Currently, anonymous PTE-mapped THPs cannot be collapsed in-place:
collapsing (e.g., via MADV_COLLAPSE) implies allocating a fresh THP and
mapping that new THP via a PMD: as it's a fresh anon THP, it will get the
exclusive flag set on the head page and everybody is happy.
However, if the kernel would ever support in-place collapse of anonymous
THPs (replacing a page table mapping each sub-page of a THP via PTEs with
a single PMD mapping the complete THP), exclusivity information stored for
each sub-page would have to be collapsed accordingly:
(1) All PTEs map !exclusive anon sub-pages: the in-place collapsed THP
must not not have the exclusive flag set on the head page mapped by
the PMD. This is the easiest case to handle ("simply don't set any
exclusive flags").
(2) All PTEs map exclusive anon sub-pages: when collapsing, we have to
clear the exclusive flag from all tail pages and only leave the
exclusive flag set for the head page. Otherwise, fork() after
collapse would not clear the exclusive flags from the tail pages
and we'd be in trouble once PTE-mapping the shared THP when writing
to shared tail pages that still have the exclusive flag set. This
would effectively revert what the PTE-mapping code does when
propagating the exclusive flag to all sub-pages.
(3) PTEs map a mixture of exclusive and !exclusive anon sub-pages (can
happen e.g., due to MADV_DONTFORK before fork()). We must not
collapse the THP in-place, otherwise bad things may happen:
the exclusive flags of sub-pages would get ignored and the
exclusive flag of the head page would get used instead.
Now that we have MADV_COLLAPSE in place to trigger collapsing a THP, let's
add some test cases that would bail out early, if we'd
voluntarily/accidantially unlock in-place collapse for anon THPs and
forget about taking proper care of exclusive flags.
Running the test on a kernel with MADV_COLLAPSE support:
# [INFO] Anonymous THP tests
# [RUN] Basic COW after fork() when collapsing before fork()
ok 169 No leak from parent into child
# [RUN] Basic COW after fork() when collapsing after fork() (fully shared)
ok 170 # SKIP MADV_COLLAPSE failed: Invalid argument
# [RUN] Basic COW after fork() when collapsing after fork() (lower shared)
ok 171 No leak from parent into child
# [RUN] Basic COW after fork() when collapsing after fork() (upper shared)
ok 172 No leak from parent into child
For now, MADV_COLLAPSE always seems to fail if all PTEs map shared
sub-pages.
Link: https://lkml.kernel.org/r/20230104144905.460075-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Substitute "higmem" with "highmem" in highmem.h.
Link: https://lkml.kernel.org/r/20230105121305.30714-1-fmdefrancesco@gmail.com
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Suggested-by: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In the kdocs of kmap_local_folio() there is a an ambiguous sentence which
suggests to use this API "only when really necessary".
On the contrary, since kmap() and kmap_atomic() are deprecated, both
kmap_local_folio(), as well as kmap_local_page(), must be preferred to the
previous ones.
Therefore, remove the above-mentioned sentence exactly how it has
previously been done for the kmap_local_page() kdocs in commit
72f1c55adf70 ("highmem: delete a sentence from kmap_local_page() kdocs").
Link: https://lkml.kernel.org/r/20230105120424.30055-1-fmdefrancesco@gmail.com
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Preallocations are common in the VMA code to avoid allocating under
certain locking conditions. The preallocations must also cover the
worst-case scenario. Removing the GFP_ZERO flag from the
kmem_cache_alloc() (and bulk variant) calls will reduce the amount of time
spent zeroing memory that may not be used. Only zero out the necessary
area to keep track of the allocations in the maple state. Zero the entire
node prior to using it in the tree.
This required internal changes to node counting on allocation, so the test
code is also updated.
This restores some micro-benchmark performance: up to +9% in mmtests mmap1
by my testing +10% to +20% in mmap, mmapaddr, mmapmany tests reported by
Red Hat
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2149636
Link: https://lkml.kernel.org/r/20230105160427.2988454-1-Liam.Howlett@oracle.com
Signed-off-by: Liam Howlett <Liam.Howlett@oracle.com>
Reported-by: Jirka Hladky <jhladky@redhat.com>
Suggested-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Rename early_page_uninitialised() to early_page_initialised() and invert
its logic to make the code more readable.
Link: https://lkml.kernel.org/r/20230104191805.2535864-1-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Refault decisions are made based on the lruvec where the page was evicted,
as that determined its LRU order while it was alive. Stats and workingset
aging must then occur on the lruvec of the new page, as that's the node
and cgroup that experience the refault and that's the lruvec whose
nonresident info ages out by a new resident page. Those lruvecs could be
different when a page is shared between cgroups, or the refaulting page is
allocated on a different node.
There are currently two mix-ups:
1. When swap is available, the resident anon set must be considered
when comparing the refault distance. The comparison is made against
the right anon set, but the check for swap is not. When pages get
evicted from a cgroup with swap, and refault in one without, this
can incorrectly consider a hot refault as cold - and vice
versa. Fix that by using the eviction cgroup for the swap check.
2. The stats and workingset age are updated against the wrong lruvec
altogether: the right cgroup but the wrong NUMA node. When a page
refaults on a different NUMA node, this will have confusing stats
and distort the workingset age on a different lruvec - again
possibly resulting in hot/cold misclassifications down the line.
Fix the swap check and the refault pgdat to address both concerns.
This was found during code review. It hasn't caused notable issues in
production, suggesting that those refault-migrations are relatively rare
in practice.
Link: https://lkml.kernel.org/r/20230104222944.2380117-1-nphamcs@gmail.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Co-developed-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Before this patch, when there's any pgtable allocation issues happened
during change_protection(), the error will be ignored from the syscall.
For shmem, there will be an error dumped into the host dmesg. Two issues
with that:
(1) Doing a trace dump when allocation fails is not anything close to
grace.
(2) The user should be notified with any kind of such error, so the user
can trap it and decide what to do next, either by retrying, or stop
the process properly, or anything else.
For userfault users, this will change the API of UFFDIO_WRITEPROTECT when
pgtable allocation failure happened. It should not normally break anyone,
though. If it breaks, then in good ways.
One man-page update will be on the way to introduce the new -ENOMEM for
UFFDIO_WRITEPROTECT. Not marking stable so we keep the old behavior on
the 5.19-till-now kernels.
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20230104225207.1066932-4-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: James Houghton <jthoughton@google.com>
Acked-by: James Houghton <jthoughton@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Switch to use type "long" for page accountings and retval across the whole
procedure of change_protection().
The change should have shrinked the possible maximum page number to be
half comparing to previous (ULONG_MAX / 2), but it shouldn't overflow on
any system either because the maximum possible pages touched by change
protection should be ULONG_MAX / PAGE_SIZE.
Two reasons to switch from "unsigned long" to "long":
1. It suites better on count_vm_numa_events(), whose 2nd parameter takes
a long type.
2. It paves way for returning negative (error) values in the future.
Currently the only caller that consumes this retval is change_prot_numa(),
where the unsigned long was converted to an int. Since at it, touching up
the numa code to also take a long, so it'll avoid any possible overflow
too during the int-size convertion.
Link: https://lkml.kernel.org/r/20230104225207.1066932-3-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: James Houghton <jthoughton@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert damon_hugetlb_mkold() and damon_young_hugetlb_entry() to
use a folio.
Link: https://lkml.kernel.org/r/20221230070849.63358-9-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
After all damon_get_page() callers are converted to damon_get_folio(),
remove unneeded wrapper damon_get_page().
Link: https://lkml.kernel.org/r/20221230070849.63358-8-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
With damon_get_folio(), let's convert damon_young_pmd_entry()
to use a folio.
Link: https://lkml.kernel.org/r/20221230070849.63358-7-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
With damon_get_folio(), let's convert all the damon_pa_*() to use a folio.
Link: https://lkml.kernel.org/r/20221230070849.63358-6-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
With damon_get_folio(), let's convert damon_ptep_mkold() and
damon_pmdp_mkold() to use a folio.
Link: https://lkml.kernel.org/r/20221230070849.63358-5-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Introduce damon_get_folio(), and the temporary wrapper function
damon_get_page(), which help us to convert damon related functions to use
folios, and it will be dropped once the conversion is completed.
Link: https://lkml.kernel.org/r/20221230070849.63358-4-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Firstly, make page_idle_get_page() return a folio, also rename it to
page_idle_get_folio(), then, use it to convert page_idle_bitmap_read() and
page_idle_bitmap_write() functions.
Link: https://lkml.kernel.org/r/20221230070849.63358-3-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: convert page_idle/damon to use folios", v4.
This patch (of 8):
Convert page_memcg_check() into folio_memcg_check() and add a
page_memcg_check() wrapper. The behaviour of page_memcg_check() is
unchanged; tail pages always had a NULL ->memcg_data.
Link: https://lkml.kernel.org/r/20221230070849.63358-1-wangkefeng.wang@huawei.com
Link: https://lkml.kernel.org/r/20221230070849.63358-2-wangkefeng.wang@huawei.com
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
- The double `range` is duplicated in comment, remove one.
- change `syfs` to `sysfs`
Link: https://lkml.kernel.org/r/20221223040331.4194-1-jhs2.lee@samsung.com
Signed-off-by: JeongHyeon Lee <jhs2.lee@samsung.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Straightforwardly convert split_huge_pages_all() to use a folio.
Link: https://lkml.kernel.org/r/20221229122503.149083-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now that all external callers are gone, just fold it into do_writepages.
Link: https://lkml.kernel.org/r/20221229161031.391878-7-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
filemap_fdatawrite_wbc is a fairly thing wrapper around do_writepages, and
the big difference there is support for cgroup writeback, which is not
supported by ocfs2, and the potential to use ->writepages instead of
->writepage, which ocfs2 does not currently implement but eventually
should.
Link: https://lkml.kernel.org/r/20221229161031.391878-6-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
jbd2_journal_submit_inode_data_buffers is only used by ocfs2, so move it
there to prepare for removing generic_writepages.
Link: https://lkml.kernel.org/r/20221229161031.391878-5-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
->writepage is a very inefficient method to write back data, and only used
through write_cache_pages or a a fallback when no ->migrate_folio method
is present.
Set ->migrate_folio to the generic buffer_head based helper, and remove
the ->writepage implementation.
Link: https://lkml.kernel.org/r/20221229161031.391878-4-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Open code the resident inode handling in ntfs_writepages by directly using
write_cache_pages to prepare removing the ->writepage handler in ntfs3.
Link: https://lkml.kernel.org/r/20221229161031.391878-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "remove generic_writepages"
This series removes generic_writepages by open coding the current
functionality in the three remaining callers. Besides removing some
code the main benefit is that one of the few remaining ->writepage
callers from outside the core page cache code go away.
This patch (of 6):
mpage_writepages doesn't do any of the page locking itself, so remove and
outdated comment on the locking pattern there.
Link: https://lkml.kernel.org/r/20221229161031.391878-1-hch@lst.de
Link: https://lkml.kernel.org/r/20221229161031.391878-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Kernel build regression with LLVM was reported here:
https://lore.kernel.org/all/Y1GCYXGtEVZbcv%2F5@dev-arch.thelio-3990X/ with
commit f35b5d7d676e ("mm: align larger anonymous mappings on THP
boundaries"). And the commit f35b5d7d676e was reverted.
It turned out the regression is related with madvise(MADV_DONTNEED)
was used by ld.lld. But with none PMD_SIZE aligned parameter len.
trace-bpfcc captured:
531607 531732 ld.lld do_madvise.part.0 start: 0x7feca9000000, len: 0x7fb000, behavior: 0x4
531607 531793 ld.lld do_madvise.part.0 start: 0x7fec86a00000, len: 0x7fb000, behavior: 0x4
If the underneath physical page is THP, the madvise(MADV_DONTNEED) can
trigger split_queue_lock contention raised significantly. perf showed
following data:
14.85% 0.00% ld.lld [kernel.kallsyms] [k]
entry_SYSCALL_64_after_hwframe
11.52%
entry_SYSCALL_64_after_hwframe
do_syscall_64
__x64_sys_madvise
do_madvise.part.0
zap_page_range
unmap_single_vma
unmap_page_range
page_remove_rmap
deferred_split_huge_page
__lock_text_start
native_queued_spin_lock_slowpath
If THP can't be removed from rmap as whole THP, partial THP will be
removed from rmap by removing sub-pages from rmap. Even the THP head page
is added to deferred queue already, the split_queue_lock will be acquired
and check whether the THP head page is in the queue already. Thus, the
contention of split_queue_lock is raised.
Before acquire split_queue_lock, check and bail out early if the THP
head page is in the queue already. The checking without holding
split_queue_lock could race with deferred_split_scan, but it doesn't
impact the correctness here.
Test result of building kernel with ld.lld:
commit 7b5a0b664ebe (parent commit of f35b5d7d676e):
time -f "\t%E real,\t%U user,\t%S sys" make LD=ld.lld -skj96 allmodconfig all
6:07.99 real, 26367.77 user, 5063.35 sys
commit f35b5d7d676e:
time -f "\t%E real,\t%U user,\t%S sys" make LD=ld.lld -skj96 allmodconfig all
7:22.15 real, 26235.03 user, 12504.55 sys
commit f35b5d7d676e with the fixing patch:
time -f "\t%E real,\t%U user,\t%S sys" make LD=ld.lld -skj96 allmodconfig all
6:08.49 real, 26520.15 user, 5047.91 sys
Link: https://lkml.kernel.org/r/20221223135207.2275317-1-fengwei.yin@intel.com
Signed-off-by: Yin Fengwei <fengwei.yin@intel.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Page reporting fetches pr_dev_info using rcu_access_pointer(), which is
for safely fetching a pointer that will not be dereferenced but could
concurrently updated. The code indeed does not dereference pr_dev_info
after fetching it using rcu_access_pointer(), but it fetches the pointer
while concurrent updates to the pointer is avoided by holding the update
side lock, page_reporting_mutex.
In the case, rcu_dereference_protected() should be used instead because it
provides better readability and performance on some cases, as
rcu_dereference_protected() avoids use of READ_ONCE(). Replace the
rcu_access_pointer() calls with rcu_dereference_protected().
Link: https://lkml.kernel.org/r/20221228175942.149491-1-sj@kernel.org
Fixes: 36e66c554b5c ("mm: introduce Reported pages")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit af5b0f6a09e42 ("mm: consolidate page table accounting")
consolidates page table accounting to a single counter in struct mm_struct
{} as mm->pgtables_bytes. So the meanning of this counter should be the
size of all page tables now.
Link: https://lkml.kernel.org/r/20221224060233.417827-1-kele.huang@columbia.edu
Signed-off-by: Kele Huang <kele.huang@columbia.edu>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Colin Cross <ccross@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Being able to provide a custom protection opens the door for
inconsistencies and BUGs: for example, accidentally allowing for more
permissions than desired by other mechanisms (e.g., softdirty tracking).
vma->vm_page_prot should be the single source of truth.
Only PROT_NUMA is special: there is no way we can erroneously allow
for more permissions when removing all permissions. Special-case using
the MM_CP_PROT_NUMA flag.
[david@redhat.com: PAGE_NONE might not be defined without CONFIG_NUMA_BALANCING]
Link: https://lkml.kernel.org/r/5084ff1c-ebb3-f918-6a60-bacabf550a88@redhat.com
Link: https://lkml.kernel.org/r/20221223155616.297723-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: uffd-wp + change_protection() cleanups".
Cleanup page protection handling in uffd-wp when calling
change_protection() and improve unprotecting uffd=wp in private mappings,
trying to set PTEs writable again if possible just like we do during
mprotect() when upgrading write permissions. Make the change_protection()
interface harder to get wrong :)
I consider both pages primarily cleanups, although patch #1 fixes a corner
case with uffd-wp and softdirty tracking for shmem. @Peter, please let me
know if we should flag patch #1 as pure cleanup -- I have no idea how
important softdirty tracking on shmem is.
This patch (of 2):
uffd_wp_range() currently calculates page protection manually using
vm_get_page_prot(). This will ignore any other reason for active
writenotify: one mechanism applicable to shmem is softdirty tracking.
For example, the following sequence
1) Write to mapped shmem page
2) Clear softdirty
3) Register uffd-wp covering the mapped page
4) Unregister uffd-wp covering the mapped page
5) Write to page again
will not set the modified page softdirty, because uffd_wp_range() will
ignore that writenotify is required for softdirty tracking and simply map
the page writable again using change_protection(). Similarly, instead of
unregistering, protecting followed by un-protecting the page using uffd-wp
would result in the same situation.
Now that we enable writenotify whenever enabling uffd-wp on a VMA,
vma->vm_page_prot will already properly reflect our requirements: the
default is to write-protect all PTEs. However, for shared mappings we
would now not remap the PTEs writable if possible when unprotecting, just
like for private mappings (COW). To compensate, set
MM_CP_TRY_CHANGE_WRITABLE just like mprotect() does to try mapping
individual PTEs writable.
For private mappings, this change implies that we will now always try
setting PTEs writable when un-protecting, just like when upgrading write
permissions using mprotect(), which is an improvement.
For shared mappings, we will only set PTEs writable if
can_change_pte_writable()/can_change_pmd_writable() indicates that it's
ok. For ordinary shmem, this will be the case when PTEs are dirty, which
should usually be the case -- otherwise we could special-case shmem in
can_change_pte_writable()/can_change_pmd_writable() easily, because shmem
itself doesn't require writenotify.
Note that hugetlb does not yet implement MM_CP_TRY_CHANGE_WRITABLE, so we
won't try setting PTEs writable when unprotecting or when unregistering
uffd-wp. This can be added later on top by implementing
MM_CP_TRY_CHANGE_WRITABLE.
While commit ffd05793963a ("userfaultfd: wp: support write protection for
userfault vma range") introduced that code, it should only be applicable
to uffd-wp on shared mappings -- shmem (hugetlb does not support softdirty
tracking). I don't think this corner cases justifies to cc stable. Let's
just handle it correctly and prepare for change_protection() cleanups.
[david@redhat.com: o need for additional harmless checks if we're wr-protecting either way]
Link: https://lkml.kernel.org/r/71412742-a71f-9c74-865f-773ad83db7a5@redhat.com
Link: https://lkml.kernel.org/r/20221223155616.297723-1-david@redhat.com
Link: https://lkml.kernel.org/r/20221223155616.297723-2-david@redhat.com
Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs")
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Fix a typo of "comaring" which should be "comparing".
Link: https://lkml.kernel.org/r/202212231050245952617@zte.com.cn
Signed-off-by: Xu Panda <xu.panda@zte.com.cn>
Signed-off-by: xu xin <xu.xin16@zte.com.cn>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Scanning page tables when hardware does not set the accessed bit has
no real use cases.
Link: https://lkml.kernel.org/r/20221222041905.2431096-9-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Among the flags in scan_control:
1. sc->may_swap, which indicates swap constraint due to memsw.max, is
supported as usual.
2. sc->proactive, which indicates reclaim by memory.reclaim, may not
opportunistically skip the aging path, since it is considered less
latency sensitive.
3. !(sc->gfp_mask & __GFP_IO), which indicates IO constraint, lowers
swappiness to prioritize file LRU, since clean file folios are more
likely to exist.
4. sc->may_writepage and sc->may_unmap, which indicates opportunistic
reclaim, are rejected, since unmapped clean folios are already
prioritized. Scanning for more of them is likely futile and can
cause high reclaim latency when there is a large number of memcgs.
The rest are handled by the existing code.
Link: https://lkml.kernel.org/r/20221222041905.2431096-8-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
For each node, memcgs are divided into two generations: the old and
the young. For each generation, memcgs are randomly sharded into
multiple bins to improve scalability. For each bin, an RCU hlist_nulls
is virtually divided into three segments: the head, the tail and the
default.
An onlining memcg is added to the tail of a random bin in the old
generation. The eviction starts at the head of a random bin in the old
generation. The per-node memcg generation counter, whose reminder (mod
2) indexes the old generation, is incremented when all its bins become
empty.
There are four operations:
1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in
its current generation (old or young) and updates its "seg" to
"head";
2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in
its current generation (old or young) and updates its "seg" to
"tail";
3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in
the old generation, updates its "gen" to "old" and resets its "seg"
to "default";
4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin
in the young generation, updates its "gen" to "young" and resets
its "seg" to "default".
The events that trigger the above operations are:
1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
2. The first attempt to reclaim an memcg below low, which triggers
MEMCG_LRU_TAIL;
3. The first attempt to reclaim an memcg below reclaimable size
threshold, which triggers MEMCG_LRU_TAIL;
4. The second attempt to reclaim an memcg below reclaimable size
threshold, which triggers MEMCG_LRU_YOUNG;
5. Attempting to reclaim an memcg below min, which triggers
MEMCG_LRU_YOUNG;
6. Finishing the aging on the eviction path, which triggers
MEMCG_LRU_YOUNG;
7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
Note that memcg LRU only applies to global reclaim, and the
round-robin incrementing of their max_seq counters ensures the
eventual fairness to all eligible memcgs. For memcg reclaim, it still
relies on mem_cgroup_iter().
Link: https://lkml.kernel.org/r/20221222041905.2431096-7-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move should_run_aging() next to its only caller left.
Link: https://lkml.kernel.org/r/20221222041905.2431096-6-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Recall that the aging produces the youngest generation: first it scans
for accessed folios and updates their gen counters; then it increments
lrugen->max_seq.
The current aging fairness safeguard for kswapd uses two passes to
ensure the fairness to multiple eligible memcgs. On the first pass,
which is shared with the eviction, it checks whether all eligible
memcgs are low on cold folios. If so, it requires a second pass, on
which it ages all those memcgs at the same time.
With memcg LRU, the aging, while ensuring eventual fairness, will run
when necessary. Therefore the current aging fairness safeguard for
kswapd will not be needed.
Note that memcg LRU only applies to global reclaim. For memcg reclaim,
the aging can be unfair to different memcgs, i.e., their
lrugen->max_seq can be incremented at different paces.
Link: https://lkml.kernel.org/r/20221222041905.2431096-5-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Recall that the eviction consumes the oldest generation: first it
bucket-sorts folios whose gen counters were updated by the aging and
reclaims the rest; then it increments lrugen->min_seq.
The current eviction fairness safeguard for global reclaim has a
dilemma: when there are multiple eligible memcgs, should it continue
or stop upon meeting the reclaim goal? If it continues, it overshoots
and increases direct reclaim latency; if it stops, it loses fairness
between memcgs it has taken memory away from and those it has yet to.
With memcg LRU, the eviction, while ensuring eventual fairness, will
stop upon meeting its goal. Therefore the current eviction fairness
safeguard for global reclaim will not be needed.
Note that memcg LRU only applies to global reclaim. For memcg reclaim,
the eviction will continue, even if it is overshooting. This becomes
unconditional due to code simplification.
Link: https://lkml.kernel.org/r/20221222041905.2431096-4-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
lru_gen_folio will be chained into per-node lists by the coming
lrugen->list.
Link: https://lkml.kernel.org/r/20221222041905.2431096-3-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: multi-gen LRU: memcg LRU", v3.
Overview
========
An memcg LRU is a per-node LRU of memcgs. It is also an LRU of LRUs,
since each node and memcg combination has an LRU of folios (see
mem_cgroup_lruvec()).
Its goal is to improve the scalability of global reclaim, which is
critical to system-wide memory overcommit in data centers. Note that
memcg reclaim is currently out of scope.
Its memory bloat is a pointer to each lruvec and negligible to each
pglist_data. In terms of traversing memcgs during global reclaim, it
improves the best-case complexity from O(n) to O(1) and does not affect
the worst-case complexity O(n). Therefore, on average, it has a sublinear
complexity in contrast to the current linear complexity.
The basic structure of an memcg LRU can be understood by an analogy to
the active/inactive LRU (of folios):
1. It has the young and the old (generations), i.e., the counterparts
to the active and the inactive;
2. The increment of max_seq triggers promotion, i.e., the counterpart
to activation;
3. Other events trigger similar operations, e.g., offlining an memcg
triggers demotion, i.e., the counterpart to deactivation.
In terms of global reclaim, it has two distinct features:
1. Sharding, which allows each thread to start at a random memcg (in
the old generation) and improves parallelism;
2. Eventual fairness, which allows direct reclaim to bail out at will
and reduces latency without affecting fairness over some time.
The commit message in patch 6 details the workflow:
https://lore.kernel.org/r/20221222041905.2431096-7-yuzhao@google.com/
The following is a simple test to quickly verify its effectiveness.
Test design:
1. Create multiple memcgs.
2. Each memcg contains a job (fio).
3. All jobs access the same amount of memory randomly.
4. The system does not experience global memory pressure.
5. Periodically write to the root memory.reclaim.
Desired outcome:
1. All memcgs have similar pgsteal counts, i.e., stddev(pgsteal)
over mean(pgsteal) is close to 0%.
2. The total pgsteal is close to the total requested through
memory.reclaim, i.e., sum(pgsteal) over sum(requested) is close
to 100%.
Actual outcome [1]:
MGLRU off MGLRU on
stddev(pgsteal) / mean(pgsteal) 75% 20%
sum(pgsteal) / sum(requested) 425% 95%
####################################################################
MEMCGS=128
for ((memcg = 0; memcg < $MEMCGS; memcg++)); do
mkdir /sys/fs/cgroup/memcg$memcg
done
start() {
echo $BASHPID > /sys/fs/cgroup/memcg$memcg/cgroup.procs
fio -name=memcg$memcg --numjobs=1 --ioengine=mmap \
--filename=/dev/zero --size=1920M --rw=randrw \
--rate=64m,64m --random_distribution=random \
--fadvise_hint=0 --time_based --runtime=10h \
--group_reporting --minimal
}
for ((memcg = 0; memcg < $MEMCGS; memcg++)); do
start &
done
sleep 600
for ((i = 0; i < 600; i++)); do
echo 256m >/sys/fs/cgroup/memory.reclaim
sleep 6
done
for ((memcg = 0; memcg < $MEMCGS; memcg++)); do
grep "pgsteal " /sys/fs/cgroup/memcg$memcg/memory.stat
done
####################################################################
[1]: This was obtained from running the above script (touches less
than 256GB memory) on an EPYC 7B13 with 512GB DRAM for over an
hour.
This patch (of 8):
The new name lru_gen_folio will be more distinct from the coming
lru_gen_memcg.
Link: https://lkml.kernel.org/r/20221222041905.2431096-1-yuzhao@google.com
Link: https://lkml.kernel.org/r/20221222041905.2431096-2-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently a vm_unmap_ram() functions triggers a BUG() if an area is not
found. Replace it by the WARN_ON_ONCE() error message and keep machine
alive instead of stopping it.
The worst case is a memory leaking.
Link: https://lkml.kernel.org/r/20221222190022.134380-3-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently the __vunmap() path calls __find_vmap_area() twice. Once on
entry to check that the area exists, then inside the remove_vm_area()
function which also performs a new search for the VA.
In order to improvie it from a performance point of view we split
remove_vm_area() into two new parts:
- find_unlink_vmap_area() that does a search and unlink from tree;
- __remove_vm_area() that removes without searching.
In this case there is no any functional change for remove_vm_area()
whereas vm_remove_mappings(), where a second search happens, switches to
the __remove_vm_area() variant where the already detached VA is passed as
a parameter, so there is no need to find it again.
Performance wise, i use test_vmalloc.sh with 32 threads doing alloc
free on a 64-CPUs-x86_64-box:
perf without this patch:
- 31.41% 0.50% vmalloc_test/10 [kernel.vmlinux] [k] __vunmap
- 30.92% __vunmap
- 17.67% _raw_spin_lock
native_queued_spin_lock_slowpath
- 12.33% remove_vm_area
- 11.79% free_vmap_area_noflush
- 11.18% _raw_spin_lock
native_queued_spin_lock_slowpath
0.76% free_unref_page
perf with this patch:
- 11.35% 0.13% vmalloc_test/14 [kernel.vmlinux] [k] __vunmap
- 11.23% __vunmap
- 8.28% find_unlink_vmap_area
- 7.95% _raw_spin_lock
7.44% native_queued_spin_lock_slowpath
- 1.93% free_vmap_area_noflush
- 0.56% _raw_spin_lock
0.53% native_queued_spin_lock_slowpath
0.60% __vunmap_range_noflush
__vunmap() consumes around ~20% less CPU cycles on this test.
Also, switch from find_vmap_area() to find_unlink_vmap_area() to prevent a
double access to the vmap_area_lock: one for finding area, second time is
for unlinking from a tree.
[urezki@gmail.com: switch to find_unlink_vmap_area() in vm_unmap_ram()]
Link: https://lkml.kernel.org/r/20221222190022.134380-2-urezki@gmail.com
Link: https://lkml.kernel.org/r/20221222190022.134380-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reported-by: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move FOLL_* definitions to linux/mm_types.h to make them more accessible
without having to drag in all of linux/mm.h and everything that drags in
too[1].
Link: https://lkml.kernel.org/r/2161258.1671657894@warthog.procyon.org.uk
Signed-off-by: David Howells <dhowells@redhat.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Similar to kmemdup(), but support large amount of bytes with kvmalloc()
and does *not* guarantee that the result will be physically contiguous.
Use only in cases where kvmalloc() is needed and free it with kvfree().
Also adapt policy_unpack.c in case someone bisect into this.
Link: https://lkml.kernel.org/r/20221221144245.27164-1-sunhao.th@gmail.com
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Nick Terrell <terrelln@fb.com>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Deactivate_page() has already been converted to use folios, this change
converts it to take in a folio argument instead of calling page_folio().
It also renames the function folio_deactivate() to be more consistent with
other folio functions.
[akpm@linux-foundation.org: fix left-over comments, per Yu Zhao]
Link: https://lkml.kernel.org/r/20221221180848.20774-5-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This change replaces 2 calls to compound_head() from put_page() and 1 call
from mark_page_accessed() with one from page_folio(). This is in
preparation for the conversion of deactivate_page() to folio_deactivate().
Link: https://lkml.kernel.org/r/20221221180848.20774-4-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This change removes a number of calls to compound_head(), and saves
1729 bytes of kernel text.
Link: https://lkml.kernel.org/r/20221221180848.20774-3-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Convert deactivate_page() to folio_deactivate()", v4.
Deactivate_page() has already been converted to use folios. This patch
series modifies the callers of deactivate_page() to use folios. It also
introduces vm_normal_folio() to assist with folio conversions, and
converts deactivate_page() to folio_deactivate() which takes in a folio.
This patch (of 4):
Introduce a wrapper function called vm_normal_folio(). This function
calls vm_normal_page() and returns the folio of the page found, or null if
no page is found.
This function allows callers to get a folio from a pte, which will
eventually allow them to completely replace their struct page variables
with struct folio instead.
Link: https://lkml.kernel.org/r/20221221180848.20774-1-vishal.moola@gmail.com
Link: https://lkml.kernel.org/r/20221221180848.20774-2-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Invert the conditional judgment of the mid_split, to focus the return
statement in the last statement, which is easier to understand and for
better readability.
Link: https://lkml.kernel.org/r/20221221060058.609003-8-vernon2gm@gmail.com
Signed-off-by: Vernon Yang <vernon2gm@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If mas->node is an MAS_START, there are three cases, and they all assign
different values to mas->node and mas->offset. So there is no need to set
them to a default value before updating.
Update them directly to make them easier to understand and for better
readability.
Link: https://lkml.kernel.org/r/20221221060058.609003-7-vernon2gm@gmail.com
Signed-off-by: Vernon Yang <vernon2gm@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The macros CONFIG_DEBUG_MAPLE_TREE_VERBOSE no one uses, functions
mas_dup_tree() and mas_dup_store() are not implemented, just function
declaration, so drop it.
Link: https://lkml.kernel.org/r/20221221060058.609003-6-vernon2gm@gmail.com
Signed-off-by: Vernon Yang <vernon2gm@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When you need to compare whether node->parent is parent of the
root node, using macro MA_ROOT_PARENT is easier to understand
and for better readability.
Link: https://lkml.kernel.org/r/20221221060058.609003-5-vernon2gm@gmail.com
Signed-off-by: Vernon Yang <vernon2gm@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>