mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-20 07:09:58 +00:00
2149 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Li Zhijian
|
66eca1021a |
mm/page_alloc: fix pcp->count race between drain_pages_zone() vs __rmqueue_pcplist()
It's expected that no page should be left in pcp_list after calling zone_pcp_disable() in offline_pages(). Previously, it's observed that offline_pages() gets stuck [1] due to some pages remaining in pcp_list. Cause: There is a race condition between drain_pages_zone() and __rmqueue_pcplist() involving the pcp->count variable. See below scenario: CPU0 CPU1 ---------------- --------------- spin_lock(&pcp->lock); __rmqueue_pcplist() { zone_pcp_disable() { /* list is empty */ if (list_empty(list)) { /* add pages to pcp_list */ alloced = rmqueue_bulk() mutex_lock(&pcp_batch_high_lock) ... __drain_all_pages() { drain_pages_zone() { /* read pcp->count, it's 0 here */ count = READ_ONCE(pcp->count) /* 0 means nothing to drain */ /* update pcp->count */ pcp->count += alloced << order; ... ... spin_unlock(&pcp->lock); In this case, after calling zone_pcp_disable() though, there are still some pages in pcp_list. And these pages in pcp_list are neither movable nor isolated, offline_pages() gets stuck as a result. Solution: Expand the scope of the pcp->lock to also protect pcp->count in drain_pages_zone(), to ensure no pages are left in the pcp list after zone_pcp_disable() [1] https://lore.kernel.org/linux-mm/6a07125f-e720-404c-b2f9-e55f3f166e85@fujitsu.com/ Link: https://lkml.kernel.org/r/20240723064428.1179519-1-lizhijian@fujitsu.com Fixes: 4b23a68f9536 ("mm/page_alloc: protect PCP lists with a spinlock") Signed-off-by: Li Zhijian <lizhijian@fujitsu.com> Reported-by: Yao Xingtao <yaoxt.fnst@fujitsu.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Suren Baghdasaryan
|
b3bebe4430 |
alloc_tag: outline and export free_reserved_page()
Outline and export free_reserved_page() because modules use it and it in turn uses page_ext_{get|put} which should not be exported. The same result could be obtained by outlining {get|put}_page_tag_ref() but that would have higher performance impact as these functions are used in more performance critical paths. Link: https://lkml.kernel.org/r/20240717212844.2749975-1-surenb@google.com Fixes: dcfe378c81f7 ("lib: introduce support for page allocation tagging") Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202407080044.DWMC9N9I-lkp@intel.com/ Suggested-by: Christoph Hellwig <hch@infradead.org> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Kees Cook <keescook@chromium.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Sourav Panda <souravpanda@google.com> Cc: <stable@vger.kernel.org> [6.10] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Joel Granados
|
78eb4ea25c |
sysctl: treewide: constify the ctl_table argument of proc_handlers
const qualify the struct ctl_table argument in the proc_handler function signatures. This is a prerequisite to moving the static ctl_table structs into .rodata data which will ensure that proc_handler function pointers cannot be modified. This patch has been generated by the following coccinelle script: ``` virtual patch @r1@ identifier ctl, write, buffer, lenp, ppos; identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)"; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int write, void *buffer, size_t *lenp, loff_t *ppos); @r2@ identifier func, ctl, write, buffer, lenp, ppos; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int write, void *buffer, size_t *lenp, loff_t *ppos) { ... } @r3@ identifier func; @@ int func( - struct ctl_table * + const struct ctl_table * ,int , void *, size_t *, loff_t *); @r4@ identifier func, ctl; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int , void *, size_t *, loff_t *); @r5@ identifier func, write, buffer, lenp, ppos; @@ int func( - struct ctl_table * + const struct ctl_table * ,int write, void *buffer, size_t *lenp, loff_t *ppos); ``` * Code formatting was adjusted in xfs_sysctl.c to comply with code conventions. The xfs_stats_clear_proc_handler, xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where adjusted. * The ctl_table argument in proc_watchdog_common was const qualified. This is called from a proc_handler itself and is calling back into another proc_handler, making it necessary to change it as part of the proc_handler migration. Co-developed-by: Thomas Weißschuh <linux@weissschuh.net> Signed-off-by: Thomas Weißschuh <linux@weissschuh.net> Co-developed-by: Joel Granados <j.granados@samsung.com> Signed-off-by: Joel Granados <j.granados@samsung.com> |
||
Vlastimil Babka
|
53dabce265 |
mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC
This mostly reverts commit af3b854492f3 ("mm/page_alloc.c: allow error injection"). The commit made should_fail_alloc_page() a noinline function that's always called from the page allocation hotpath, even if it's empty because CONFIG_FAIL_PAGE_ALLOC is not enabled, and there is no option to disable it and prevent the associated function call overhead. As with the preceding patch "mm, slab: put should_failslab back behind CONFIG_SHOULD_FAILSLAB" and for the same reasons, put the should_fail_alloc_page() back behind the config option. When enabled, the ALLOW_ERROR_INJECTION and BTF_ID records are preserved so it's not a complete revert. Link: https://lkml.kernel.org/r/20240711-b4-fault-injection-reverts-v1-2-9e2651945d68@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Rientjes <rientjes@google.com> Cc: Eduard Zingerman <eddyz87@gmail.com> Cc: Hao Luo <haoluo@google.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Fastabend <john.fastabend@gmail.com> Cc: KP Singh <kpsingh@kernel.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Song Liu <song@kernel.org> Cc: Stanislav Fomichev <sdf@fomichev.me> Cc: Yonghong Song <yonghong.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Wei Yang
|
f6953e22af |
mm/page_alloc: put __free_pages_core() in __meminit section
__free_pages_core() is only used in bootmem init and hot-add memory init path. Let's put it in __meminit section. Link: https://lkml.kernel.org/r/20240706061615.30322-1-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Wei Yang
|
689d92cc81 |
mm/page_alloc: remove prefetchw() on freeing page to buddy system
The prefetchw() is introduced from an ancient patch[1]. The change log says: The basic idea is to free higher order pages instead of going through every single one. Also, some unnecessary atomic operations are done away with and replaced with non-atomic equivalents, and prefetching is done where it helps the most. For a more in-depth discusion of this patch, please see the linux-ia64 archives (topic is "free bootmem feedback patch"). So there are several changes improve the bootmem freeing, in which the most basic idea is freeing higher order pages. And as Matthew says, "Itanium CPUs of this era had no prefetchers." I did 10 round bootup tests before and after this change, the data doesn't prove prefetchw() help speeding up bootmem freeing. The sum of the 10 round bootmem freeing time after prefetchw() removal even 5.2% faster than before. [1]: https://lore.kernel.org/linux-ia64/40F46962.4090604@sgi.com/ Link: https://lkml.kernel.org/r/20240702020931.7061-1-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kefeng Wang
|
593a10dabe |
mm: refactor folio_undo_large_rmappable()
Folios of order <= 1 are not in deferred list, the check of order is added into folio_undo_large_rmappable() from commit 8897277acfef ("mm: support order-1 folios in the page cache"), but there is a repeated check for small folio (order 0) during each call of the folio_undo_large_rmappable(), so only keep folio_order() check inside the function. In addition, move all the checks into header file to save a function call for non-large-rmappable or empty deferred_list folio. Link: https://lkml.kernel.org/r/20240521130315.46072-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lance Yang <ioworker0@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Wei Yang
|
08af2c12e3 |
mm/page_alloc: reword the comment of buddy_merge_likely()
For page with order O, we are checking its order (O + 1)'s buddy. If it is free, we would like to put it to the tail and expect it would be merged to a page with order (O + 2). Reword the comment to reflect it. Link: https://lkml.kernel.org/r/20240619010612.20740-4-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Wei Yang
|
b719efa22d |
mm/page_alloc: fix a typo in comment about GFP flag
The GFP flags used to choose the zonelist is __GFP_THISNODE. Let's change it to what exactly it should be. Link: https://lkml.kernel.org/r/20240619010612.20740-3-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
5062574422 |
mm/memory_hotplug: skip adjust_managed_page_count() for PageOffline() pages when offlining
We currently have a hack for virtio-mem in place to handle memory offlining with PageOffline pages for which we already adjusted the managed page count. Let's enlighten memory offlining code so we can get rid of that hack, and document the situation. Link: https://lkml.kernel.org/r/20240607090939.89524-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Dexuan Cui <decui@microsoft.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eugenio Pérez <eperezma@redhat.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Marco Elver <elver@google.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Wei Liu <wei.liu@kernel.org> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
503b158fc3 |
mm/memory_hotplug: initialize memmap of !ZONE_DEVICE with PageOffline() instead of PageReserved()
We currently initialize the memmap such that PG_reserved is set and the refcount of the page is 1. In virtio-mem code, we have to manually clear that PG_reserved flag to make memory offlining with partially hotplugged memory blocks possible: has_unmovable_pages() would otherwise bail out on such pages. We want to avoid PG_reserved where possible and move to typed pages instead. Further, we want to further enlighten memory offlining code about PG_offline: offline pages in an online memory section. One example is handling managed page count adjustments in a cleaner way during memory offlining. So let's initialize the pages with PG_offline instead of PG_reserved. generic_online_page()->__free_pages_core() will now clear that flag before handing that memory to the buddy. Note that the page refcount is still 1 and would forbid offlining of such memory except when special care is take during GOING_OFFLINE as currently only implemented by virtio-mem. With this change, we can now get non-PageReserved() pages in the XEN balloon list. From what I can tell, that can already happen via decrease_reservation(), so that should be fine. HV-balloon should not really observe a change: partial online memory blocks still cannot get surprise-offlined, because the refcount of these PageOffline() pages is 1. Update virtio-mem, HV-balloon and XEN-balloon code to be aware that hotplugged pages are now PageOffline() instead of PageReserved() before they are handed over to the buddy. We'll leave the ZONE_DEVICE case alone for now. Note that self-hosted vmemmap pages will no longer be marked as reserved. This matches ordinary vmemmap pages allocated from the buddy during memory hotplug. Now, really only vmemmap pages allocated from memblock during early boot will be marked reserved. Existing PageReserved() checks seem to be handling all relevant cases correctly even after this change. Link: https://lkml.kernel.org/r/20240607090939.89524-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Oscar Salvador <osalvador@suse.de> [generic memory-hotplug bits] Cc: Alexander Potapenko <glider@google.com> Cc: Dexuan Cui <decui@microsoft.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eugenio Pérez <eperezma@redhat.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Marco Elver <elver@google.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Wei Liu <wei.liu@kernel.org> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
13c526540b |
mm: pass meminit_context to __free_pages_core()
Patch series "mm/memory_hotplug: use PageOffline() instead of PageReserved() for !ZONE_DEVICE". This can be a considered a long-overdue follow-up to some parts of [1]. The patches are based on [2], but they are not strictly required -- just makes it clearer why we can use adjust_managed_page_count() for memory hotplug without going into details about highmem. We stop initializing pages with PageReserved() in memory hotplug code -- except when dealing with ZONE_DEVICE for now. Instead, we use PageOffline(): all pages are initialized to PageOffline() when onlining a memory section, and only the ones actually getting exposed to the system/page allocator will get PageOffline cleared. This way, we enlighten memory hotplug more about PageOffline() pages and can cleanup some hacks we have in virtio-mem code. What about ZONE_DEVICE? PageOffline() is wrong, but we might just stop using PageReserved() for them later by simply checking for is_zone_device_page() at suitable places. That will be a separate patch set / proposal. This primarily affects virtio-mem, HV-balloon and XEN balloon. I only briefly tested with virtio-mem, which benefits most from these cleanups. [1] https://lore.kernel.org/all/20191024120938.11237-1-david@redhat.com/ [2] https://lkml.kernel.org/r/20240607083711.62833-1-david@redhat.com This patch (of 3): In preparation for further changes, let's teach __free_pages_core() about the differences of memory hotplug handling. Move the memory hotplug specific handling from generic_online_page() to __free_pages_core(), use adjust_managed_page_count() on the memory hotplug path, and spell out why memory freed via memblock cannot currently use adjust_managed_page_count(). [david@redhat.com: add missed CONFIG_DEFERRED_STRUCT_PAGE_INIT] Link: https://lkml.kernel.org/r/b72e6efd-fb0a-459c-b1a0-88a98e5b19e2@redhat.com [david@redhat.com: fix up the memblock comment, per Oscar] Link: https://lkml.kernel.org/r/2ed64218-7f3b-4302-a5dc-27f060654fe2@redhat.com [david@redhat.com: add the parameter name also in the declaration] Link: https://lkml.kernel.org/r/ca575956-f0dd-4fb9-a307-6b7621681ed9@redhat.com Link: https://lkml.kernel.org/r/20240607090939.89524-1-david@redhat.com Link: https://lkml.kernel.org/r/20240607090939.89524-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dexuan Cui <decui@microsoft.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eugenio Pérez <eperezma@redhat.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Marco Elver <elver@google.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Wei Liu <wei.liu@kernel.org> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
e4d970acfb |
mm/page_alloc: clear PageBuddy using __ClearPageBuddy() for bad pages
Let's stop using page_mapcount_reset() and clear PageBuddy using __ClearPageBuddy() instead. Link: https://lkml.kernel.org/r/20240529111904.2069608-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Tested-by: Sergey Senozhatsky <senozhatsky@chromium.org> [zram/zsmalloc workloads] Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Sourav Panda
|
15995a3524 |
mm: report per-page metadata information
Today, we do not have any observability of per-page metadata and how much it takes away from the machine capacity. Thus, we want to describe the amount of memory that is going towards per-page metadata, which can vary depending on build configuration, machine architecture, and system use. This patch adds 2 fields to /proc/vmstat that can used as shown below: Accounting per-page metadata allocated by boot-allocator: /proc/vmstat:nr_memmap_boot * PAGE_SIZE Accounting per-page metadata allocated by buddy-allocator: /proc/vmstat:nr_memmap * PAGE_SIZE Accounting total Perpage metadata allocated on the machine: (/proc/vmstat:nr_memmap_boot + /proc/vmstat:nr_memmap) * PAGE_SIZE Utility for userspace: Observability: Describe the amount of memory overhead that is going to per-page metadata on the system at any given time since this overhead is not currently observable. Debugging: Tracking the changes or absolute value in struct pages can help detect anomalies as they can be correlated with other metrics in the machine (e.g., memtotal, number of huge pages, etc). page_ext overheads: Some kernel features such as page_owner page_table_check that use page_ext can be optionally enabled via kernel parameters. Having the total per-page metadata information helps users precisely measure impact. Furthermore, page-metadata metrics will reflect the amount of struct pages reliquished (or overhead reduced) when hugetlbfs pages are reserved which will vary depending on whether hugetlb vmemmap optimization is enabled or not. For background and results see: lore.kernel.org/all/20240220214558.3377482-1-souravpanda@google.com Link: https://lkml.kernel.org/r/20240605222751.1406125-1-souravpanda@google.com Signed-off-by: Sourav Panda <souravpanda@google.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Chen Linxuan <chenlinxuan@uniontech.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ivan Babrou <ivan@cloudflare.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tomas Mudrunka <tomas.mudrunka@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Xu <weixugc@google.com> Cc: Yang Yang <yang.yang29@zte.com.cn> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
7a581204b1 |
mm/highmem: reimplement totalhigh_pages() by walking zones
Patch series "mm/highmem: don't track highmem pages manually". Let's remove highmem special-casing from adjust_managed_page_count(), to result in less confusion why memblock manually adjusts totalram_pages, and __free_pages_core() only adjusts the zone's managed pages -- what about the highmem pages that adjust_managed_page_count() updates? Now, we only maintain totalram_pages and a zone's managed pages independent of highmem support. We can derive the number of highmem pages simply by looking at the relevant zone's managed pages. I don't think there is any particular fast path that needs a maximum-efficient totalhigh_pages() implementation. Note that highmem memory is currently initialized using free_highmem_page()->free_reserved_page(), not __free_pages_core(). In the future we might want to also use __free_pages_core() to initialize highmem memory, to make that less special, and consider moving totalram_pages updates into __free_pages_core() [1], so we can just use adjust_managed_page_count() in there as well. Booting a simple kernel in QEMU reveals no highmem accounting change: Before: Memory: 3095448K/3145208K available (14802K kernel code, 2073K rwdata, 5000K rodata, 740K init, 556K bss, 49760K reserved, 0K cma-reserved, 2244488K highmem) After: Memory: 3095276K/3145208K available (14802K kernel code, 2073K rwdata, 5000K rodata, 740K init, 556K bss, 49932K reserved, 0K cma-reserved, 2244488K highmem) [1] https://lkml.kernel.org/r/20240601133402.2675-1-richard.weiyang@gmail.com This patch (of 2): Can we get rid of the highmem ifdef in adjust_managed_page_count()? Likely yes: we don't have that many totalhigh_pages() users, and they all don't seem to be very performance critical. So let's implement totalhigh_pages() like nr_free_highpages(), collecting information from all zones. This is now similar to what we do in si_meminfo_node() to collect the per-node highmem page count. In the common case (single node, 3-4 zones), we really shouldn't care. We could optimize a bit further (only walk ZONE_HIGHMEM and ZONE_MOVABLE if required), but there doesn't seem a real need for that. [david@redhat.com: fix build bot complaint] Link: https://lkml.kernel.org/r/b57e5bc4-eb72-40e3-add4-57dfa6e03df6@redhat.com Link: https://lkml.kernel.org/r/20240607083711.62833-1-david@redhat.com Link: https://lkml.kernel.org/r/20240607083711.62833-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
yangge
|
bf14ed81f5 |
mm/page_alloc: Separate THP PCP into movable and non-movable categories
Since commit 5d0a661d808f ("mm/page_alloc: use only one PCP list for THP-sized allocations") no longer differentiates the migration type of pages in THP-sized PCP list, it's possible that non-movable allocation requests may get a CMA page from the list, in some cases, it's not acceptable. If a large number of CMA memory are configured in system (for example, the CMA memory accounts for 50% of the system memory), starting a virtual machine with device passthrough will get stuck. During starting the virtual machine, it will call pin_user_pages_remote(..., FOLL_LONGTERM, ...) to pin memory. Normally if a page is present and in CMA area, pin_user_pages_remote() will migrate the page from CMA area to non-CMA area because of FOLL_LONGTERM flag. But if non-movable allocation requests return CMA memory, migrate_longterm_unpinnable_pages() will migrate a CMA page to another CMA page, which will fail to pass the check in check_and_migrate_movable_pages() and cause migration endless. Call trace: pin_user_pages_remote --__gup_longterm_locked // endless loops in this function ----_get_user_pages_locked ----check_and_migrate_movable_pages ------migrate_longterm_unpinnable_pages --------alloc_migration_target This problem will also have a negative impact on CMA itself. For example, when CMA is borrowed by THP, and we need to reclaim it through cma_alloc() or dma_alloc_coherent(), we must move those pages out to ensure CMA's users can retrieve that contigous memory. Currently, CMA's memory is occupied by non-movable pages, meaning we can't relocate them. As a result, cma_alloc() is more likely to fail. To fix the problem above, we add one PCP list for THP, which will not introduce a new cacheline for struct per_cpu_pages. THP will have 2 PCP lists, one PCP list is used by MOVABLE allocation, and the other PCP list is used by UNMOVABLE allocation. MOVABLE allocation contains GPF_MOVABLE, and UNMOVABLE allocation contains GFP_UNMOVABLE and GFP_RECLAIMABLE. Link: https://lkml.kernel.org/r/1718845190-4456-1-git-send-email-yangge1116@126.com Fixes: 5d0a661d808f ("mm/page_alloc: use only one PCP list for THP-sized allocations") Signed-off-by: yangge <yangge1116@126.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Barry Song <21cnbao@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
384a746bb5 |
Revert "mm: init_mlocked_on_free_v3"
There was insufficient review and no agreement that this is the right approach. There are serious flaws with the implementation that make processes using mlock() not even work with simple fork() [1] and we get reliable crashes when rebooting. Further, simply because we might be unmapping a single PTE of a large mlocked folio, we shouldn't zero out the whole folio. ... especially because the code can also *corrupt* urelated memory because kernel_init_pages(page, folio_nr_pages(folio)); Could end up writing outside of the actual folio if we work with a tail page. Let's revert it. Once there is agreement that this is the right approach, the issues were fixed and there was reasonable review and proper testing, we can consider it again. [1] https://lkml.kernel.org/r/4da9da2f-73e4-45fd-b62f-a8a513314057@redhat.com Link: https://lkml.kernel.org/r/20240605091710.38961-1-david@redhat.com Fixes: ba42b524a040 ("mm: init_mlocked_on_free_v3") Signed-off-by: David Hildenbrand <david@redhat.com> Reported-by: David Wang <00107082@163.com> Closes: https://lore.kernel.org/lkml/20240528151340.4282-1-00107082@163.com/ Reported-by: Lance Yang <ioworker0@gmail.com> Closes: https://lkml.kernel.org/r/20240601140917.43562-1-ioworker0@gmail.com Acked-by: Lance Yang <ioworker0@gmail.com> Cc: York Jasper Niebuhr <yjnworkstation@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
7cc5a5d650 |
mm: page_alloc: fix highatomic typing in multi-block buddies
Christoph reports a page allocator splat triggered by xfstests: generic/176 214s ... [ 1204.507931] run fstests generic/176 at 2024-05-27 12:52:30 XFS (nvme0n1): Mounting V5 Filesystem cd936307-415f-48a3-b99d-a2d52ae1f273 XFS (nvme0n1): Ending clean mount XFS (nvme1n1): Mounting V5 Filesystem ab3ee1a4-af62-4934-9a6a-6c2fde321850 XFS (nvme1n1): Ending clean mount XFS (nvme1n1): Unmounting Filesystem ab3ee1a4-af62-4934-9a6a-6c2fde321850 XFS (nvme1n1): Mounting V5 Filesystem 7099b02d-9c58-4d1d-be1d-2cc472d12cd9 XFS (nvme1n1): Ending clean mount ------------[ cut here ]------------ page type is 3, passed migratetype is 1 (nr=512) WARNING: CPU: 0 PID: 509870 at mm/page_alloc.c:645 expand+0x1c5/0x1f0 Modules linked in: i2c_i801 crc32_pclmul i2c_smbus [last unloaded: scsi_debug] CPU: 0 PID: 509870 Comm: xfs_io Not tainted 6.10.0-rc1+ #2437 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:expand+0x1c5/0x1f0 Code: 05 16 70 bf 02 01 e8 ca fc ff ff 8b 54 24 34 44 89 e1 48 c7 c7 80 a2 28 83 48 89 c6 b8 01 00 3 RSP: 0018:ffffc90003b2b968 EFLAGS: 00010082 RAX: 0000000000000000 RBX: ffffffff83fa9480 RCX: 0000000000000000 RDX: 0000000000000005 RSI: 0000000000000027 RDI: 00000000ffffffff RBP: 00000000001f2600 R08: 00000000fffeffff R09: 0000000000000001 R10: 0000000000000000 R11: ffffffff83676200 R12: 0000000000000009 R13: 0000000000000200 R14: 0000000000000001 R15: ffffea0007c98000 FS: 00007f72ca3d5780(0000) GS:ffff8881f9c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f72ca1fff38 CR3: 00000001aa0c6002 CR4: 0000000000770ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff07f0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> ? __warn+0x7b/0x120 ? expand+0x1c5/0x1f0 ? report_bug+0x191/0x1c0 ? handle_bug+0x3c/0x80 ? exc_invalid_op+0x17/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? expand+0x1c5/0x1f0 ? expand+0x1c5/0x1f0 __rmqueue_pcplist+0x3a9/0x730 get_page_from_freelist+0x7a0/0xf00 __alloc_pages_noprof+0x153/0x2e0 __folio_alloc_noprof+0x10/0xa0 __filemap_get_folio+0x16b/0x370 iomap_write_begin+0x496/0x680 While trying to service a movable allocation (page type 1), the page allocator runs into a two-pageblock buddy on the movable freelist whose second block is typed as highatomic (page type 3). This inconsistency is caused by the highatomic reservation system operating on single pageblocks, while MAX_ORDER can be bigger than that - in this configuration, pageblock_order is 9 while MAX_PAGE_ORDER is 10. The test case is observed to make several adjacent order-3 requests with __GFP_DIRECT_RECLAIM cleared, which marks the surrounding block as highatomic. Upon freeing, the blocks merge into an order-10 buddy. When the highatomic pool is drained later on, this order-10 buddy gets moved back to the movable list, but only the first pageblock is marked movable again. A subsequent expand() of this buddy warns about the tail being of a different type. This is a long-standing bug that's surfaced by the recent block type warnings added to the allocator. The consequences seem mostly benign, it just results in odd behavior: the highatomic tail blocks are not properly drained, instead they end up on the movable list first, then go back to the highatomic list after an alloc-free cycle. To fix this, make the highatomic reservation code aware that allocations/buddies can be larger than a pageblock. While it's an old quirk, the recently added type consistency warnings seem to be the most prominent consequence of it. Set the Fixes: tag accordingly to highlight this backporting dependency. Link: https://lkml.kernel.org/r/20240530114203.GA1222079@cmpxchg.org Fixes: e0932b6c1f94 ("mm: page_alloc: consolidate free page accounting") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Christoph Hellwig <hch@infradead.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Tested-by: Christoph Hellwig <hch@lst.de> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baolin Wang
|
231f8c7127 |
mm: page_alloc: allowing mTHP compaction to capture the freed page directly
Currently, compaction_capture() does not allow lower-order allocations to directly capture the movable free pages, even though lower-order allocations might also be requesting movable pages, that can lead to more compaction scanning. And, with the enablement of mTHP, such situations will become more common. Thus allowing lower-order (mTHP) allocations of movable page types directly capture the movable free pages can avoid unnecessary compaction scanning, meanwhile that won't pollute the movable pageblock. With testing 1M mTHP compaction, it can be seen that compaction scanning is significantly reduced. mm-unstable patched Ops Compaction pages isolated 116598741.00 120946702.00 Ops Compaction migrate scanned 1764870054.00 1488621550.00 Ops Compaction free scanned 7707879039.00 4986299318.00 Ops Compact scan efficiency 22.90 29.85 Ops Compaction cost 73797.69 72933.48 Link: https://lkml.kernel.org/r/8118a5d66a034736a48433beddaca60ed78577c4.1712892329.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
7115936ac1 |
mm/page_alloc: use folio_mapped() in __alloc_contig_migrate_range()
We want to limit the use of page_mapcount() to the places where it is absolutely necessary. For tracing purposes, we use page_mapcount() in __alloc_contig_migrate_range(). Adding that mapcount to total_mapped sounds strange: total_migrated and total_reclaimed would count each page only once, not multiple times. But then, isolate_migratepages_range() adds each folio only once to the list. So for large folios, we would query the mapcount of the first page of the folio, which doesn't make too much sense for large folios. Let's simply use folio_mapped() * folio_nr_pages(), which makes more sense as nr_migratepages is also incremented by the number of pages in the folio in case of successful migration. Link: https://lkml.kernel.org/r/20240409192301.907377-11-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Chris Zankel <chris@zankel.net> Cc: Hugh Dickins <hughd@google.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Richard Chang <richardycc@google.com> Cc: Rich Felker <dalias@libc.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
05c5323b2a |
mm: track mapcount of large folios in single value
Let's track the mapcount of large folios in a single value. The mapcount of a large folio currently corresponds to the sum of the entire mapcount and all page mapcounts. This sum is what we actually want to know in folio_mapcount() and it is also sufficient for implementing folio_mapped(). With PTE-mapped THP becoming more important and more widely used, we want to avoid looping over all pages of a folio just to obtain the mapcount of large folios. The comment "In the common case, avoid the loop when no pages mapped by PTE" in folio_total_mapcount() does no longer hold for mTHP that are always mapped by PTE. Further, we are planning on using folio_mapcount() more frequently, and might even want to remove page mapcounts for large folios in some kernel configs. Therefore, allow for reading the mapcount of large folios efficiently and atomically without looping over any pages. Maintain the mapcount also for hugetlb pages for simplicity. Use the new mapcount to implement folio_mapcount() and folio_mapped(). Make page_mapped() simply call folio_mapped(). We can now get rid of folio_large_is_mapped(). _nr_pages_mapped is now only used in rmap code and for debugging purposes. Keep folio_nr_pages_mapped() around, but document that its use should be limited to rmap internals and debugging purposes. This change implies one additional atomic add/sub whenever mapping/unmapping (parts of) a large folio. As we now batch RMAP operations for PTE-mapped THP during fork(), during unmap/zap, and when PTE-remapping a PMD-mapped THP, and we adjust the large mapcount for a PTE batch only once, the added overhead in the common case is small. Only when unmapping individual pages of a large folio (e.g., during COW), the overhead might be bigger in comparison, but it's essentially one additional atomic operation. Note that before the new mapcount would overflow, already our refcount would overflow: each mapping requires a folio reference. Extend the focumentation of folio_mapcount(). Link: https://lkml.kernel.org/r/20240409192301.907377-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Yin Fengwei <fengwei.yin@intel.com> Cc: Chris Zankel <chris@zankel.net> Cc: Hugh Dickins <hughd@google.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Richard Chang <richardycc@google.com> Cc: Rich Felker <dalias@libc.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
2542b1ac9a |
mm: inline destroy_large_folio() into __folio_put_large()
destroy_large_folio() has only one caller, move its contents there. Link: https://lkml.kernel.org/r/20240405153228.2563754-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
5b8d75913a |
mm: combine free_the_page() and free_unref_page()
The pcp_allowed_order() check in free_the_page() was only being skipped by __folio_put_small() which is about to be rearranged. Link: https://lkml.kernel.org/r/20240405153228.2563754-3-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baolin Wang
|
6303d1c553 |
mm: page_alloc: use the correct THP order for THP PCP
Commit 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists") extends the PCP allocator to store THP pages, and it determines whether to cache THP pages in PCP by comparing with pageblock_order. But the pageblock_order is not always equal to THP order. It might also be MAX_PAGE_ORDER, which could prevent PCP from caching THP pages. Therefore, using HPAGE_PMD_ORDER instead to determine the need for caching THP for PCP will fix this issue Link: https://lkml.kernel.org/r/a25c9e14cd03907d5978b60546a69e6aa3fc2a7d.1712151833.git.baolin.wang@linux.alibaba.com Fixes: 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists") Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Barry Song <baohua@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Joel Granados
|
7998df0b64 |
memory: remove the now superfluous sentinel element from ctl_table array
This commit comes at the tail end of a greater effort to remove the empty elements at the end of the ctl_table arrays (sentinels) which will reduce the overall build time size of the kernel and run time memory bloat by ~64 bytes per sentinel (further information Link : https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/) Remove sentinel from all files under mm/ that register a sysctl table. Link: https://lkml.kernel.org/r/20240328-jag-sysctl_remset_misc-v1-1-47c1463b3af2@samsung.com Signed-off-by: Joel Granados <j.granados@samsung.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
York Jasper Niebuhr
|
ba42b524a0 |
mm: init_mlocked_on_free_v3
Implements the "init_mlocked_on_free" boot option. When this boot option is enabled, any mlock'ed pages are zeroed on free. If the pages are munlock'ed beforehand, no initialization takes place. This boot option is meant to combat the performance hit of "init_on_free" as reported in commit 6471384af2a6 ("mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options"). With "init_mlocked_on_free=1" only relevant data is freed while everything else is left untouched by the kernel. Correspondingly, this patch introduces no performance hit for unmapping non-mlock'ed memory. The unmapping overhead for purely mlocked memory was measured to be approximately 13%. Realistically, most systems mlock only a fraction of the total memory so the real-world system overhead should be close to zero. Optimally, userspace programs clear any key material or other confidential memory before exit and munlock the according memory regions. If a program crashes, userspace key managers fail to do this job. Accordingly, no munlock operations are performed so the data is caught and zeroed by the kernel. Should the program not crash, all memory will ideally be munlocked so no overhead is caused. CONFIG_INIT_MLOCKED_ON_FREE_DEFAULT_ON can be set to enable "init_mlocked_on_free" by default. Link: https://lkml.kernel.org/r/20240329145605.149917-1-yjnworkstation@gmail.com Signed-off-by: York Jasper Niebuhr <yjnworkstation@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: York Jasper Niebuhr <yjnworkstation@gmail.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baoquan He
|
0aac45663a |
mm/page_alloc.c: change the array-length to MIGRATE_PCPTYPES
Earlier, in commit 1dd214b8f21c ("mm: page_alloc: avoid merging non-fallbackable pageblocks with others"), migrate type MIGRATE_CMA and MIGRATE_ISOLATE are removed from fallbacks list since they are never used. Later on, in commit ("aa02d3c174ab mm/page_alloc: reduce fallbacks to (MIGRATE_PCPTYPES - 1)"), the array column size is reduced to 'MIGRATE_PCPTYPES - 1'. In fact, the array row size need be reduced to MIGRATE_PCPTYPES too since it's only covering rows of the number MIGRATE_PCPTYPES. Even though the current code has handled cases when the migratetype is CMA, HIGHATOMIC and MEMORY_ISOLATION, making the row size right is still good to avoid future error and confusion. Link: https://lkml.kernel.org/r/20240326061134.1055295-8-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Mike Rapoport (IBM)" <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baoquan He
|
96a5c186ef |
mm/page_alloc.c: don't show protection in zone's ->lowmem_reserve[] for empty zone
On one node, for lower zone's ->lowmem_reserve[], it will show how much memory is reserved in this lower zone to avoid excessive page allocation from the relevant higher zone's fallback allocation. However, currently lower zone's lowmem_reserve[] element will be filled even though the relevant higher zone is empty. That doesnt' make sense and can cause confusion. E.g on node 0 of one system as below, it has zone DMA/DMA32/NORMAL/MOVABLE/DEVICE, among them zone MOVABLE/DEVICE are the highest and both are empty. In zone DMA/DMA32's protection array, we can see that it has value for zone MOVABLE and DEVICE. Node 0, zone DMA ...... pages free 2816 boost 0 min 7 low 10 high 13 spanned 4095 present 3998 managed 3840 cma 0 protection: (0, 1582, 23716, 23716, 23716) ...... Node 0, zone DMA32 pages free 403269 boost 0 min 753 low 1158 high 1563 spanned 1044480 present 487039 managed 405070 cma 0 protection: (0, 0, 22134, 22134, 22134) ...... Node 0, zone Normal pages free 5423879 boost 0 min 10539 low 16205 high 21871 spanned 5767168 present 5767168 managed 5666438 cma 0 protection: (0, 0, 0, 0, 0) ...... Node 0, zone Movable pages free 0 boost 0 min 32 low 32 high 32 spanned 0 present 0 managed 0 cma 0 protection: (0, 0, 0, 0, 0) Node 0, zone Device pages free 0 boost 0 min 0 low 0 high 0 spanned 0 present 0 managed 0 cma 0 protection: (0, 0, 0, 0, 0) Here, clear out the element value in lower zone's ->lowmem_reserve[] if the relevant higher zone is empty. And also replace space with tab in _deferred_grow_zone() Link: https://lkml.kernel.org/r/20240326061134.1055295-7-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Mike Rapoport (IBM)" <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baoquan He
|
bb8ea62daa |
mm/page_alloc.c: remove unneeded codes in !NUMA version of build_zonelists()
When CONFIG_NUMA=n, MAX_NUMNODES is always 1 because Kconfig item NODES_SHIFT depends on NUMA. So in !NUMA version of build_zonelists(), no need to bother with the two for loop because code execution won't enter them ever. Here, remove those unneeded codes in !NUMA version of build_zonelists(). [bhe@redhat.com: remove unused locals] Link: https://lkml.kernel.org/r/ZgQL1WOf9K88nLpQ@MiWiFi-R3L-srv Link: https://lkml.kernel.org/r/20240326061134.1055295-5-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Mike Rapoport (IBM)" <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
2ace5a670e |
mm: make is_free_buddy_page() take a const argument
This function does not modify its argument; let the callers know that so they can make better optimisation decisions. Link: https://lkml.kernel.org/r/20240326171045.410737-6-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baolin Wang
|
e42dfe4e0a |
mm: record the migration reason for struct migration_target_control
Patch series "make the hugetlb migration strategy consistent", v2. As discussed in previous thread [1], there is an inconsistency when handling hugetlb migration. When handling the migration of freed hugetlb, it prevents fallback to other NUMA nodes in alloc_and_dissolve_hugetlb_folio(). However, when dealing with in-use hugetlb, it allows fallback to other NUMA nodes in alloc_hugetlb_folio_nodemask(), which can break the per-node hugetlb pool and might result in unexpected failures when node bound workloads doesn't get what is asssumed available. This patchset tries to make the hugetlb migration strategy more clear and consistent. Please find details in each patch. [1] https://lore.kernel.org/all/6f26ce22d2fcd523418a085f2c588fe0776d46e7.1706794035.git.baolin.wang@linux.alibaba.com/ This patch (of 2): To support different hugetlb allocation strategies during hugetlb migration based on various migration reasons, record the migration reason in the migration_target_control structure as a preparation. Link: https://lkml.kernel.org/r/cover.1709719720.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/7b95d4981e07211f57139fc5b1f7ce91b920cee4.1709719720.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
883dd161e9 |
mm: page_alloc: batch vmstat updates in expand()
expand() currently updates vmstat for every subpage. This is unnecessary, since they're all of the same zone and migratetype. Count added pages locally, then do a single vmstat update. Link: https://lkml.kernel.org/r/20240327190111.GC7597@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Vlastimil Babka
|
e1f42a577f |
mm: page_alloc: change move_freepages() to __move_freepages_block()
The function is now supposed to be called only on a single pageblock and checks start_pfn and end_pfn accordingly. Rename it to make this more obvious and drop the end_pfn parameter which can be determined trivially and none of the callers use it for anything else. Also make the (now internal) end_pfn exclusive, which is more common. Link: https://lkml.kernel.org/r/81b1d642-2ec0-49f5-89fc-19a3828419ff@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Zi Yan <ziy@nvidia.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
e0932b6c1f |
mm: page_alloc: consolidate free page accounting
Free page accounting currently happens a bit too high up the call stack, where it has to deal with guard pages, compaction capturing, block stealing and even page isolation. This is subtle and fragile, and makes it difficult to hack on the code. Now that type violations on the freelists have been fixed, push the accounting down to where pages enter and leave the freelist. [hannes@cmpxchg.org: undo unrelated drive-by line wrap] Link: https://lkml.kernel.org/r/20240327185736.GA7597@cmpxchg.org [hannes@cmpxchg.org: remove unused page parameter from account_freepages()] Link: https://lkml.kernel.org/r/20240327185831.GB7597@cmpxchg.org [baolin.wang@linux.alibaba.com: fix free page accounting] Link: https://lkml.kernel.org/r/a2a48baca69f103aa431fd201f8a06e3b95e203d.1712648441.git.baolin.wang@linux.alibaba.com [andriy.shevchenko@linux.intel.com: avoid defining unused function] Link: https://lkml.kernel.org/r/20240423161506.2637177-1-andriy.shevchenko@linux.intel.com Link: https://lkml.kernel.org/r/20240320180429.678181-11-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
fd919a85cd |
mm: page_isolation: prepare for hygienic freelists
Page isolation currently sets MIGRATE_ISOLATE on a block, then drops zone->lock and scans the block for straddling buddies to split up. Because this happens non-atomically wrt the page allocator, it's possible for allocations to get a buddy whose first block is a regular pcp migratetype but whose tail is isolated. This means that in certain cases memory can still be allocated after isolation. It will also trigger the freelist type hygiene warnings in subsequent patches. start_isolate_page_range() isolate_single_pageblock() set_migratetype_isolate(tail) lock zone->lock move_freepages_block(tail) // nop set_pageblock_migratetype(tail) unlock zone->lock __rmqueue_smallest() del_page_from_freelist(head) expand(head, head_mt) WARN(head_mt != tail_mt) start_pfn = ALIGN_DOWN(MAX_ORDER_NR_PAGES) for (pfn = start_pfn, pfn < end_pfn) if (PageBuddy()) split_free_page(head) Introduce a variant of move_freepages_block() provided by the allocator specifically for page isolation; it moves free pages, converts the block, and handles the splitting of straddling buddies while holding zone->lock. The allocator knows that pageblocks and buddies are always naturally aligned, which means that buddies can only straddle blocks if they're actually >pageblock_order. This means the search-and-split part can be simplified compared to what page isolation used to do. Also tighten up the page isolation code around the expectations of which pages can be large, and how they are freed. Based on extensive discussions with and invaluable input from Zi Yan. [hannes@cmpxchg.org: work around older gcc warning] Link: https://lkml.kernel.org/r/20240321142426.GB777580@cmpxchg.org Link: https://lkml.kernel.org/r/20240320180429.678181-10-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zi Yan
|
f37c0f6876 |
mm: page_alloc: set migratetype inside move_freepages()
This avoids changing migratetype after move_freepages() or move_freepages_block(), which is error prone. It also prepares for upcoming changes to fix move_freepages() not moving free pages partially in the range. Link: https://lkml.kernel.org/r/20240320180429.678181-9-hannes@cmpxchg.org Signed-off-by: Zi Yan <ziy@nvidia.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
55612e80e7 |
mm: page_alloc: close migratetype race between freeing and stealing
There are three freeing paths that read the page's migratetype optimistically before grabbing the zone lock. When this races with block stealing, those pages go on the wrong freelist. The paths in question are: - when freeing >costly orders that aren't THP - when freeing pages to the buddy upon pcp lock contention - when freeing pages that are isolated - when freeing pages initially during boot - when freeing the remainder in alloc_pages_exact() - when "accepting" unaccepted VM host memory before first use - when freeing pages during unpoisoning None of these are so hot that they would need this optimization at the cost of hampering defrag efforts. Especially when contrasted with the fact that the most common buddy freeing path - free_pcppages_bulk - is checking the migratetype under the zone->lock just fine. In addition, isolated pages need to look up the migratetype under the lock anyway, which adds branches to the locked section, and results in a double lookup when the pages are in fact isolated. Move the lookups into the lock. Link: https://lkml.kernel.org/r/20240320180429.678181-8-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
c0cd6f557b |
mm: page_alloc: fix freelist movement during block conversion
Currently, page block type conversion during fallbacks, atomic reservations and isolation can strand various amounts of free pages on incorrect freelists. For example, fallback stealing moves free pages in the block to the new type's freelists, but then may not actually claim the block for that type if there aren't enough compatible pages already allocated. In all cases, free page moving might fail if the block straddles more than one zone, in which case no free pages are moved at all, but the block type is changed anyway. This is detrimental to type hygiene on the freelists. It encourages incompatible page mixing down the line (ask for one type, get another) and thus contributes to long-term fragmentation. Split the process into a proper transaction: check first if conversion will happen, then try to move the free pages, and only if that was successful convert the block to the new type. [baolin.wang@linux.alibaba.com: fix allocation failures with CONFIG_CMA] Link: https://lkml.kernel.org/r/a97697e0-45b0-4f71-b087-fdc7a1d43c0e@linux.alibaba.com Link: https://lkml.kernel.org/r/20240320180429.678181-7-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
2dd482ba62 |
mm: page_alloc: fix move_freepages_block() range error
When a block is partially outside the zone of the cursor page, the function cuts the range to the pivot page instead of the zone start. This can leave large parts of the block behind, which encourages incompatible page mixing down the line (ask for one type, get another), and thus long-term fragmentation. This triggers reliably on the first block in the DMA zone, whose start_pfn is 1. The block is stolen, but everything before the pivot page (which was often hundreds of pages) is left on the old list. Link: https://lkml.kernel.org/r/20240320180429.678181-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
b54ccd3c6b |
mm: page_alloc: move free pages when converting block during isolation
When claiming a block during compaction isolation, move any remaining free pages to the correct freelists as well, instead of stranding them on the wrong list. Otherwise, this encourages incompatible page mixing down the line, and thus long-term fragmentation. Link: https://lkml.kernel.org/r/20240320180429.678181-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Tested-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
e6cf9e1c4c |
mm: page_alloc: fix up block types when merging compatible blocks
The buddy allocator coalesces compatible blocks during freeing, but it doesn't update the types of the subblocks to match. When an allocation later breaks the chunk down again, its pieces will be put on freelists of the wrong type. This encourages incompatible page mixing (ask for one type, get another), and thus long-term fragmentation. Update the subblocks when merging a larger chunk, such that a later expand() will maintain freelist type hygiene. Link: https://lkml.kernel.org/r/20240320180429.678181-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Tested-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
9cbe97bad5 |
mm: page_alloc: optimize free_unref_folios()
Move direct freeing of isolated pages to the lock-breaking block in the second loop. This saves an unnecessary migratetype reassessment. Minor comment and local variable scoping cleanups. Link: https://lkml.kernel.org/r/20240320180429.678181-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
17edeb5d3f |
mm: page_alloc: remove pcppage migratetype caching
Patch series "mm: page_alloc: freelist migratetype hygiene", v4. The page allocator's mobility grouping is intended to keep unmovable pages separate from reclaimable/compactable ones to allow on-demand defragmentation for higher-order allocations and huge pages. Currently, there are several places where accidental type mixing occurs: an allocation asks for a page of a certain migratetype and receives another. This ruins pageblocks for compaction, which in turn makes allocating huge pages more expensive and less reliable. The series addresses those causes. The last patch adds type checks on all freelist movements to prevent new violations being introduced. The benefits can be seen in a mixed workload that stresses the machine with a memcache-type workload and a kernel build job while periodically attempting to allocate batches of THP. The following data is aggregated over 50 consecutive defconfig builds: VANILLA PATCHED Hugealloc Time mean 165843.93 ( +0.00%) 113025.88 ( -31.85%) Hugealloc Time stddev 158957.35 ( +0.00%) 114716.07 ( -27.83%) Kbuild Real time 310.24 ( +0.00%) 300.73 ( -3.06%) Kbuild User time 1271.13 ( +0.00%) 1259.42 ( -0.92%) Kbuild System time 582.02 ( +0.00%) 559.79 ( -3.81%) THP fault alloc 30585.14 ( +0.00%) 40853.62 ( +33.57%) THP fault fallback 36626.46 ( +0.00%) 26357.62 ( -28.04%) THP fault fail rate % 54.49 ( +0.00%) 39.22 ( -27.53%) Pagealloc fallback 1328.00 ( +0.00%) 1.00 ( -99.85%) Pagealloc type mismatch 181009.50 ( +0.00%) 0.00 ( -100.00%) Direct compact stall 434.56 ( +0.00%) 257.66 ( -40.61%) Direct compact fail 421.70 ( +0.00%) 249.94 ( -40.63%) Direct compact success 12.86 ( +0.00%) 7.72 ( -37.09%) Direct compact success rate % 2.86 ( +0.00%) 2.82 ( -0.96%) Compact daemon scanned migrate 3370059.62 ( +0.00%) 3612054.76 ( +7.18%) Compact daemon scanned free 7718439.20 ( +0.00%) 5386385.02 ( -30.21%) Compact direct scanned migrate 309248.62 ( +0.00%) 176721.04 ( -42.85%) Compact direct scanned free 433582.84 ( +0.00%) 315727.66 ( -27.18%) Compact migrate scanned daemon % 91.20 ( +0.00%) 94.48 ( +3.56%) Compact free scanned daemon % 94.58 ( +0.00%) 94.42 ( -0.16%) Compact total migrate scanned 3679308.24 ( +0.00%) 3788775.80 ( +2.98%) Compact total free scanned 8152022.04 ( +0.00%) 5702112.68 ( -30.05%) Alloc stall 872.04 ( +0.00%) 5156.12 ( +490.71%) Pages kswapd scanned 510645.86 ( +0.00%) 3394.94 ( -99.33%) Pages kswapd reclaimed 134811.62 ( +0.00%) 2701.26 ( -98.00%) Pages direct scanned 99546.06 ( +0.00%) 376407.52 ( +278.12%) Pages direct reclaimed 62123.40 ( +0.00%) 289535.70 ( +366.06%) Pages total scanned 610191.92 ( +0.00%) 379802.46 ( -37.76%) Pages scanned kswapd % 76.36 ( +0.00%) 0.10 ( -98.58%) Swap out 12057.54 ( +0.00%) 15022.98 ( +24.59%) Swap in 209.16 ( +0.00%) 256.48 ( +22.52%) File refaults 17701.64 ( +0.00%) 11765.40 ( -33.53%) Huge page success rate is higher, allocation latencies are shorter and more predictable. Stealing (fallback) rate is drastically reduced. Notably, while the vanilla kernel keeps doing fallbacks on an ongoing basis, the patched kernel enters a steady state once the distribution of block types is adequate for the workload. Steals over 50 runs: VANILLA PATCHED 1504.0 227.0 1557.0 6.0 1391.0 13.0 1080.0 26.0 1057.0 40.0 1156.0 6.0 805.0 46.0 736.0 20.0 1747.0 2.0 1699.0 34.0 1269.0 13.0 1858.0 12.0 907.0 4.0 727.0 2.0 563.0 2.0 3094.0 2.0 10211.0 3.0 2621.0 1.0 5508.0 2.0 1060.0 2.0 538.0 3.0 5773.0 2.0 2199.0 0.0 3781.0 2.0 1387.0 1.0 4977.0 0.0 2865.0 1.0 1814.0 1.0 3739.0 1.0 6857.0 0.0 382.0 0.0 407.0 1.0 3784.0 0.0 297.0 0.0 298.0 0.0 6636.0 0.0 4188.0 0.0 242.0 0.0 9960.0 0.0 5816.0 0.0 354.0 0.0 287.0 0.0 261.0 0.0 140.0 1.0 2065.0 0.0 312.0 0.0 331.0 0.0 164.0 0.0 465.0 1.0 219.0 0.0 Type mismatches are down too. Those count every time an allocation request asks for one migratetype and gets another. This can still occur minimally in the patched kernel due to non-stealing fallbacks, but it's quite rare and follows the pattern of overall fallbacks - once the block type distribution settles, mismatches cease as well: VANILLA: PATCHED: 182602.0 268.0 135794.0 20.0 88619.0 19.0 95973.0 0.0 129590.0 0.0 129298.0 0.0 147134.0 0.0 230854.0 0.0 239709.0 0.0 137670.0 0.0 132430.0 0.0 65712.0 0.0 57901.0 0.0 67506.0 0.0 63565.0 4.0 34806.0 0.0 42962.0 0.0 32406.0 0.0 38668.0 0.0 61356.0 0.0 57800.0 0.0 41435.0 0.0 83456.0 0.0 65048.0 0.0 28955.0 0.0 47597.0 0.0 75117.0 0.0 55564.0 0.0 38280.0 0.0 52404.0 0.0 26264.0 0.0 37538.0 0.0 19671.0 0.0 30936.0 0.0 26933.0 0.0 16962.0 0.0 44554.0 0.0 46352.0 0.0 24995.0 0.0 35152.0 0.0 12823.0 0.0 21583.0 0.0 18129.0 0.0 31693.0 0.0 28745.0 0.0 33308.0 0.0 31114.0 0.0 35034.0 0.0 12111.0 0.0 24885.0 0.0 Compaction work is markedly reduced despite much better THP rates. In the vanilla kernel, reclaim seems to have been driven primarily by watermark boosting that happens as a result of fallbacks. With those all but eliminated, watermarks average lower and kswapd does less work. The uptick in direct reclaim is because THP requests have to fend for themselves more often - which is intended policy right now. Aggregate reclaim activity is lowered significantly, though. This patch (of 10): The idea behind the cache is to save get_pageblock_migratetype() lookups during bulk freeing. A microbenchmark suggests this isn't helping, though. The pcp migratetype can get stale, which means that bulk freeing has an extra branch to check if the pageblock was isolated while on the pcp. While the variance overlaps, the cache write and the branch seem to make this a net negative. The following test allocates and frees batches of 10,000 pages (~3x the pcp high marks to trigger flushing): Before: 8,668.48 msec task-clock # 99.735 CPUs utilized ( +- 2.90% ) 19 context-switches # 4.341 /sec ( +- 3.24% ) 0 cpu-migrations # 0.000 /sec 17,440 page-faults # 3.984 K/sec ( +- 2.90% ) 41,758,692,473 cycles # 9.541 GHz ( +- 2.90% ) 126,201,294,231 instructions # 5.98 insn per cycle ( +- 2.90% ) 25,348,098,335 branches # 5.791 G/sec ( +- 2.90% ) 33,436,921 branch-misses # 0.26% of all branches ( +- 2.90% ) 0.0869148 +- 0.0000302 seconds time elapsed ( +- 0.03% ) After: 8,444.81 msec task-clock # 99.726 CPUs utilized ( +- 2.90% ) 22 context-switches # 5.160 /sec ( +- 3.23% ) 0 cpu-migrations # 0.000 /sec 17,443 page-faults # 4.091 K/sec ( +- 2.90% ) 40,616,738,355 cycles # 9.527 GHz ( +- 2.90% ) 126,383,351,792 instructions # 6.16 insn per cycle ( +- 2.90% ) 25,224,985,153 branches # 5.917 G/sec ( +- 2.90% ) 32,236,793 branch-misses # 0.25% of all branches ( +- 2.90% ) 0.0846799 +- 0.0000412 seconds time elapsed ( +- 0.05% ) A side effect is that this also ensures that pages whose pageblock gets stolen while on the pcplist end up on the right freelist and we don't perform potentially type-incompatible buddy merges (or skip merges when we shouldn't), which is likely beneficial to long-term fragmentation management, although the effects would be harder to measure. Settle for simpler and faster code as justification here. Link: https://lkml.kernel.org/r/20240320180429.678181-1-hannes@cmpxchg.org Link: https://lkml.kernel.org/r/20240320180429.678181-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Tested-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
b7b098cf00 |
mm: always initialise folio->_deferred_list
Patch series "Various significant MM patches". These patches all interact in annoying ways which make it tricky to send them out in any way other than a big batch, even though there's not really an overarching theme to connect them. The big effects of this patch series are: - folio_test_hugetlb() becomes reliable, even when called without a page reference - We free up PG_slab, and we could always use more page flags - We no longer need to check PageSlab before calling page_mapcount() This patch (of 9): For compound pages which are at least order-2 (and hence have a deferred_list), initialise it and then we can check at free that the page is not part of a deferred list. We recently found this useful to rule out a source of corruption. [peterx@redhat.com: always initialise folio->_deferred_list] Link: https://lkml.kernel.org/r/20240417211836.2742593-2-peterx@redhat.com Link: https://lkml.kernel.org/r/20240321142448.1645400-1-willy@infradead.org Link: https://lkml.kernel.org/r/20240321142448.1645400-2-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Suren Baghdasaryan
|
cc92eba1c8 |
mm: fix non-compound multi-order memory accounting in __free_pages
When a non-compound multi-order page is freed, it is possible that a speculative reference keeps the page pinned. In this case we free all pages except for the first page, which will be freed later by the last put_page(). However the page passed to put_page() is indistinguishable from an order-0 page, so it cannot do the accounting, just as it cannot free the subsequent pages. Do the accounting here, where we free the pages. Link: https://lkml.kernel.org/r/20240321163705.3067592-21-surenb@google.com Reported-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Tested-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alex Gaynor <alex.gaynor@gmail.com> Cc: Alice Ryhl <aliceryhl@google.com> Cc: Andreas Hindborg <a.hindborg@samsung.com> Cc: Benno Lossin <benno.lossin@proton.me> Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Gary Guo <gary@garyguo.net> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Miguel Ojeda <ojeda@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Wedson Almeida Filho <wedsonaf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Suren Baghdasaryan
|
be25d1d4e8 |
mm: create new codetag references during page splitting
When a high-order page is split into smaller ones, each newly split page should get its codetag. After the split each split page will be referencing the original codetag. The codetag's "bytes" counter remains the same because the amount of allocated memory has not changed, however the "calls" counter gets increased to keep the counter correct when these individual pages get freed. Link: https://lkml.kernel.org/r/20240321163705.3067592-20-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alex Gaynor <alex.gaynor@gmail.com> Cc: Alice Ryhl <aliceryhl@google.com> Cc: Andreas Hindborg <a.hindborg@samsung.com> Cc: Benno Lossin <benno.lossin@proton.me> Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Gary Guo <gary@garyguo.net> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Miguel Ojeda <ojeda@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Wedson Almeida Filho <wedsonaf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Suren Baghdasaryan
|
b951aaff50 |
mm: enable page allocation tagging
Redefine page allocators to record allocation tags upon their invocation. Instrument post_alloc_hook and free_pages_prepare to modify current allocation tag. [surenb@google.com: undo _noprof additions in the documentation] Link: https://lkml.kernel.org/r/20240326231453.1206227-3-surenb@google.com Link: https://lkml.kernel.org/r/20240321163705.3067592-19-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Co-developed-by: Kent Overstreet <kent.overstreet@linux.dev> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alex Gaynor <alex.gaynor@gmail.com> Cc: Alice Ryhl <aliceryhl@google.com> Cc: Andreas Hindborg <a.hindborg@samsung.com> Cc: Benno Lossin <benno.lossin@proton.me> Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Gary Guo <gary@garyguo.net> Cc: Miguel Ojeda <ojeda@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wedson Almeida Filho <wedsonaf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Suren Baghdasaryan
|
dcfe378c81 |
lib: introduce support for page allocation tagging
Introduce helper functions to easily instrument page allocators by storing a pointer to the allocation tag associated with the code that allocated the page in a page_ext field. Link: https://lkml.kernel.org/r/20240321163705.3067592-15-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Co-developed-by: Kent Overstreet <kent.overstreet@linux.dev> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alex Gaynor <alex.gaynor@gmail.com> Cc: Alice Ryhl <aliceryhl@google.com> Cc: Andreas Hindborg <a.hindborg@samsung.com> Cc: Benno Lossin <benno.lossin@proton.me> Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Gary Guo <gary@garyguo.net> Cc: Miguel Ojeda <ojeda@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Wedson Almeida Filho <wedsonaf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lucas Stach
|
55f77df7d7 |
mm: page_alloc: control latency caused by zone PCP draining
Patch series "mm/treewide: Remove pXd_huge() API", v2. In previous work [1], we removed the pXd_large() API, which is arch specific. This patchset further removes the hugetlb pXd_huge() API. Hugetlb was never special on creating huge mappings when compared with other huge mappings. Having a standalone API just to detect such pgtable entries is more or less redundant, especially after the pXd_leaf() API set is introduced with/without CONFIG_HUGETLB_PAGE. When looking at this problem, a few issues are also exposed that we don't have a clear definition of the *_huge() variance API. This patchset started by cleaning these issues first, then replace all *_huge() users to use *_leaf(), then drop all *_huge() code. On x86/sparc, swap entries will be reported "true" in pXd_huge(), while for all the rest archs they're reported "false" instead. This part is done in patch 1-5, in which I suspect patch 1 can be seen as a bug fix, but I'll leave that to hmm experts to decide. Besides, there are three archs (arm, arm64, powerpc) that have slightly different definitions between the *_huge() v.s. *_leaf() variances. I tackled them separately so that it'll be easier for arch experts to chim in when necessary. This part is done in patch 6-9. The final patches 10-14 do the rest on the final removal, since *_leaf() will be the ultimate API in the future, and we seem to have quite some confusions on how *_huge() APIs can be defined, provide a rich comment for *_leaf() API set to define them properly to avoid future misuse, and hopefully that'll also help new archs to start support huge mappings and avoid traps (like either swap entries, or PROT_NONE entry checks). [1] https://lore.kernel.org/r/20240305043750.93762-1-peterx@redhat.com This patch (of 14): When the complete PCP is drained a much larger number of pages than the usual batch size might be freed at once, causing large IRQ and preemption latency spikes, as they are all freed while holding the pcp and zone spinlocks. To avoid those latency spikes, limit the number of pages freed in a single bulk operation to common batch limits. Link: https://lkml.kernel.org/r/20240318200404.448346-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20240318200736.2835502-1-l.stach@pengutronix.de Signed-off-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andreas Larsson <andreas@gaisler.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bjorn Andersson <andersson@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Fabio Estevam <festevam@denx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Konrad Dybcio <konrad.dybcio@linaro.org> Cc: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org> Cc: Mark Salter <msalter@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
902861e34c |
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx TMNhHfyiHYDTx/GAV9NXW84tasJSDgA= =TG55 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. * tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits) mm/zswap: remove the memcpy if acomp is not sleepable crypto: introduce: acomp_is_async to expose if comp drivers might sleep memtest: use {READ,WRITE}_ONCE in memory scanning mm: prohibit the last subpage from reusing the entire large folio mm: recover pud_leaf() definitions in nopmd case selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements selftests/mm: skip uffd hugetlb tests with insufficient hugepages selftests/mm: dont fail testsuite due to a lack of hugepages mm/huge_memory: skip invalid debugfs new_order input for folio split mm/huge_memory: check new folio order when split a folio mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure mm: add an explicit smp_wmb() to UFFDIO_CONTINUE mm: fix list corruption in put_pages_list mm: remove folio from deferred split list before uncharging it filemap: avoid unnecessary major faults in filemap_fault() mm,page_owner: drop unnecessary check mm,page_owner: check for null stack_record before bumping its refcount mm: swap: fix race between free_swap_and_cache() and swapoff() mm/treewide: align up pXd_leaf() retval across archs mm/treewide: drop pXd_large() ... |