Reset the vm_{entry,exit}_controls_shadow variables as well as the
segment cache after loading a new VMCS in vmx_switch_vmcs(). The
shadows/cache track VMCS data, i.e. they're stale every time we
switch to a new VMCS regardless of reason.
This fixes a bug where stale control shadows would be consumed after
a nested VMExit due to a failed consistency check.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Write VM_EXIT_CONTROLS using vm_exit_controls_init() when configuring
vmcs02, otherwise vm_exit_controls_shadow will be stale. EFER in
particular can be corrupted if VM_EXIT_LOAD_IA32_EFER is not updated
due to an incorrect shadow optimization, which can crash L0 due to
EFER not being loaded on exit. This does not occur with the current
code base simply because update_transition_efer() unconditionally
clears VM_EXIT_LOAD_IA32_EFER before conditionally setting it, and
because a nested guest always starts with VM_EXIT_LOAD_IA32_EFER
clear, i.e. we'll only ever unnecessarily clear the bit. That is,
until someone optimizes update_transition_efer()...
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An invalid EPTP causes a VMFail(VMXERR_ENTRY_INVALID_CONTROL_FIELD),
not a VMExit.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invalid host state related to loading EFER on VMExit causes a
VMFail(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD), not a VMExit.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When bit 3 (corresponding to CR0.TS) of the VMCS12 cr0_guest_host_mask
field is clear, the VMCS12 guest_cr0 field does not necessarily hold
the current value of the L2 CR0.TS bit, so the code that checked for
L2's CR0.TS bit being set was incorrect. Moreover, I'm not sure that
the CR0.TS check was adequate. (What if L2's CR0.EM was set, for
instance?)
Fortunately, lazy FPU has gone away, so L0 has lost all interest in
intercepting #NM exceptions. See commit bd7e5b0899a4 ("KVM: x86:
remove code for lazy FPU handling"). Therefore, there is no longer any
question of which hypervisor gets first dibs. The #NM VM-exit should
always be reflected to L1. (Note that the corresponding bit must be
set in the VMCS12 exception_bitmap field for there to be an #NM
VM-exit at all.)
Fixes: ccf9844e5d99c ("kvm, vmx: Really fix lazy FPU on nested guest")
Reported-by: Abhiroop Dabral <adabral@paloaltonetworks.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Tested-by: Abhiroop Dabral <adabral@paloaltonetworks.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Using hypercall for sending IPIs is faster because this allows to specify
any number of vCPUs (even > 64 with sparse CPU set), the whole procedure
will take only one VMEXIT.
Current Hyper-V TLFS (v5.0b) claims that HvCallSendSyntheticClusterIpi
hypercall can't be 'fast' (passing parameters through registers) but
apparently this is not true, Windows always uses it as 'fast' so we need
to support that.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VP inedx almost always matches VCPU and when it does it's faster to walk
the sparse set instead of all vcpus.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This probably doesn't matter much (KVM_MAX_VCPUS is much lower nowadays)
but valid_bank_mask is really u64 and not unsigned long.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In most common cases VP index of a vcpu matches its vcpu index. Userspace
is, however, free to set any mapping it wishes and we need to account for
that when we need to find a vCPU with a particular VP index. To keep search
algorithms optimal in both cases introduce 'num_mismatched_vp_indexes'
counter showing how many vCPUs with mismatching VP index we have. In case
the counter is zero we can assume vp_index == vcpu_idx.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename 'hv' to 'hv_vcpu' in kvm_hv_set_msr/kvm_hv_get_msr(); 'hv' is
'reserved' for 'struct kvm_hv' variables across the file.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We can use 'NULL' to represent 'all cpus' case in
kvm_make_vcpus_request_mask() and avoid building vCPU mask with
all vCPUs.
Suggested-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V TLFS (5.0b) states:
> Virtual processors are identified by using an index (VP index). The
> maximum number of virtual processors per partition supported by the
> current implementation of the hypervisor can be obtained through CPUID
> leaf 0x40000005. A virtual processor index must be less than the
> maximum number of virtual processors per partition.
Forbid userspace to set VP_INDEX above KVM_MAX_VCPUS. get_vcpu_by_vpidx()
can now be optimized to bail early when supplied vpidx is >= KVM_MAX_VCPUS.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If kvm_apic_map_get_dest_lapic() finds a disabled LAPIC,
it will return with bitmap==0 and (*r == -1) will be returned to
userspace.
QEMU may then record "KVM: injection failed, MSI lost
(Operation not permitted)" in its log, which is quite puzzling.
Reported-by: Peng Hao <penghao122@sina.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, there are two definitions related to huge page, but a little bit
far from each other and seems loosely connected:
* KVM_NR_PAGE_SIZES defines the number of different size a page could map
* PT_MAX_HUGEPAGE_LEVEL means the maximum level of huge page
The number of different size a page could map equals the maximum level
of huge page, which is implied by current definition.
While current implementation may not be kind to readers and further
developers:
* KVM_NR_PAGE_SIZES looks like a stand alone definition at first sight
* in case we need to support more level, two places need to change
This patch tries to make these two definition more close, so that reader
and developer would feel more comfortable to manipulate.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
is_external_interrupt() is not used now and so remove it.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The code tries to pre-allocate *min* number of objects, so it is ok to
return 0 when the kvm_mmu_memory_cache meets the requirement.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A VMEnter that VMFails (as opposed to VMExits) does not touch host
state beyond registers that are explicitly noted in the VMFail path,
e.g. EFLAGS. Host state does not need to be loaded because VMFail
is only signaled for consistency checks that occur before the CPU
starts to load guest state, i.e. there is no need to restore any
state as nothing has been modified. But in the case where a VMFail
is detected by hardware and not by KVM (due to deferring consistency
checks to hardware), KVM has already loaded some amount of guest
state. Luckily, "loaded" only means loaded to KVM's software model,
i.e. vmcs01 has not been modified. So, unwind our software model to
the pre-VMEntry host state.
Not restoring host state in this VMFail path leads to a variety of
failures because we end up with stale data in vcpu->arch, e.g. CR0,
CR4, EFER, etc... will all be out of sync relative to vmcs01. Any
significant delta in the stale data is all but guaranteed to crash
L1, e.g. emulation of SMEP, SMAP, UMIP, WP, etc... will be wrong.
An alternative to this "soft" reload would be to load host state from
vmcs12 as if we triggered a VMExit (as opposed to VMFail), but that is
wildly inconsistent with respect to the VMX architecture, e.g. an L1
VMM with separate VMExit and VMFail paths would explode.
Note that this approach does not mean KVM is 100% accurate with
respect to VMX hardware behavior, even at an architectural level
(the exact order of consistency checks is microarchitecture specific).
But 100% emulation accuracy isn't the goal (with this patch), rather
the goal is to be consistent in the information delivered to L1, e.g.
a VMExit should not fall-through VMENTER, and a VMFail should not jump
to HOST_RIP.
This technically reverts commit "5af4157388ad (KVM: nVMX: Fix mmu
context after VMLAUNCH/VMRESUME failure)", but retains the core
aspects of that patch, just in an open coded form due to the need to
pull state from vmcs01 instead of vmcs12. Restoring host state
resolves a variety of issues introduced by commit "4f350c6dbcb9
(kvm: nVMX: Handle deferred early VMLAUNCH/VMRESUME failure properly)",
which remedied the incorrect behavior of treating VMFail like VMExit
but in doing so neglected to restore arch state that had been modified
prior to attempting nested VMEnter.
A sample failure that occurs due to stale vcpu.arch state is a fault
of some form while emulating an LGDT (due to emulated UMIP) from L1
after a failed VMEntry to L3, in this case when running the KVM unit
test test_tpr_threshold_values in L1. L0 also hits a WARN in this
case due to a stale arch.cr4.UMIP.
L1:
BUG: unable to handle kernel paging request at ffffc90000663b9e
PGD 276512067 P4D 276512067 PUD 276513067 PMD 274efa067 PTE 8000000271de2163
Oops: 0009 [#1] SMP
CPU: 5 PID: 12495 Comm: qemu-system-x86 Tainted: G W 4.18.0-rc2+ #2
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:native_load_gdt+0x0/0x10
...
Call Trace:
load_fixmap_gdt+0x22/0x30
__vmx_load_host_state+0x10e/0x1c0 [kvm_intel]
vmx_switch_vmcs+0x2d/0x50 [kvm_intel]
nested_vmx_vmexit+0x222/0x9c0 [kvm_intel]
vmx_handle_exit+0x246/0x15a0 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0x850/0x1830 [kvm]
kvm_vcpu_ioctl+0x3a1/0x5c0 [kvm]
do_vfs_ioctl+0x9f/0x600
ksys_ioctl+0x66/0x70
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x4f/0x100
entry_SYSCALL_64_after_hwframe+0x44/0xa9
L0:
WARNING: CPU: 2 PID: 3529 at arch/x86/kvm/vmx.c:6618 handle_desc+0x28/0x30 [kvm_intel]
...
CPU: 2 PID: 3529 Comm: qemu-system-x86 Not tainted 4.17.2-coffee+ #76
Hardware name: Intel Corporation Kabylake Client platform/KBL S
RIP: 0010:handle_desc+0x28/0x30 [kvm_intel]
...
Call Trace:
kvm_arch_vcpu_ioctl_run+0x863/0x1840 [kvm]
kvm_vcpu_ioctl+0x3a1/0x5c0 [kvm]
do_vfs_ioctl+0x9f/0x5e0
ksys_ioctl+0x66/0x70
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x49/0xf0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes: 5af4157388ad (KVM: nVMX: Fix mmu context after VMLAUNCH/VMRESUME failure)
Fixes: 4f350c6dbcb9 (kvm: nVMX: Handle deferred early VMLAUNCH/VMRESUME failure properly)
Cc: Jim Mattson <jmattson@google.com>
Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim KrÄmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to volume 3 of the SDM, bits 63:15 and 12:4 of the exit
qualification field for debug exceptions are reserved (cleared to
0). However, the SDM is incorrect about bit 16 (corresponding to
DR6.RTM). This bit should be set if a debug exception (#DB) or a
breakpoint exception (#BP) occurred inside an RTM region while
advanced debugging of RTM transactional regions was enabled. Note that
this is the opposite of DR6.RTM, which "indicates (when clear) that a
debug exception (#DB) or breakpoint exception (#BP) occurred inside an
RTM region while advanced debugging of RTM transactional regions was
enabled."
There is still an issue with stale DR6 bits potentially being
misreported for the current debug exception. DR6 should not have been
modified before vectoring the #DB exception, and the "new DR6 bits"
should be available somewhere, but it was and they aren't.
Fixes: b96fb439774e1 ("KVM: nVMX: fixes to nested virt interrupt injection")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In cloud environment, lapic_timer_advance_ns is needed to be tuned for every CPU
generations, and every host kernel versions(the kvm-unit-tests/tscdeadline_latency.flat
is 5700 cycles for upstream kernel and 9600 cycles for our 3.10 product kernel,
both preemption_timer=N, Skylake server).
This patch adds the capability to automatically tune lapic_timer_advance_ns
step by step, the initial value is 1000ns as 'commit d0659d946be0 ("KVM: x86:
add option to advance tscdeadline hrtimer expiration")' recommended, it will be
reduced when it is too early, and increased when it is too late. The guest_tsc
and tsc_deadline are hard to equal, so we assume we are done when the delta
is within a small scope e.g. 100 cycles. This patch reduces latency
(kvm-unit-tests/tscdeadline_latency, busy waits, preemption_timer enabled)
from ~2600 cyles to ~1200 cyles on our Skylake server.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If L1 uses VPID, it expects TLB to not be flushed on L1<->L2
transitions. However, code currently flushes TLB nonetheless if we
didn't allocate a vpid02 for L2. As in this case,
vmcs02->vpid == vmcs01->vpid == vmx->vpid.
But, if L1 uses EPT, TLB entires populated by L2 are tagged with EPTP02
while TLB entries populated by L1 are tagged with EPTP01.
Therefore, we can also avoid TLB flush if L1 uses VPID and EPT.
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All VPID12s used on a given L1 vCPU is translated to a single
VPID02 (vmx->nested.vpid02 or vmx->vpid). Therefore, on L1->L2 VMEntry,
we need to invalidate linear and combined mappings tagged by
VPID02 in case L1 uses VPID and vmcs12->vpid was changed since
last L1->L2 VMEntry.
However, current code invalidates the wrong mappings as it calls
__vmx_flush_tlb() with invalidate_gpa parameter set to true which will
result in invalidating combined and guest-physical mappings tagged with
active EPTP which is EPTP01.
Similarly, INVVPID emulation have the exact same issue.
Fix both issues by just setting invalidate_gpa parameter to false which
will result in invalidating linear and combined mappings tagged with
given VPID02 as required.
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case L0 didn't allocate vmx->nested.vpid02 for L2,
vmcs02->vpid is set to vmx->vpid.
Consider this case when emulating L1 INVVPID in L0.
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If L1 and L2 share VPID (because L1 don't use VPID or we haven't allocated
a vpid02), we need to flush TLB on L1<->L2 transitions.
Before this patch, this TLB flushing was done by vmx_flush_tlb().
If L0 use EPT, this will translate into INVEPT(active_eptp);
However, if L1 use EPT, in L1->L2 VMEntry, active EPTP is EPTP01 but
TLB entries populated by L2 are tagged with EPTP02.
Therefore we should delay vmx_flush_tlb() until active_eptp is EPTP02.
To achieve this, instead of directly calling vmx_flush_tlb() we request
it to be called by KVM_REQ_TLB_FLUSH which is evaluated after
KVM_REQ_LOAD_CR3 which sets the active_eptp to EPTP02 as required.
Similarly, on L2->L1 VMExit, active EPTP is EPTP02 but TLB entries
populated by L1 are tagged with EPTP01 and therefore we should delay
vmx_flush_tlb() until active_eptp is EPTP01.
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM_GUEST_CR0_MASK macro tracks CR0 bits that are forced to zero
by the VMX architecture, i.e. CR0.{NW,CD} must always be zero in the
hardware CR0 post-VMXON. Rename the macro to clarify its purpose,
be consistent with KVM_VM_CR0_ALWAYS_ON and avoid confusion with the
CR0_GUEST_HOST_MASK field.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I'm observing random crashes in multi-vCPU L2 guests running on KVM on
Hyper-V. I bisected the issue to the commit 877ad952be3d ("KVM: vmx: Add
tlb_remote_flush callback support"). Hyper-V TLFS states:
"AddressSpace specifies an address space ID (an EPT PML4 table pointer)"
So apparently, Hyper-V doesn't expect us to pass naked EPTP, only PML4
pointer should be used. Strip off EPT configuration information before
calling into vmx_hv_remote_flush_tlb().
Fixes: 877ad952be3d ("KVM: vmx: Add tlb_remote_flush callback support")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV requires access to the AMD cryptographic device APIs, and this
does not work when KVM is builtin and the crypto driver is a module.
Actually the Kconfig conditions for CONFIG_KVM_AMD_SEV try to disable
SEV in that case, but it does not work because the actual crypto
calls are not culled, only sev_hardware_setup() is.
This patch adds two CONFIG_KVM_AMD_SEV checks that gate all the remaining
SEV code; it fixes this particular configuration, and drops 5 KiB of
code when CONFIG_KVM_AMD_SEV=n.
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit b5861e5cf2fcf83031ea3e26b0a69d887adf7d21 introduced a check on
the interrupt-window and NMI-window CPU execution controls in order to
inject an external interrupt vmexit before the first guest instruction
executes. However, when APIC virtualization is enabled the host does not
need a vmexit in order to inject an interrupt at the next interrupt window;
instead, it just places the interrupt vector in RVI and the processor will
inject it as soon as possible. Therefore, on machines with APICv it is
not enough to check the CPU execution controls: the same scenario can also
happen if RVI>vPPR.
Fixes: b5861e5cf2fcf83031ea3e26b0a69d887adf7d21
Reviewed-by: Nikita Leshchenko <nikita.leshchenko@oracle.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As of commit 8d860bbeedef ("kvm: vmx: Basic APIC virtualization controls
have three settings"), KVM will disable VIRTUALIZE_APIC_ACCESSES when
a nested guest writes APIC_BASE MSR and kvm-intel.flexpriority=0,
whereas previously KVM would allow a nested guest to enable
VIRTUALIZE_APIC_ACCESSES so long as it's supported in hardware. That is,
KVM now advertises VIRTUALIZE_APIC_ACCESSES to a guest but doesn't
(always) allow setting it when kvm-intel.flexpriority=0, and may even
initially allow the control and then clear it when the nested guest
writes APIC_BASE MSR, which is decidedly odd even if it doesn't cause
functional issues.
Hide the control completely when the module parameter is cleared.
reported-by: Sean Christopherson <sean.j.christopherson@intel.com>
Fixes: 8d860bbeedef ("kvm: vmx: Basic APIC virtualization controls have three settings")
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return early from vmx_set_virtual_apic_mode() if the processor doesn't
support VIRTUALIZE_APIC_ACCESSES or VIRTUALIZE_X2APIC_MODE, both of
which reside in SECONDARY_VM_EXEC_CONTROL. This eliminates warnings
due to VMWRITEs to SECONDARY_VM_EXEC_CONTROL (VMCS field 401e) failing
on processors without secondary exec controls.
Remove the similar check for TPR shadowing as it is incorporated in the
flexpriority_enabled check and the APIC-related code in
vmx_update_msr_bitmap() is further gated by VIRTUALIZE_X2APIC_MODE.
Reported-by: Gerhard Wiesinger <redhat@wiesinger.com>
Fixes: 8d860bbeedef ("kvm: vmx: Basic APIC virtualization controls have three settings")
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
One defense against L1TF in KVM is to always set the upper five bits
of the *legal* physical address in the SPTEs for non-present and
reserved SPTEs, e.g. MMIO SPTEs. In the MMIO case, the GFN of the
MMIO SPTE may overlap with the upper five bits that are being usurped
to defend against L1TF. To preserve the GFN, the bits of the GFN that
overlap with the repurposed bits are shifted left into the reserved
bits, i.e. the GFN in the SPTE will be split into high and low parts.
When retrieving the GFN from the MMIO SPTE, e.g. to check for an MMIO
access, get_mmio_spte_gfn() unshifts the affected bits and restores
the original GFN for comparison. Unfortunately, get_mmio_spte_gfn()
neglects to mask off the reserved bits in the SPTE that were used to
store the upper chunk of the GFN. As a result, KVM fails to detect
MMIO accesses whose GPA overlaps the repurprosed bits, which in turn
causes guest panics and hangs.
Fix the bug by generating a mask that covers the lower chunk of the
GFN, i.e. the bits that aren't shifted by the L1TF mitigation. The
alternative approach would be to explicitly zero the five reserved
bits that are used to store the upper chunk of the GFN, but that
requires additional run-time computation and makes an already-ugly
bit of code even more inscrutable.
I considered adding a WARN_ON_ONCE(low_phys_bits-1 <= PAGE_SHIFT) to
warn if GENMASK_ULL() generated a nonsensical value, but that seemed
silly since that would mean a system that supports VMX has less than
18 bits of physical address space...
Reported-by: Sakari Ailus <sakari.ailus@iki.fi>
Fixes: d9b47449c1a1 ("kvm: x86: Set highest physical address bits in non-present/reserved SPTEs")
Cc: Junaid Shahid <junaids@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Reviewed-by: Junaid Shahid <junaids@google.com>
Tested-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
L2 IA32_BNDCFGS should be updated with vmcs12->guest_bndcfgs only
when VM_ENTRY_LOAD_BNDCFGS is specified in vmcs12->vm_entry_controls.
Otherwise, L2 IA32_BNDCFGS should be set to vmcs01->guest_bndcfgs which
is L1 IA32_BNDCFGS.
Reviewed-by: Nikita Leshchenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit a87036add092 ("KVM: x86: disable MPX if host did not enable
MPX XSAVE features") introduced kvm_mpx_supported() to return true
iff MPX is enabled in the host.
However, that commit seems to have missed replacing some calls to
kvm_x86_ops->mpx_supported() to kvm_mpx_supported().
Complete original commit by replacing remaining calls to
kvm_mpx_supported().
Fixes: a87036add092 ("KVM: x86: disable MPX if host did not enable
MPX XSAVE features")
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before this commit, KVM exposes MPX VMX controls to L1 guest only based
on if KVM and host processor supports MPX virtualization.
However, these controls should be exposed to guest only in case guest
vCPU supports MPX.
Without this change, a L1 guest running with kernel which don't have
commit 691bd4340bef ("kvm: vmx: allow host to access guest
MSR_IA32_BNDCFGS") asserts in QEMU on the following:
qemu-kvm: error: failed to set MSR 0xd90 to 0x0
qemu-kvm: .../qemu-2.10.0/target/i386/kvm.c:1801 kvm_put_msrs:
Assertion 'ret == cpu->kvm_msr_buf->nmsrs failed'
This is because L1 KVM kvm_init_msr_list() will see that
vmx_mpx_supported() (As it only checks MPX VMX controls support) and
therefore KVM_GET_MSR_INDEX_LIST IOCTL will include MSR_IA32_BNDCFGS.
However, later when L1 will attempt to set this MSR via KVM_SET_MSRS
IOCTL, it will fail because !guest_cpuid_has_mpx(vcpu).
Therefore, fix the issue by exposing MPX VMX controls to L1 guest only
when vCPU supports MPX.
Fixes: 36be0b9deb23 ("KVM: x86: Add nested virtualization support for MPX")
Reported-by: Eyal Moscovici <eyal.moscovici@oracle.com>
Reviewed-by: Nikita Leshchenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM has an old optimization whereby accesses to the kernel GS base MSR
are trapped when the guest is in 32-bit and not when it is in 64-bit mode.
The idea is that swapgs is not available in 32-bit mode, thus the
guest has no reason to access the MSR unless in 64-bit mode and
32-bit applications need not pay the price of switching the kernel GS
base between the host and the guest values.
However, this optimization adds complexity to the code for little
benefit (these days most guests are going to be 64-bit anyway) and in fact
broke after commit 678e315e78a7 ("KVM: vmx: add dedicated utility to
access guest's kernel_gs_base", 2018-08-06); the guest kernel GS base
can be corrupted across SMIs and UEFI Secure Boot is therefore broken
(a secure boot Linux guest, for example, fails to reach the login prompt
about half the time). This patch just removes the optimization; the
kernel GS base MSR is now never trapped by KVM, similarly to the FS and
GS base MSRs.
Fixes: 678e315e78a780dbef384b92339c8414309dbc11
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The handlers of IOCTLs in kvm_arch_vcpu_ioctl() are expected to set
their return value in "r" local var and break out of switch block
when they encounter some error.
This is because vcpu_load() is called before the switch block which
have a proper cleanup of vcpu_put() afterwards.
However, KVM_{GET,SET}_NESTED_STATE IOCTLs handlers just return
immediately on error without performing above mentioned cleanup.
Thus, change these handlers to behave as expected.
Fixes: 8fcc4b5923af ("kvm: nVMX: Introduce KVM_CAP_NESTED_STATE")
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Patrick Colp <patrick.colp@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add KVM_CAP_MSR_PLATFORM_INFO so that userspace can disable guest access
to reads of MSR_PLATFORM_INFO.
Disabling access to reads of this MSR gives userspace the control to "expose"
this platform-dependent information to guests in a clear way. As it exists
today, guests that read this MSR would get unpopulated information if userspace
hadn't already set it (and prior to this patch series, only the CPUID faulting
information could have been populated). This existing interface could be
confusing if guests don't handle the potential for incorrect/incomplete
information gracefully (e.g. zero reported for base frequency).
Signed-off-by: Drew Schmitt <dasch@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow userspace to set turbo bits in MSR_PLATFORM_INFO. Previously, only
the CPUID faulting bit was settable. But now any bit in
MSR_PLATFORM_INFO would be settable. This can be used, for example, to
convey frequency information about the platform on which the guest is
running.
Signed-off-by: Drew Schmitt <dasch@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks on VMX Controls" in Intel SDM vol 3C, the
following check needs to be enforced on vmentry of L2 guests:
If the 'enable VPID' VM-execution control is 1, the value of the
of the VPID VM-execution control field must not be 0000H.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks on VMX Controls" in Intel SDM vol 3C,
the following check needs to be enforced on vmentry of L2 guests:
- Bits 5:0 of the posted-interrupt descriptor address are all 0.
- The posted-interrupt descriptor address does not set any bits
beyond the processor's physical-address width.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case L1 do not intercept L2 HLT or enter L2 in HLT activity-state,
it is possible for a vCPU to be blocked while it is in guest-mode.
According to Intel SDM 26.6.5 Interrupt-Window Exiting and
Virtual-Interrupt Delivery: "These events wake the logical processor
if it just entered the HLT state because of a VM entry".
Therefore, if L1 enters L2 in HLT activity-state and L2 has a pending
deliverable interrupt in vmcs12->guest_intr_status.RVI, then the vCPU
should be waken from the HLT state and injected with the interrupt.
In addition, if while the vCPU is blocked (while it is in guest-mode),
it receives a nested posted-interrupt, then the vCPU should also be
waken and injected with the posted interrupt.
To handle these cases, this patch enhances kvm_vcpu_has_events() to also
check if there is a pending interrupt in L2 virtual APICv provided by
L1. That is, it evaluates if there is a pending virtual interrupt for L2
by checking RVI[7:4] > VPPR[7:4] as specified in Intel SDM 29.2.1
Evaluation of Pending Interrupts.
Note that this also handles the case of nested posted-interrupt by the
fact RVI is updated in vmx_complete_nested_posted_interrupt() which is
called from kvm_vcpu_check_block() -> kvm_arch_vcpu_runnable() ->
kvm_vcpu_running() -> vmx_check_nested_events() ->
vmx_complete_nested_posted_interrupt().
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMX cannot be enabled under SMM, check it when CR4 is set and when nested
virtualization state is restored.
This should fix some WARNs reported by syzkaller, mostly around
alloc_shadow_vmcs.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The functions
kvm_load_guest_fpu()
kvm_put_guest_fpu()
are only used locally, make them static. This requires also that both
functions are moved because they are used before their implementation.
Those functions were exported (via EXPORT_SYMBOL) before commit
e5bb40251a920 ("KVM: Drop kvm_{load,put}_guest_fpu() exports").
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A VMX preemption timer value of '0' is guaranteed to cause a VMExit
prior to the CPU executing any instructions in the guest. Use the
preemption timer (if it's supported) to trigger immediate VMExit
in place of the current method of sending a self-IPI. This ensures
that pending VMExit injection to L1 occurs prior to executing any
instructions in the guest (regardless of nesting level).
When deferring VMExit injection, KVM generates an immediate VMExit
from the (possibly nested) guest by sending itself an IPI. Because
hardware interrupts are blocked prior to VMEnter and are unblocked
(in hardware) after VMEnter, this results in taking a VMExit(INTR)
before any guest instruction is executed. But, as this approach
relies on the IPI being received before VMEnter executes, it only
works as intended when KVM is running as L0. Because there are no
architectural guarantees regarding when IPIs are delivered, when
running nested the INTR may "arrive" long after L2 is running e.g.
L0 KVM doesn't force an immediate switch to L1 to deliver an INTR.
For the most part, this unintended delay is not an issue since the
events being injected to L1 also do not have architectural guarantees
regarding their timing. The notable exception is the VMX preemption
timer[1], which is architecturally guaranteed to cause a VMExit prior
to executing any instructions in the guest if the timer value is '0'
at VMEnter. Specifically, the delay in injecting the VMExit causes
the preemption timer KVM unit test to fail when run in a nested guest.
Note: this approach is viable even on CPUs with a broken preemption
timer, as broken in this context only means the timer counts at the
wrong rate. There are no known errata affecting timer value of '0'.
[1] I/O SMIs also have guarantees on when they arrive, but I have
no idea if/how those are emulated in KVM.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Use a hook for SVM instead of leaving the default in x86.c - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide a singular location where the VMX preemption timer bit is
set/cleared so that future usages of the preemption timer can ensure
the VMCS bit is up-to-date without having to modify unrelated code
paths. For example, the preemption timer can be used to force an
immediate VMExit. Cache the status of the timer to avoid redundant
VMREAD and VMWRITE, e.g. if the timer stays armed across multiple
VMEnters/VMExits.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A VMX preemption timer value of '0' at the time of VMEnter is
architecturally guaranteed to cause a VMExit prior to the CPU
executing any instructions in the guest. This architectural
definition is in place to ensure that a previously expired timer
is correctly recognized by the CPU as it is possible for the timer
to reach zero and not trigger a VMexit due to a higher priority
VMExit being signalled instead, e.g. a pending #DB that morphs into
a VMExit.
Whether by design or coincidence, commit f4124500c2c1 ("KVM: nVMX:
Fully emulate preemption timer") special cased timer values of '0'
and '1' to ensure prompt delivery of the VMExit. Unlike '0', a
timer value of '1' has no has no architectural guarantees regarding
when it is delivered.
Modify the timer emulation to trigger immediate VMExit if and only
if the timer value is '0', and document precisely why '0' is special.
Do this even if calibration of the virtual TSC failed, i.e. VMExit
will occur immediately regardless of the frequency of the timer.
Making only '0' a special case gives KVM leeway to be more aggressive
in ensuring the VMExit is injected prior to executing instructions in
the nested guest, and also eliminates any ambiguity as to why '1' is
a special case, e.g. why wasn't the threshold for a "short timeout"
set to 10, 100, 1000, etc...
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Switch to bitmap_zalloc() to show clearly what we are allocating.
Besides that it returns pointer of bitmap type instead of opaque void *.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_commit_zap_page() has been renamed to kvm_mmu_commit_zap_page()
This patch is to fix the commit.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Here is the code path which shows kvm_mmu_setup() is invoked after
kvm_mmu_create(). Since kvm_mmu_setup() is only invoked in this code path,
this means the root_hpa and prev_roots are guaranteed to be invalid. And
it is not necessary to reset it again.
kvm_vm_ioctl_create_vcpu()
kvm_arch_vcpu_create()
vmx_create_vcpu()
kvm_vcpu_init()
kvm_arch_vcpu_init()
kvm_mmu_create()
kvm_arch_vcpu_setup()
kvm_mmu_setup()
kvm_init_mmu()
This patch set reset_roots to false in kmv_mmu_setup().
Fixes: 50c28f21d045dde8c52548f8482d456b3f0956f5
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>