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/alternatives: Acquire pte lock with interrupts enabled
x86/bugs/multihit: Fix mitigation reporting when VMX is not in use
x86/fpu/xstate: Fix an xstate size check warning with architectural LBRs
x86/purgatory: Don't generate debug info for purgatory.ro
x86/tsr: Fix tsc frequency enumeration bug on Lightning Mountain SoC
kexec_file: Correctly output debugging information for the PT_LOAD ELF header
kexec: Improve & fix crash_exclude_mem_range() to handle overlapping ranges
x86/crash: Correct the address boundary of function parameters
x86/acrn: Remove redundant chars from ACRN signature
x86/acrn: Allow ACRN guest to use X2APIC mode
- Add support for (optionally) using queued spinlocks & rwlocks.
- Support for a new faster system call ABI using the scv instruction on Power9
or later.
- Drop support for the PROT_SAO mmap/mprotect flag as it will be unsupported on
Power10 and future processors, leaving us with no way to implement the
functionality it requests. This risks breaking userspace, though we believe
it is unused in practice.
- A bug fix for, and then the removal of, our custom stack expansion checking.
We now allow stack expansion up to the rlimit, like other architectures.
- Remove the remnants of our (previously disabled) topology update code, which
tried to react to NUMA layout changes on virtualised systems, but was prone
to crashes and other problems.
- Add PMU support for Power10 CPUs.
- A change to our signal trampoline so that we don't unbalance the link stack
(branch return predictor) in the signal delivery path.
- Lots of other cleanups, refactorings, smaller features and so on as usual.
Thanks to:
Abhishek Goel, Alastair D'Silva, Alexander A. Klimov, Alexey Kardashevskiy,
Alistair Popple, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Anton
Blanchard, Arnd Bergmann, Athira Rajeev, Balamuruhan S, Bharata B Rao, Bill
Wendling, Bin Meng, Cédric Le Goater, Chris Packham, Christophe Leroy,
Christoph Hellwig, Daniel Axtens, Dan Williams, David Lamparter, Desnes A.
Nunes do Rosario, Erhard F., Finn Thain, Frederic Barrat, Ganesh Goudar,
Gautham R. Shenoy, Geoff Levand, Greg Kurz, Gustavo A. R. Silva, Hari Bathini,
Harish, Imre Kaloz, Joel Stanley, Joe Perches, John Crispin, Jordan Niethe,
Kajol Jain, Kamalesh Babulal, Kees Cook, Laurent Dufour, Leonardo Bras, Li
RongQing, Madhavan Srinivasan, Mahesh Salgaonkar, Mark Cave-Ayland, Michal
Suchanek, Milton Miller, Mimi Zohar, Murilo Opsfelder Araujo, Nathan
Chancellor, Nathan Lynch, Naveen N. Rao, Nayna Jain, Nicholas Piggin, Oliver
O'Halloran, Palmer Dabbelt, Pedro Miraglia Franco de Carvalho, Philippe
Bergheaud, Pingfan Liu, Pratik Rajesh Sampat, Qian Cai, Qinglang Miao, Randy
Dunlap, Ravi Bangoria, Sachin Sant, Sam Bobroff, Sandipan Das, Santosh
Sivaraj, Satheesh Rajendran, Shirisha Ganta, Sourabh Jain, Srikar Dronamraju,
Stan Johnson, Stephen Rothwell, Thadeu Lima de Souza Cascardo, Thiago Jung
Bauermann, Tom Lane, Vaibhav Jain, Vladis Dronov, Wei Yongjun, Wen Xiong,
YueHaibing.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl8tOxATHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgDQfEAClXHWf6hnxB84bEu39D51NkVotL1IG
BRWFvyix+xHuUkHIouBPAAMl6ngY5X6wkYd+Z+CY9zHNtdSDoVlJE30YXdMQA/dE
L/rYxR1884yGR/uU/3wusboO68ReXwcKQPmKOymUfh0zH7ujyJsSWLpXFK1YDC5d
2TVVTi0Q+P5ucMHDh0L+AHirIxZvtZSp43+J7xLtywsj+XAxJWCTGo5WCJbdgbCA
Qbv3aOkVyUa3EgsbdM/STPpv82ebqT+PHxeSIO4Jw6ZODtKRH0R5YsWCApuY9eZ+
ebY9RLmgv9ZAhJqB2fv9A5NDcMoGpZNmjM7HrWpXwULKQpkBGHCzJ9FcSdHVMOx8
nbVMFjt4uzLwV1w8lFYslQ2tNH/uH2o9BlryV1RLpiiKokDAJO/NOsWN9y0u/I4J
EmAM5DSX2LgVvvas96IlGK8KX4xkOkf8FLX/H5UDvvAfloH8J4CZXk/CWCab/nqY
KEHPnMmYvQZ1w9SzyZg9sO/1p6Bl1Gmm75Jv2F1lBiRW/42VcGBI/qLsJ4lC59Fc
KbwufYNYYG38wbxDLW1HAPJhRonxIcaZj3EEqk7aTiLZ55nNbu8e2k32CpNXTGqt
npOhzJHimcq7L6+878ZW+xpbZwogIEUdRSsmwb6aT8za3ShnYwSA2Q3LYxh9xyGH
j3GifvPq6Efp3Q==
=QMY1
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- Add support for (optionally) using queued spinlocks & rwlocks.
- Support for a new faster system call ABI using the scv instruction on
Power9 or later.
- Drop support for the PROT_SAO mmap/mprotect flag as it will be
unsupported on Power10 and future processors, leaving us with no way
to implement the functionality it requests. This risks breaking
userspace, though we believe it is unused in practice.
- A bug fix for, and then the removal of, our custom stack expansion
checking. We now allow stack expansion up to the rlimit, like other
architectures.
- Remove the remnants of our (previously disabled) topology update
code, which tried to react to NUMA layout changes on virtualised
systems, but was prone to crashes and other problems.
- Add PMU support for Power10 CPUs.
- A change to our signal trampoline so that we don't unbalance the link
stack (branch return predictor) in the signal delivery path.
- Lots of other cleanups, refactorings, smaller features and so on as
usual.
Thanks to: Abhishek Goel, Alastair D'Silva, Alexander A. Klimov, Alexey
Kardashevskiy, Alistair Popple, Andrew Donnellan, Aneesh Kumar K.V, Anju
T Sudhakar, Anton Blanchard, Arnd Bergmann, Athira Rajeev, Balamuruhan
S, Bharata B Rao, Bill Wendling, Bin Meng, Cédric Le Goater, Chris
Packham, Christophe Leroy, Christoph Hellwig, Daniel Axtens, Dan
Williams, David Lamparter, Desnes A. Nunes do Rosario, Erhard F., Finn
Thain, Frederic Barrat, Ganesh Goudar, Gautham R. Shenoy, Geoff Levand,
Greg Kurz, Gustavo A. R. Silva, Hari Bathini, Harish, Imre Kaloz, Joel
Stanley, Joe Perches, John Crispin, Jordan Niethe, Kajol Jain, Kamalesh
Babulal, Kees Cook, Laurent Dufour, Leonardo Bras, Li RongQing, Madhavan
Srinivasan, Mahesh Salgaonkar, Mark Cave-Ayland, Michal Suchanek, Milton
Miller, Mimi Zohar, Murilo Opsfelder Araujo, Nathan Chancellor, Nathan
Lynch, Naveen N. Rao, Nayna Jain, Nicholas Piggin, Oliver O'Halloran,
Palmer Dabbelt, Pedro Miraglia Franco de Carvalho, Philippe Bergheaud,
Pingfan Liu, Pratik Rajesh Sampat, Qian Cai, Qinglang Miao, Randy
Dunlap, Ravi Bangoria, Sachin Sant, Sam Bobroff, Sandipan Das, Santosh
Sivaraj, Satheesh Rajendran, Shirisha Ganta, Sourabh Jain, Srikar
Dronamraju, Stan Johnson, Stephen Rothwell, Thadeu Lima de Souza
Cascardo, Thiago Jung Bauermann, Tom Lane, Vaibhav Jain, Vladis Dronov,
Wei Yongjun, Wen Xiong, YueHaibing.
* tag 'powerpc-5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (337 commits)
selftests/powerpc: Fix pkey syscall redefinitions
powerpc: Fix circular dependency between percpu.h and mmu.h
powerpc/powernv/sriov: Fix use of uninitialised variable
selftests/powerpc: Skip vmx/vsx/tar/etc tests on older CPUs
powerpc/40x: Fix assembler warning about r0
powerpc/papr_scm: Add support for fetching nvdimm 'fuel-gauge' metric
powerpc/papr_scm: Fetch nvdimm performance stats from PHYP
cpuidle: pseries: Fixup exit latency for CEDE(0)
cpuidle: pseries: Add function to parse extended CEDE records
cpuidle: pseries: Set the latency-hint before entering CEDE
selftests/powerpc: Fix online CPU selection
powerpc/perf: Consolidate perf_callchain_user_[64|32]()
powerpc/pseries/hotplug-cpu: Remove double free in error path
powerpc/pseries/mobility: Add pr_debug() for device tree changes
powerpc/pseries/mobility: Set pr_fmt()
powerpc/cacheinfo: Warn if cache object chain becomes unordered
powerpc/cacheinfo: Improve diagnostics about malformed cache lists
powerpc/cacheinfo: Use name@unit instead of full DT path in debug messages
powerpc/cacheinfo: Set pr_fmt()
powerpc: fix function annotations to avoid section mismatch warnings with gcc-10
...
The crash_exclude_mem_range() function can only handle one memory region a time.
It will fail in the case in which the passed in area covers several memory
regions. In this case, it will only exclude the first region, then return,
but leave the later regions unsolved.
E.g in a NEC system with two usable RAM regions inside the low 1M:
...
BIOS-e820: [mem 0x0000000000000000-0x000000000003efff] usable
BIOS-e820: [mem 0x000000000003f000-0x000000000003ffff] reserved
BIOS-e820: [mem 0x0000000000040000-0x000000000009ffff] usable
It will only exclude the memory region [0, 0x3efff], the memory region
[0x40000, 0x9ffff] will still be added into /proc/vmcore, which may cause
the following failure when dumping vmcore:
ioremap on RAM at 0x0000000000040000 - 0x0000000000040fff
WARNING: CPU: 0 PID: 665 at arch/x86/mm/ioremap.c:186 __ioremap_caller+0x2c7/0x2e0
...
RIP: 0010:__ioremap_caller+0x2c7/0x2e0
...
cp: error reading '/proc/vmcore': Cannot allocate memory
kdump: saving vmcore failed
In order to fix this bug, let's extend the crash_exclude_mem_range()
to handle the overlapping ranges.
[ mingo: Amended the changelog. ]
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Dave Young <dyoung@redhat.com>
Link: https://lore.kernel.org/r/20200804044933.1973-3-lijiang@redhat.com
-----BEGIN PGP SIGNATURE-----
iQJIBAABCAAyFiEEjSMCCC7+cjo3nszSa3kkZrA+cVoFAl8puJgUHHpvaGFyQGxp
bnV4LmlibS5jb20ACgkQa3kkZrA+cVq47w//VDg2pTD+/fPadleRJkKVSPaKJu4k
N/gAVPxhYpJVJ+BTZKMFzTjX3kjfQG7udjORzC+saEdii7W1EfJJqHabLEnihfxd
VDUS0RQndMwOkioAAZOsy5dFE84wUOX8O1kq31Aw2G+QLCYhn1dNMg10j6SBM034
cJbS59k3w+lyqFy/Fje8e7aO1xmc/83x9MfLgzZTscCZqzf1vIJY8onwfTxRVBpQ
QS0AZJM+b0+9MlJxpzBYxZARwYb5cXBLh07W/vBFmJRh15n0e20uWM4YFkBixicX
gi3LtXd/75hFIHgm6QqbwDJrrA45zOJs5YsOudCctWVAe5k5mV0H7ysJ6phcRI9E
uQvBb7Z+0viQXis6Cjx4gYSYAcAJPcDrfcjR4itQSOj5anUFBvCju+Jr373S0Vn8
3eXGyimRAc33vEFkI7RJNfExkGh7pkYWzcruk90bHD6dAKuki/tisIs7ZvhTuFOp
eyWt7hbctqbt/gESop3zXjUDRJsX9GyAA4OvJwFGRfRJ4ziQ5w8LGc+VendSWald
1zjkJxXAZLjDPQlYv2074PYeIguTbcDkjeRVxUD9mWvdi0tyXK+r2qC+PeX7Rs71
y1aGIT/NX9qYI2H0xIm3ettztdIE8F1tnAn2ziNkQiXEzCrEqKtAAxxSErTQuB78
LMgCDPF8y06ZjD8=
=M/tq
-----END PGP SIGNATURE-----
Merge tag 'integrity-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity
Pull integrity updates from Mimi Zohar:
"The nicest change is the IMA policy rule checking. The other changes
include allowing the kexec boot cmdline line measure policy rules to
be defined in terms of the inode associated with the kexec kernel
image, making the IMA_APPRAISE_BOOTPARAM, which governs the IMA
appraise mode (log, fix, enforce), a runtime decision based on the
secure boot mode of the system, and including errno in the audit log"
* tag 'integrity-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity:
integrity: remove redundant initialization of variable ret
ima: move APPRAISE_BOOTPARAM dependency on ARCH_POLICY to runtime
ima: AppArmor satisfies the audit rule requirements
ima: Rename internal filter rule functions
ima: Support additional conditionals in the KEXEC_CMDLINE hook function
ima: Use the common function to detect LSM conditionals in a rule
ima: Move comprehensive rule validation checks out of the token parser
ima: Use correct type for the args_p member of ima_rule_entry.lsm elements
ima: Shallow copy the args_p member of ima_rule_entry.lsm elements
ima: Fail rule parsing when appraise_flag=blacklist is unsupportable
ima: Fail rule parsing when the KEY_CHECK hook is combined with an invalid cond
ima: Fail rule parsing when the KEXEC_CMDLINE hook is combined with an invalid cond
ima: Fail rule parsing when buffer hook functions have an invalid action
ima: Free the entire rule if it fails to parse
ima: Free the entire rule when deleting a list of rules
ima: Have the LSM free its audit rule
IMA: Add audit log for failure conditions
integrity: Add errno field in audit message
Some architectures may have special memory regions, within the given
memory range, which can't be used for the buffer in a kexec segment.
Implement weak arch_kexec_locate_mem_hole() definition which arch code
may override, to take care of special regions, while trying to locate
a memory hole.
Also, add the missing declarations for arch overridable functions and
and drop the __weak descriptors in the declarations to avoid non-weak
definitions from becoming weak.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Tested-by: Pingfan Liu <piliu@redhat.com>
Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/159602273603.575379.17665852963340380839.stgit@hbathini
Take the properties of the kexec kernel's inode and the current task
ownership into consideration when matching a KEXEC_CMDLINE operation to
the rules in the IMA policy. This allows for some uniformity when
writing IMA policy rules for KEXEC_KERNEL_CHECK, KEXEC_INITRAMFS_CHECK,
and KEXEC_CMDLINE operations.
Prior to this patch, it was not possible to write a set of rules like
this:
dont_measure func=KEXEC_KERNEL_CHECK obj_type=foo_t
dont_measure func=KEXEC_INITRAMFS_CHECK obj_type=foo_t
dont_measure func=KEXEC_CMDLINE obj_type=foo_t
measure func=KEXEC_KERNEL_CHECK
measure func=KEXEC_INITRAMFS_CHECK
measure func=KEXEC_CMDLINE
The inode information associated with the kernel being loaded by a
kexec_kernel_load(2) syscall can now be included in the decision to
measure or not
Additonally, the uid, euid, and subj_* conditionals can also now be
used in KEXEC_CMDLINE rules. There was no technical reason as to why
those conditionals weren't being considered previously other than
ima_match_rules() didn't have a valid inode to use so it immediately
bailed out for KEXEC_CMDLINE operations rather than going through the
full list of conditional comparisons.
Signed-off-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: kexec@lists.infradead.org
Reviewed-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Signature verification is an important security feature, to protect
system from being attacked with a kernel of unknown origin. Kexec
rebooting is a way to replace the running kernel, hence need be secured
carefully.
In the current code of handling signature verification of kexec kernel,
the logic is very twisted. It mixes signature verification, IMA
signature appraising and kexec lockdown.
If there is no KEXEC_SIG_FORCE, kexec kernel image doesn't have one of
signature, the supported crypto, and key, we don't think this is wrong,
Unless kexec lockdown is executed. IMA is considered as another kind of
signature appraising method.
If kexec kernel image has signature/crypto/key, it has to go through the
signature verification and pass. Otherwise it's seen as verification
failure, and won't be loaded.
Seems kexec kernel image with an unqualified signature is even worse
than those w/o signature at all, this sounds very unreasonable. E.g.
If people get a unsigned kernel to load, or a kernel signed with expired
key, which one is more dangerous?
So, here, let's simplify the logic to improve code readability. If the
KEXEC_SIG_FORCE enabled or kexec lockdown enabled, signature
verification is mandated. Otherwise, we lift the bar for any kernel
image.
Link: http://lkml.kernel.org/r/20200602045952.27487-1-lijiang@redhat.com
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Reviewed-by: Jiri Bohac <jbohac@suse.cz>
Acked-by: Dave Young <dyoung@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Matthew Garrett <mjg59@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory flagged with IORESOURCE_MEM_DRIVER_MANAGED is special - it won't be
part of the initial memmap of the kexec kernel and not all memory might be
accessible. Don't place any kexec images onto it.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200508084217.9160-4-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is the same as machine_kexec_prepare(), but is called after segments are
loaded. This way, can do processing work with already loaded relocation
segments. One such example is arm64: it has to have segments loaded in
order to create a page table, but it cannot do it during kexec time,
because at that time allocations won't be possible anymore.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Will Deacon <will@kernel.org>
Fix two pointer-to-int-cast warnings when compiling for the 32-bit parisc
platform:
kernel/kexec_file.c: In function ‘crash_prepare_elf64_headers’:
kernel/kexec_file.c:1307:19: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
phdr->p_vaddr = (Elf64_Addr)_text;
^
kernel/kexec_file.c:1324:19: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
phdr->p_vaddr = (unsigned long long) __va(mstart);
^
Signed-off-by: Helge Deller <deller@gmx.de>
Pull kernel lockdown mode from James Morris:
"This is the latest iteration of the kernel lockdown patchset, from
Matthew Garrett, David Howells and others.
From the original description:
This patchset introduces an optional kernel lockdown feature,
intended to strengthen the boundary between UID 0 and the kernel.
When enabled, various pieces of kernel functionality are restricted.
Applications that rely on low-level access to either hardware or the
kernel may cease working as a result - therefore this should not be
enabled without appropriate evaluation beforehand.
The majority of mainstream distributions have been carrying variants
of this patchset for many years now, so there's value in providing a
doesn't meet every distribution requirement, but gets us much closer
to not requiring external patches.
There are two major changes since this was last proposed for mainline:
- Separating lockdown from EFI secure boot. Background discussion is
covered here: https://lwn.net/Articles/751061/
- Implementation as an LSM, with a default stackable lockdown LSM
module. This allows the lockdown feature to be policy-driven,
rather than encoding an implicit policy within the mechanism.
The new locked_down LSM hook is provided to allow LSMs to make a
policy decision around whether kernel functionality that would allow
tampering with or examining the runtime state of the kernel should be
permitted.
The included lockdown LSM provides an implementation with a simple
policy intended for general purpose use. This policy provides a coarse
level of granularity, controllable via the kernel command line:
lockdown={integrity|confidentiality}
Enable the kernel lockdown feature. If set to integrity, kernel features
that allow userland to modify the running kernel are disabled. If set to
confidentiality, kernel features that allow userland to extract
confidential information from the kernel are also disabled.
This may also be controlled via /sys/kernel/security/lockdown and
overriden by kernel configuration.
New or existing LSMs may implement finer-grained controls of the
lockdown features. Refer to the lockdown_reason documentation in
include/linux/security.h for details.
The lockdown feature has had signficant design feedback and review
across many subsystems. This code has been in linux-next for some
weeks, with a few fixes applied along the way.
Stephen Rothwell noted that commit 9d1f8be5cf ("bpf: Restrict bpf
when kernel lockdown is in confidentiality mode") is missing a
Signed-off-by from its author. Matthew responded that he is providing
this under category (c) of the DCO"
* 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (31 commits)
kexec: Fix file verification on S390
security: constify some arrays in lockdown LSM
lockdown: Print current->comm in restriction messages
efi: Restrict efivar_ssdt_load when the kernel is locked down
tracefs: Restrict tracefs when the kernel is locked down
debugfs: Restrict debugfs when the kernel is locked down
kexec: Allow kexec_file() with appropriate IMA policy when locked down
lockdown: Lock down perf when in confidentiality mode
bpf: Restrict bpf when kernel lockdown is in confidentiality mode
lockdown: Lock down tracing and perf kprobes when in confidentiality mode
lockdown: Lock down /proc/kcore
x86/mmiotrace: Lock down the testmmiotrace module
lockdown: Lock down module params that specify hardware parameters (eg. ioport)
lockdown: Lock down TIOCSSERIAL
lockdown: Prohibit PCMCIA CIS storage when the kernel is locked down
acpi: Disable ACPI table override if the kernel is locked down
acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down
ACPI: Limit access to custom_method when the kernel is locked down
x86/msr: Restrict MSR access when the kernel is locked down
x86: Lock down IO port access when the kernel is locked down
...
Systems in lockdown mode should block the kexec of untrusted kernels.
For x86 and ARM we can ensure that a kernel is trustworthy by validating
a PE signature, but this isn't possible on other architectures. On those
platforms we can use IMA digital signatures instead. Add a function to
determine whether IMA has or will verify signatures for a given event type,
and if so permit kexec_file() even if the kernel is otherwise locked down.
This is restricted to cases where CONFIG_INTEGRITY_TRUSTED_KEYRING is set
in order to prevent an attacker from loading additional keys at runtime.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com>
Cc: linux-integrity@vger.kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
When KEXEC_SIG is not enabled, kernel should not load images through
kexec_file systemcall if the kernel is locked down.
[Modified by David Howells to fit with modifications to the previous patch
and to return -EPERM if the kernel is locked down for consistency with
other lockdowns. Modified by Matthew Garrett to remove the IMA
integration, which will be replaced by integrating with the IMA
architecture policy patches.]
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
cc: kexec@lists.infradead.org
Signed-off-by: James Morris <jmorris@namei.org>
This is a preparatory patch for kexec_file_load() lockdown. A locked down
kernel needs to prevent unsigned kernel images from being loaded with
kexec_file_load(). Currently, the only way to force the signature
verification is compiling with KEXEC_VERIFY_SIG. This prevents loading
usigned images even when the kernel is not locked down at runtime.
This patch splits KEXEC_VERIFY_SIG into KEXEC_SIG and KEXEC_SIG_FORCE.
Analogous to the MODULE_SIG and MODULE_SIG_FORCE for modules, KEXEC_SIG
turns on the signature verification but allows unsigned images to be
loaded. KEXEC_SIG_FORCE disallows images without a valid signature.
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
cc: kexec@lists.infradead.org
Signed-off-by: James Morris <jmorris@namei.org>
Pull integrity updates from Mimi Zohar:
"Bug fixes, code clean up, and new features:
- IMA policy rules can be defined in terms of LSM labels, making the
IMA policy dependent on LSM policy label changes, in particular LSM
label deletions. The new environment, in which IMA-appraisal is
being used, frequently updates the LSM policy and permits LSM label
deletions.
- Prevent an mmap'ed shared file opened for write from also being
mmap'ed execute. In the long term, making this and other similar
changes at the VFS layer would be preferable.
- The IMA per policy rule template format support is needed for a
couple of new/proposed features (eg. kexec boot command line
measurement, appended signatures, and VFS provided file hashes).
- Other than the "boot-aggregate" record in the IMA measuremeent
list, all other measurements are of file data. Measuring and
storing the kexec boot command line in the IMA measurement list is
the first buffer based measurement included in the measurement
list"
* 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity:
integrity: Introduce struct evm_xattr
ima: Update MAX_TEMPLATE_NAME_LEN to fit largest reasonable definition
KEXEC: Call ima_kexec_cmdline to measure the boot command line args
IMA: Define a new template field buf
IMA: Define a new hook to measure the kexec boot command line arguments
IMA: support for per policy rule template formats
integrity: Fix __integrity_init_keyring() section mismatch
ima: Use designated initializers for struct ima_event_data
ima: use the lsm policy update notifier
LSM: switch to blocking policy update notifiers
x86/ima: fix the Kconfig dependency for IMA_ARCH_POLICY
ima: Make arch_policy_entry static
ima: prevent a file already mmap'ed write to be mmap'ed execute
x86/ima: check EFI SetupMode too
During soft reboot(kexec_file_load) boot command line
arguments are not measured.
Call ima hook ima_kexec_cmdline to measure the boot command line
arguments into IMA measurement list.
- call ima_kexec_cmdline from kexec_file_load.
- move the call ima_add_kexec_buffer after the cmdline
args have been measured.
Signed-off-by: Prakhar Srivastava <prsriva02@gmail.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Based on 2 normalized pattern(s):
this source code is licensed under the gnu general public license
version 2 see the file copying for more details
this source code is licensed under general public license version 2
see
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 52 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.449021192@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Most architectures do not need the memblock memory after the page
allocator is initialized, but only few enable ARCH_DISCARD_MEMBLOCK in the
arch Kconfig.
Replacing ARCH_DISCARD_MEMBLOCK with ARCH_KEEP_MEMBLOCK and inverting the
logic makes it clear which architectures actually use memblock after
system initialization and skips the necessity to add ARCH_DISCARD_MEMBLOCK
to the architectures that are still missing that option.
Link: http://lkml.kernel.org/r/1556102150-32517-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The flags field in 'struct shash_desc' never actually does anything.
The only ostensibly supported flag is CRYPTO_TFM_REQ_MAY_SLEEP.
However, no shash algorithm ever sleeps, making this flag a no-op.
With this being the case, inevitably some users who can't sleep wrongly
pass MAY_SLEEP. These would all need to be fixed if any shash algorithm
actually started sleeping. For example, the shash_ahash_*() functions,
which wrap a shash algorithm with the ahash API, pass through MAY_SLEEP
from the ahash API to the shash API. However, the shash functions are
called under kmap_atomic(), so actually they're assumed to never sleep.
Even if it turns out that some users do need preemption points while
hashing large buffers, we could easily provide a helper function
crypto_shash_update_large() which divides the data into smaller chunks
and calls crypto_shash_update() and cond_resched() for each chunk. It's
not necessary to have a flag in 'struct shash_desc', nor is it necessary
to make individual shash algorithms aware of this at all.
Therefore, remove shash_desc::flags, and document that the
crypto_shash_*() functions can be called from any context.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In kdump case, there exists only one dedicated memblock region as usable
memory (crashk_res). With this patch, kexec_walk_memblock() runs a given
callback function on this region.
Cosmetic change: 0 to MEMBLOCK_NONE at for_each_free_mem_range*()
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Memblock list is another source for usable system memory layout.
So move powerpc's arch_kexec_walk_mem() to common code so that other
memblock-based architectures, particularly arm64, can also utilise it.
A moved function is now renamed to kexec_walk_memblock() and integrated
into kexec_locate_mem_hole(), which will now be usable for all
architectures with no need for overriding arch_kexec_walk_mem().
With this change, arch_kexec_walk_mem() need no longer be a weak function,
and was now renamed to kexec_walk_resources().
Since powerpc doesn't support kdump in its kexec_file_load(), the current
kexec_walk_memblock() won't work for kdump either in this form, this will
be fixed in the next patch.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Acked-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since s390 already knows where to locate buffers, calling
arch_kexec_mem_walk() has no sense. So we can just drop it as kbuf->mem
indicates this while all other architectures sets it to 0 initially.
This change is a preparatory work for the next patch, where all the
variant memory walks, either on system resource or memblock, will be
put in one common place so that it will satisfy all the architectures'
need.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Philipp Rudo <prudo@linux.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Change this function from static to global so that arm64 can implement
its own arch_kimage_file_post_load_cleanup() later using
kexec_image_post_load_cleanup_default().
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We include kexec.h and slab.h twice in kexec_file.c. It's unnecessary.
hence just remove them.
Link: http://lkml.kernel.org/r/1537498098-19171-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For s390 new kernels are loaded to fixed addresses in memory before they
are booted. With the current code this is a problem as it assumes the
kernel will be loaded to an 'arbitrary' address. In particular,
kexec_locate_mem_hole searches for a large enough memory region and sets
the load address (kexec_bufer->mem) to it.
Luckily there is a simple workaround for this problem. By returning 1
in arch_kexec_walk_mem, kexec_locate_mem_hole is turned off. This
allows the architecture to set kbuf->mem by hand. While the trick works
fine for the kernel it does not for the purgatory as here the
architectures don't have access to its kexec_buffer.
Give architectures access to the purgatories kexec_buffer by changing
kexec_load_purgatory to take a pointer to it. With this change
architectures have access to the buffer and can edit it as they need.
A nice side effect of this change is that we can get rid of the
purgatory_info->purgatory_load_address field. As now the information
stored there can directly be accessed from kbuf->mem.
Link: http://lkml.kernel.org/r/20180321112751.22196-11-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current code uses the sh_offset field in purgatory_info->sechdrs to
store a pointer to the current load address of the section. Depending
whether the section will be loaded or not this is either a pointer into
purgatory_info->purgatory_buf or kexec_purgatory. This is not only a
violation of the ELF standard but also makes the code very hard to
understand as you cannot tell if the memory you are using is read-only
or not.
Remove this misuse and store the offset of the section in
pugaroty_info->purgatory_buf in sh_offset.
Link: http://lkml.kernel.org/r/20180321112751.22196-10-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The main loop currently uses quite a lot of variables to update the
section headers. Some of them are unnecessary. So clean them up a
little.
Link: http://lkml.kernel.org/r/20180321112751.22196-9-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To update the entry point there is an extra loop over all section
headers although this can be done in the main loop. So move it there
and eliminate the extra loop and variable to store the 'entry section
index'.
Also, in the main loop, move the usual case, i.e. non-bss section, out
of the extra if-block.
Link: http://lkml.kernel.org/r/20180321112751.22196-8-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When inspecting __kexec_load_purgatory you find that it has two tasks
1) setting up the kexec_buffer for the new kernel and,
2) setting up pi->sechdrs for the final load address.
The two tasks are independent of each other. To improve readability
split up __kexec_load_purgatory into two functions, one for each task,
and call them directly from kexec_load_purgatory.
Link: http://lkml.kernel.org/r/20180321112751.22196-7-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the relocations are applied to the purgatory only the section the
relocations are applied to is writable. The other sections, i.e. the
symtab and .rel/.rela, are in read-only kexec_purgatory. Highlight this
by marking the corresponding variables as 'const'.
While at it also change the signatures of arch_kexec_apply_relocations* to
take section pointers instead of just the index of the relocation section.
This removes the second lookup and sanity check of the sections in arch
code.
Link: http://lkml.kernel.org/r/20180321112751.22196-6-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The stripped purgatory does not contain a symtab. So when looking for
symbols this is done in read-only kexec_purgatory. Highlight this by
marking the corresponding variables as 'const'.
Link: http://lkml.kernel.org/r/20180321112751.22196-5-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kexec_purgatory buffer is read-only. Thus all pointers into
kexec_purgatory are read-only, too. Point this out by explicitly
marking purgatory_info->ehdr as 'const' and update the comments in
purgatory_info.
Link: http://lkml.kernel.org/r/20180321112751.22196-4-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before the purgatory is loaded several checks are done whether the ELF
file in kexec_purgatory is valid or not. These checks are incomplete.
For example they don't check for the total size of the sections defined
in the section header table or if the entry point actually points into
the purgatory.
On the other hand the purgatory, although an ELF file on its own, is
part of the kernel. Thus not trusting the purgatory means not trusting
the kernel build itself.
So remove all validity checks on the purgatory and just trust the kernel
build.
Link: http://lkml.kernel.org/r/20180321112751.22196-3-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the previous patches, commonly-used routines, exclude_mem_range() and
prepare_elf64_headers(), were carved out. Now place them in kexec
common code. A prefix "crash_" is given to each of their names to avoid
possible name collisions.
Link: http://lkml.kernel.org/r/20180306102303.9063-8-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As arch_kexec_kernel_image_{probe,load}(),
arch_kimage_file_post_load_cleanup() and arch_kexec_kernel_verify_sig()
are almost duplicated among architectures, they can be commonalized with
an architecture-defined kexec_file_ops array. So let's factor them out.
Link: http://lkml.kernel.org/r/20180306102303.9063-3-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kexec_file, x86, powerpc: refactoring for other
architecutres", v2.
This is a preparatory patchset for adding kexec_file support on arm64.
It was originally included in a arm64 patch set[1], but Philipp is also
working on their kexec_file support on s390[2] and some changes are now
conflicting.
So these common parts were extracted and put into a separate patch set
for better integration. What's more, my original patch#4 was split into
a few small chunks for easier review after Dave's comment.
As such, the resulting code is basically identical with my original, and
the only *visible* differences are:
- renaming of _kexec_kernel_image_probe() and _kimage_file_post_load_cleanup()
- change one of types of arguments at prepare_elf64_headers()
Those, unfortunately, require a couple of trivial changes on the rest
(#1, #6 to #13) of my arm64 kexec_file patch set[1].
Patch #1 allows making a use of purgatory optional, particularly useful
for arm64.
Patch #2 commonalizes arch_kexec_kernel_{image_probe, image_load,
verify_sig}() and arch_kimage_file_post_load_cleanup() across
architectures.
Patches #3-#7 are also intended to generalize parse_elf64_headers(),
along with exclude_mem_range(), to be made best re-use of.
[1] http://lists.infradead.org/pipermail/linux-arm-kernel/2018-February/561182.html
[2] http://lkml.iu.edu//hypermail/linux/kernel/1802.1/02596.html
This patch (of 7):
On arm64, crash dump kernel's usable memory is protected by *unmapping*
it from kernel virtual space unlike other architectures where the region
is just made read-only. It is highly unlikely that the region is
accidentally corrupted and this observation rationalizes that digest
check code can also be dropped from purgatory. The resulting code is so
simple as it doesn't require a bit ugly re-linking/relocation stuff,
i.e. arch_kexec_apply_relocations_add().
Please see:
http://lists.infradead.org/pipermail/linux-arm-kernel/2017-December/545428.html
All that the purgatory does is to shuffle arguments and jump into a new
kernel, while we still need to have some space for a hash value
(purgatory_sha256_digest) which is never checked against.
As such, it doesn't make sense to have trampline code between old kernel
and new kernel on arm64.
This patch introduces a new configuration, ARCH_HAS_KEXEC_PURGATORY, and
allows related code to be compiled in only if necessary.
[takahiro.akashi@linaro.org: fix trivial screwup]
Link: http://lkml.kernel.org/r/20180309093346.GF25863@linaro.org
Link: http://lkml.kernel.org/r/20180306102303.9063-2-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preperation for a new function that will need additional resource
information during the resource walk, update the resource walk callback to
pass the resource structure. Since the current callback start and end
arguments are pulled from the resource structure, the callback functions
can obtain them from the resource structure directly.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: linuxppc-dev@lists.ozlabs.org
Link: https://lkml.kernel.org/r/20171020143059.3291-10-brijesh.singh@amd.com
Defining kexec_purgatory as a zero-length char array upsets compile time
size checking. Since this is built on a per-arch basis, define it as an
unsized char array (like is done for other similar things, e.g. linker
sections). This silences the warning generated by the future
CONFIG_FORTIFY_SOURCE, which did not like the memcmp() of a "0 byte"
array. This drops the __weak and uses an extern instead, since both
users define kexec_purgatory.
Link: http://lkml.kernel.org/r/1497903987-21002-4-git-send-email-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>