The mm_walk structure currently mixed data and code. Split out the
operations vectors into a new mm_walk_ops structure, and while we are
changing the API also declare the mm_walk structure inside the
walk_page_range and walk_page_vma functions.
Based on patch from Linus Torvalds.
Link: https://lore.kernel.org/r/20190828141955.22210-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Add a new header for the two handful of users of the walk_page_range /
walk_page_vma interface instead of polluting all users of mm.h with it.
Link: https://lore.kernel.org/r/20190828141955.22210-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This matters at least for the mincore syscall, which will otherwise copy
uninitialized memory from the page allocator to userspace. It is
probably also a correctness error for /proc/$pid/pagemap, but I haven't
tested that.
Removing the `walk->hugetlb_entry` condition in walk_hugetlb_range() has
no effect because the caller already checks for that.
This only reports holes in hugetlb ranges to callers who have specified
a hugetlb_entry callback.
This issue was found using an AFL-based fuzzer.
v2:
- don't crash on ->pte_hole==NULL (Andrew Morton)
- add Cc stable (Andrew Morton)
Fixes: 1e25a271c8 ("mincore: apply page table walker on do_mincore()")
Signed-off-by: Jann Horn <jannh@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A poisoned or migrated hugepage is stored as a swap entry in the page
tables. On architectures that support hugepages consisting of
contiguous page table entries (such as on arm64) this leads to ambiguity
in determining the page table entry to return in huge_pte_offset() when
a poisoned entry is encountered.
Let's remove the ambiguity by adding a size parameter to convey
additional information about the requested address. Also fixup the
definition/usage of huge_pte_offset() throughout the tree.
Link: http://lkml.kernel.org/r/20170522133604.11392-4-punit.agrawal@arm.com
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: James Hogan <james.hogan@imgtec.com> (odd fixer:METAG ARCHITECTURE)
Cc: Ralf Baechle <ralf@linux-mips.org> (supporter:MIPS)
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert all non-architecture-specific code to 5-level paging.
It's mostly mechanical adding handling one more page table level in
places where we deal with pud_t.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current transparent hugepage code only supports PMDs. This patch
adds support for transparent use of PUDs with DAX. It does not include
support for anonymous pages. x86 support code also added.
Most of this patch simply parallels the work that was done for huge
PMDs. The only major difference is how the new ->pud_entry method in
mm_walk works. The ->pmd_entry method replaces the ->pte_entry method,
whereas the ->pud_entry method works along with either ->pmd_entry or
->pte_entry. The pagewalk code takes care of locking the PUD before
calling ->pud_walk, so handlers do not need to worry whether the PUD is
stable.
[dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()]
Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com
[dave.jiang@intel.com: native_pud_clear missing on i386 build]
Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
walk_page_test() is purely pagewalk's internal stuff, and its positive
return values are not intended to be passed to the callers of pagewalk.
However, in the current code if the last vma in the do-while loop in
walk_page_range() happens to return a positive value, it leaks outside
walk_page_range(). So the user visible effect is invalid/unexpected
return value (according to the reporter, mbind() causes it.)
This patch fixes it simply by reinitializing the return value after
checked.
Another exposed interface, walk_page_vma(), already returns 0 for such
cases so no problem.
Fixes: fafaa4264e ("pagewalk: improve vma handling")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Kazutomo Yoshii <kazutomo.yoshii@gmail.com>
Reported-by: Kazutomo Yoshii <kazutomo.yoshii@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
walk_page_range() silently skips vma having VM_PFNMAP set, which leads to
undesirable behaviour at client end (who called walk_page_range). For
example for pagemap_read(), when no callbacks are called against VM_PFNMAP
vma, pagemap_read() may prepare pagemap data for next virtual address
range at wrong index. That could confuse and/or break userspace
applications.
This patch avoid this misbehavior caused by vma(VM_PFNMAP) like follows:
- for pagemap_read() which has its own ->pte_hole(), call the ->pte_hole()
over vma(VM_PFNMAP),
- for clear_refs and queue_pages which have their own ->tests_walk,
just return 1 and skip vma(VM_PFNMAP). This is no problem because
these are not interested in hole regions,
- for other callers, just skip the vma(VM_PFNMAP) as a default behavior.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Shiraz Hashim <shashim@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce walk_page_vma(), which is useful for the callers which want to
walk over a given vma. It's used by later patches.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current implementation of page table walker has a fundamental problem in
vma handling, which started when we tried to handle vma(VM_HUGETLB).
Because it's done in pgd loop, considering vma boundary makes code
complicated and bug-prone.
From the users viewpoint, some user checks some vma-related condition to
determine whether the user really does page walk over the vma.
In order to solve these, this patch moves vma check outside pgd loop and
introduce a new callback ->test_walk().
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently no user of page table walker sets ->pgd_entry() or
->pud_entry(), so checking their existence in each loop is just wasting
CPU cycle. So let's remove it to reduce overhead.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
walk_page_range() silently skips vma having VM_PFNMAP set, which leads
to undesirable behaviour at client end (who called walk_page_range).
Userspace applications get the wrong data, so the effect is like just
confusing users (if the applications just display the data) or sometimes
killing the processes (if the applications do something with
misunderstanding virtual addresses due to the wrong data.)
For example for pagemap_read, when no callbacks are called against
VM_PFNMAP vma, pagemap_read may prepare pagemap data for next virtual
address range at wrong index.
Eventually userspace may get wrong pagemap data for a task.
Corresponding to a VM_PFNMAP marked vma region, kernel may report
mappings from subsequent vma regions. User space in turn may account
more pages (than really are) to the task.
In my case I was using procmem, procrack (Android utility) which uses
pagemap interface to account RSS pages of a task. Due to this bug it
was giving a wrong picture for vmas (with VM_PFNMAP set).
Fixes: a9ff785e44 ("mm/pagewalk.c: walk_page_range should avoid VM_PFNMAP areas")
Signed-off-by: Shiraz Hashim <shashim@codeaurora.org>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org> [3.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dump the contents of the relevant struct_mm when we hit the bug condition.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When walk_page_range walk a memory map's page tables, it'll skip
VM_PFNMAP area, then variable 'next' will to assign to vma->vm_end, it
maybe larger than 'end'. In next loop, 'addr' will be larger than
'next'. Then in /proc/XXXX/pagemap file reading procedure, the 'addr'
will growing forever in pagemap_pte_range, pte_to_pagemap_entry will
access the wrong pte.
BUG: Bad page map in process procrank pte:8437526f pmd:785de067
addr:9108d000 vm_flags:00200073 anon_vma:f0d99020 mapping: (null) index:9108d
CPU: 1 PID: 4974 Comm: procrank Tainted: G B W O 3.10.1+ #1
Call Trace:
dump_stack+0x16/0x18
print_bad_pte+0x114/0x1b0
vm_normal_page+0x56/0x60
pagemap_pte_range+0x17a/0x1d0
walk_page_range+0x19e/0x2c0
pagemap_read+0x16e/0x200
vfs_read+0x84/0x150
SyS_read+0x4a/0x80
syscall_call+0x7/0xb
Signed-off-by: Liu ShuoX <shuox.liu@intel.com>
Signed-off-by: Chen LinX <linx.z.chen@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org> [3.10.x+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A panic can be caused by simply cat'ing /proc/<pid>/smaps while an
application has a VM_PFNMAP range. It happened in-house when a
benchmarker was trying to decipher the memory layout of his program.
/proc/<pid>/smaps and similar walks through a user page table should not
be looking at VM_PFNMAP areas.
Certain tests in walk_page_range() (specifically split_huge_page_pmd())
assume that all the mapped PFN's are backed with page structures. And
this is not usually true for VM_PFNMAP areas. This can result in panics
on kernel page faults when attempting to address those page structures.
There are a half dozen callers of walk_page_range() that walk through a
task's entire page table (as N. Horiguchi pointed out). So rather than
change all of them, this patch changes just walk_page_range() to ignore
VM_PFNMAP areas.
The logic of hugetlb_vma() is moved back into walk_page_range(), as we
want to test any vma in the range.
VM_PFNMAP areas are used by:
- graphics memory manager gpu/drm/drm_gem.c
- global reference unit sgi-gru/grufile.c
- sgi special memory char/mspec.c
- and probably several out-of-tree modules
[akpm@linux-foundation.org: remove now-unused hugetlb_vma() stub]
Signed-off-by: Cliff Wickman <cpw@sgi.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pass vma instead of mm and add address parameter.
In most cases we already have vma on the stack. We provides
split_huge_page_pmd_mm() for few cases when we have mm, but not vma.
This change is preparation to huge zero pmd splitting implementation.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@linux.intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix kernel-doc warnings such as
Warning(../mm/page_cgroup.c:432): No description found for parameter 'id'
Warning(../mm/page_cgroup.c:432): Excess function parameter 'mem' description in 'swap_cgroup_record'
Signed-off-by: Wanpeng Li <liwp@linux.vnet.ibm.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Originally, walk_hugetlb_range() didn't require a caller take any lock.
But commit d33b9f45bd ("mm: hugetlb: fix hugepage memory leak in
walk_page_range") changed its rule. Because it added find_vma() call in
walk_hugetlb_range().
Any locking-rule change commit should write a doc too.
[akpm@linux-foundation.org: clarify comment]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, walk_page_range() calls find_vma() every page table for walk
iteration. but it's completely unnecessary if walk->hugetlb_entry is
unused. And we don't have to assume find_vma() is a lightweight
operation. So this patch checks the walk->hugetlb_entry and avoids the
find_vma() call if possible.
This patch also makes some cleanups. 1) remove ugly uninitialized_var()
and 2) #ifdef in function body.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The doc of find_vma() says,
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
{
(snip)
Thus, caller should confirm whether the returned vma matches a desired one.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, if a mm_walk has either ->pte_entry or ->pmd_entry set, it will
unconditionally split any transparent huge pages it runs in to. In
practice, that means that anyone doing a
cat /proc/$pid/smaps
will unconditionally break down every huge page in the process and depend
on khugepaged to re-collapse it later. This is fairly suboptimal.
This patch changes that behavior. It teaches each ->pmd_entry handler
(there are five) that they must break down the THPs themselves. Also, the
_generic_ code will never break down a THP unless a ->pte_entry handler is
actually set.
This means that the ->pmd_entry handlers can now choose to deal with THPs
without breaking them down.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Cc: Michael J Wolf <mjwolf@us.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
split_huge_page_pmd compat code. Each one of those would need to be
expanded to hundred of lines of complex code without a fully reliable
split_huge_page_pmd design.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit d33b9f45 ("mm: hugetlb: fix hugepage memory leak in
walk_page_range()") introduces a check if a vma is a hugetlbfs one and
later in 5dc37642 ("mm hugetlb: add hugepage support to pagemap") it is
moved under #ifdef CONFIG_HUGETLB_PAGE but a needless find_vma call is
left behind and its result is not used anywhere else in the function.
The side-effect of caching vma for @addr inside walk->mm is neither
utilized in walk_page_range() nor in called functions.
Signed-off-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Matt Mackall <mpm@selenic.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we look into pagemap using page-types with option -p, the value of
pfn for hugepages looks wrong (see below.) This is because pte was
evaluated only once for one vma although it should be updated for each
hugepage. This patch fixes it.
$ page-types -p 3277 -Nl -b huge
voffset offset len flags
7f21e8a00 11e400 1 ___U___________H_G________________
7f21e8a01 11e401 1ff ________________TG________________
^^^
7f21e8c00 11e400 1 ___U___________H_G________________
7f21e8c01 11e401 1ff ________________TG________________
^^^
One hugepage contains 1 head page and 511 tail pages in x86_64 and each
two lines represent each hugepage. Voffset and offset mean virtual
address and physical address in the page unit, respectively. The
different hugepages should not have the same offset value.
With this patch applied:
$ page-types -p 3386 -Nl -b huge
voffset offset len flags
7fec7a600 112c00 1 ___UD__________H_G________________
7fec7a601 112c01 1ff ________________TG________________
^^^
7fec7a800 113200 1 ___UD__________H_G________________
7fec7a801 113201 1ff ________________TG________________
^^^
OK
More info:
- This patch modifies walk_page_range()'s hugepage walker. But the
change only affects pagemap_read(), which is the only caller of hugepage
callback.
- Without this patch, hugetlb_entry() callback is called per vma, that
doesn't match the natural expectation from its name.
- With this patch, hugetlb_entry() is called per hugepte entry and the
callback can become much simpler.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most callers of pmd_none_or_clear_bad() check whether the target page is
in a hugepage or not, but walk_page_range() do not check it. So if we
read /proc/pid/pagemap for the hugepage on x86 machine, the hugepage
memory is leaked as shown below. This patch fixes it.
Details
=======
My test program (leak_pagemap) works as follows:
- creat() and mmap() a file on hugetlbfs (file size is 200MB == 100 hugepages,)
- read()/write() something on it,
- call page-types with option -p (walk around the page tables),
- munmap() and unlink() the file on hugetlbfs
Without my patches
------------------
$ cat /proc/meminfo |grep "HugePage"
HugePages_Total: 1000
HugePages_Free: 1000
HugePages_Rsvd: 0
HugePages_Surp: 0
$ ./leak_pagemap
[snip output]
$ cat /proc/meminfo |grep "HugePage"
HugePages_Total: 1000
HugePages_Free: 900
HugePages_Rsvd: 0
HugePages_Surp: 0
$ ls /hugetlbfs/
$
100 hugepages are accounted as used while there is no file on hugetlbfs.
With my patches
---------------
$ cat /proc/meminfo |grep "HugePage"
HugePages_Total: 1000
HugePages_Free: 1000
HugePages_Rsvd: 0
HugePages_Surp: 0
$ ./leak_pagemap
[snip output]
$ cat /proc/meminfo |grep "HugePage"
HugePages_Total: 1000
HugePages_Free: 1000
HugePages_Rsvd: 0
HugePages_Surp: 0
$ ls /hugetlbfs
$
No memory leaks.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need this at least for huge page detection for now, because powerpc
needs the vm_area_struct to be able to determine whether a virtual address
is referring to a huge page (its pmd_huge() doesn't work).
It might also come in handy for some of the other users.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After the loop in walk_pte_range() pte might point to the first address after
the pmd it walks. The pte_unmap() is then applied to something bad.
Spotted by Roel Kluin and Andreas Schwab.
Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Cc: Roel Kluin <12o3l@tiscali.nl>
Cc: Andreas Schwab <schwab@suse.de>
Acked-by: Matt Mackall <mpm@selenic.com>
Acked-by: Mikael Pettersson <mikpe@it.uu.se>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix various kernel-doc notation in mm/:
filemap.c: add function short description; convert 2 to kernel-doc
fremap.c: change parameter 'prot' to @prot
pagewalk.c: change "-" in function parameters to ":"
slab.c: fix short description of kmem_ptr_validate()
swap.c: fix description & parameters of put_pages_list()
swap_state.c: fix function parameters
vmalloc.c: change "@returns" to "Returns:" since that is not a parameter
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a general page table walker
Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>