Fixes the following W=1 kernel build warning(s):
drivers/mtd/ubi/wl.c:584: warning: Function parameter or member 'nested' not described in 'schedule_erase'
drivers/mtd/ubi/wl.c:1075: warning: Excess function parameter 'shutdown' description in '__erase_worker'
Cc: Richard Weinberger <richard@nod.at>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-13-lee.jones@linaro.org
Fixes the following W=1 kernel build warning(s):
drivers/mtd/ubi/eba.c:1304: warning: Function parameter or member 'vidb' not described in 'ubi_eba_copy_leb'
drivers/mtd/ubi/eba.c:1304: warning: Excess function parameter 'vid_hdr' description in 'ubi_eba_copy_leb'
drivers/mtd/ubi/eba.c:1483: warning: Function parameter or member 'ai' not described in 'print_rsvd_warning'
Cc: Richard Weinberger <richard@nod.at>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-12-lee.jones@linaro.org
Fixes the following W=1 kernel build warning(s):
drivers/mtd/ubi/kapi.c:464: warning: Function parameter or member 'sgl' not described in 'ubi_leb_read_sg'
drivers/mtd/ubi/kapi.c:464: warning: Excess function parameter 'buf' description in 'ubi_leb_read_sg'
Cc: Richard Weinberger <richard@nod.at>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-11-lee.jones@linaro.org
Fixes the following W=1 kernel build warning(s):
drivers/mtd/nand/spi/toshiba.c:36: warning: Function parameter or member 'write_cache_variants' not described in 'SPINAND_OP_VARIANTS'
drivers/mtd/nand/spi/toshiba.c:36: warning: Function parameter or member '0' not described in 'SPINAND_OP_VARIANTS'
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: Yoshio Furuyama <ytc-mb-yfuruyama7@kioxia.com>
Cc: Frieder Schrempf <frieder.schrempf@kontron.de>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Reviewed-by: Frieder Schrempf <frieder.schrempf@kontron.de>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-10-lee.jones@linaro.org
Fixes the following W=1 kernel build warning(s):
drivers/mtd/ubi/build.c:61: warning: Function parameter or member 'ubi_num' not described in 'mtd_dev_param'
Cc: Richard Weinberger <richard@nod.at>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-9-lee.jones@linaro.org
Fixes the following W=1 kernel build warning(s):
drivers/mtd/spi-nor/controllers/hisi-sfc.c:328: warning: Function parameter or member 'np' not described in 'hisi_spi_nor_register'
drivers/mtd/spi-nor/controllers/hisi-sfc.c:328: warning: Function parameter or member 'host' not described in 'hisi_spi_nor_register'
Cc: Tudor Ambarus <tudor.ambarus@microchip.com>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: "Christian König" <christian.koenig@amd.com>
Cc: linux-mtd@lists.infradead.org
Cc: linux-media@vger.kernel.org
Cc: dri-devel@lists.freedesktop.org
Cc: linaro-mm-sig@lists.linaro.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Reviewed-by: Vignesh Raghavendra <vigneshr@ti.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-8-lee.jones@linaro.org
Fixes the following W=1 kernel build warning(s):
drivers/mtd/nand/onenand/onenand_bbt.c:33: warning: Function parameter or member 'buf' not described in 'check_short_pattern'
drivers/mtd/nand/onenand/onenand_bbt.c:33: warning: Function parameter or member 'len' not described in 'check_short_pattern'
drivers/mtd/nand/onenand/onenand_bbt.c:33: warning: Function parameter or member 'paglen' not described in 'check_short_pattern'
drivers/mtd/nand/onenand/onenand_bbt.c:33: warning: Function parameter or member 'td' not described in 'check_short_pattern'
drivers/mtd/nand/onenand/onenand_bbt.c:57: warning: Function parameter or member 'mtd' not described in 'create_bbt'
drivers/mtd/nand/onenand/onenand_bbt.c:57: warning: Function parameter or member 'buf' not described in 'create_bbt'
drivers/mtd/nand/onenand/onenand_bbt.c:57: warning: Function parameter or member 'bd' not described in 'create_bbt'
drivers/mtd/nand/onenand/onenand_bbt.c:57: warning: Function parameter or member 'chip' not described in 'create_bbt'
drivers/mtd/nand/onenand/onenand_bbt.c:132: warning: Function parameter or member 'mtd' not described in 'onenand_memory_bbt'
drivers/mtd/nand/onenand/onenand_bbt.c:132: warning: Function parameter or member 'bd' not described in 'onenand_memory_bbt'
drivers/mtd/nand/onenand/onenand_bbt.c:145: warning: Function parameter or member 'mtd' not described in 'onenand_isbad_bbt'
drivers/mtd/nand/onenand/onenand_bbt.c:145: warning: Function parameter or member 'offs' not described in 'onenand_isbad_bbt'
drivers/mtd/nand/onenand/onenand_bbt.c:145: warning: Function parameter or member 'allowbbt' not described in 'onenand_isbad_bbt'
drivers/mtd/nand/onenand/onenand_bbt.c:182: warning: Function parameter or member 'mtd' not described in 'onenand_scan_bbt'
drivers/mtd/nand/onenand/onenand_bbt.c:182: warning: Function parameter or member 'bd' not described in 'onenand_scan_bbt'
drivers/mtd/nand/onenand/onenand_bbt.c:230: warning: Function parameter or member 'mtd' not described in 'onenand_default_bbt'
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-7-lee.jones@linaro.org
Fixes the following W=1 kernel build warning(s):
drivers/mtd/mtdcore.c:1592: warning: Function parameter or member 'section' not described in 'mtd_ooblayout_find_eccregion'
drivers/mtd/mtdcore.c:1592: warning: Excess function parameter 'sectionp' description in 'mtd_ooblayout_find_eccregion'
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Reviewed-by: Alexander Dahl <ada@thorsis.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-6-lee.jones@linaro.org
This patch also places the descriptions in the correct order.
Fixes the following W=1 kernel build warning(s):
drivers/mtd/devices/docg3.c:819: warning: bad line:
drivers/mtd/devices/docg3.c:1799: warning: Excess function parameter 'base' description in 'doc_probe_device'
Cc: Robert Jarzmik <robert.jarzmik@free.fr>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-5-lee.jones@linaro.org
Fixes the following W=1 kernel build warning(s):
drivers/mtd/nand/onenand/onenand_base.c:140: warning: Function parameter or member 'mtd' not described in 'onenand_ooblayout_32_64_ecc'
drivers/mtd/nand/onenand/onenand_base.c:140: warning: Function parameter or member 'section' not described in 'onenand_ooblayout_32_64_ecc'
drivers/mtd/nand/onenand/onenand_base.c:140: warning: Function parameter or member 'oobregion' not described in 'onenand_ooblayout_32_64_ecc'
drivers/mtd/nand/onenand/onenand_base.c:200: warning: Function parameter or member 'addr' not described in 'onenand_readw'
drivers/mtd/nand/onenand/onenand_base.c:212: warning: Function parameter or member 'value' not described in 'onenand_writew'
drivers/mtd/nand/onenand/onenand_base.c:212: warning: Function parameter or member 'addr' not described in 'onenand_writew'
drivers/mtd/nand/onenand/onenand_base.c:225: warning: Function parameter or member 'this' not described in 'onenand_block_address'
drivers/mtd/nand/onenand/onenand_base.c:225: warning: Function parameter or member 'block' not described in 'onenand_block_address'
drivers/mtd/nand/onenand/onenand_base.c:242: warning: Function parameter or member 'this' not described in 'onenand_bufferram_address'
drivers/mtd/nand/onenand/onenand_base.c:242: warning: Function parameter or member 'block' not described in 'onenand_bufferram_address'
NB: Snipped 200 lines for brevity.
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: Adrian Hunter <ext-adrian.hunter@nokia.com>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-4-lee.jones@linaro.org
Fixes the following W=1 kernel build warning(s):
drivers/mtd/devices/phram.c:19: warning: Function parameter or member 'fmt' not described in 'pr_fmt'
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: "Jochen Schäuble" <psionic@psionic.de>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-3-lee.jones@linaro.org
Fixes the following W=1 kernel build warning(s):
drivers/mtd/mtdpart.c:300: warning: Function parameter or member 'mtd' not described in '__mtd_del_partition'
drivers/mtd/mtdpart.c:300: warning: Excess function parameter 'priv' description in '__mtd_del_partition'
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Cc: Nicolas Pitre <nico@fluxnic.net>
Cc: Thomas Gleixner <gleixner@linutronix.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201109182206.3037326-2-lee.jones@linaro.org
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-20-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Maxim Levitsky <maximlevitsky@gmail.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-18-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-17-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-16-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-15-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-14-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-13-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-12-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Vladimir Zapolskiy <vz@mleia.com>
Cc: Sylvain Lemieux <slemieux.tyco@gmail.com>
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Vladimir Zapolskiy <vz@mleia.com>
Cc: Sylvain Lemieux <slemieux.tyco@gmail.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-10-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-8-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-7-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-5-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-4-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip(), a NAND controller
hook.
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-3-miquel.raynal@bootlin.com
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip(), a NAND controller
hook.
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Reported-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Tested-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-2-miquel.raynal@bootlin.com
BLKFLSBUF is not supposed to actually send a flush command to the device,
but to tear down buffer cache structures. Remove the mtd_blkdevs
implementation and just use the default semantics instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Since this flash doesn't have a Profile 1.0 table, the Octal DTR
capabilities are enabled in the post SFDP fixup, along with the 8D-8D-8D
fast read settings.
Enable Octal DTR mode with 20 dummy cycles to allow running at the
maximum supported frequency of 200Mhz.
The flash supports the soft reset sequence. So, add the flag in the
flash's info.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-16-p.yadav@ti.com
The Cypress Semper flash is an xSPI compliant octal DTR flash. Add
support for using it in octal DTR mode.
The flash by default boots in a hybrid sector mode. But the sector map
table on the part I had was programmed incorrectly and the SMPT values
on the flash don't match the public datasheet. Specifically, in some
places erase type 3 was used instead of 4. In addition, the region sizes
were incorrect in some places. So, for testing I set CFR3N[3] to enable
uniform sector sizes. Since the uniform sector mode bit is a
non-volatile bit, this series does not change it to avoid making any
permanent changes to the flash configuration. The correct data to
implement a fixup is not available right now and will be done in a
follow-up patch if needed.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
[vigneshr@ti.com: Drop unnecessary sleep in Octal DTR switch sequence]
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-15-p.yadav@ti.com
On resume, the init procedure will be run that will re-enable it.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-14-p.yadav@ti.com
Perform a Soft Reset on shutdown on flashes that support it so that the
flash can be reset to its initial state and any configurations made by
spi-nor (given that they're only done in volatile registers) will be
reset. This will hand back the flash in pristine state for any further
operations on it.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-13-p.yadav@ti.com
A Soft Reset sequence will return the flash to Power-on-Reset (POR)
state. It consists of two commands: Soft Reset Enable and Soft Reset.
Find out if the sequence is supported from BFPT DWORD 16.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-12-p.yadav@ti.com
Allow flashes to specify a hook to enable octal DTR mode. Use this hook
whenever possible to get optimal transfer speeds.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-11-p.yadav@ti.com
Parse just the 22nd dword and look for the 'DTR Octal Mode Enable
Volatile bit'.
SPI_NOR_IO_MODE_EN_VOLATILE should be set just for the flashes
that don't define the optional SFDP SCCR Map. For the others,
let the SFDP do its job and fill the SNOR_F_IO_MODE_EN_VOLATILE
flag. We avoid this way polluting the flash flags when declaring
one.
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Link: https://lore.kernel.org/r/20201005153138.6437-10-p.yadav@ti.com
We don't want to enter a stateful mode, where a X-X-X I/O mode
is entered by setting a non-volatile bit, because in case of a
reset or a crash, once in the non-volatile mode, we may not be able
to recover in bootloaders and we may break the SPI NOR boot.
Forbid by default the I/O modes that are set via a non-volatile bit.
SPI_NOR_IO_MODE_EN_VOLATILE should be set just for the flashes that
don't define the optional SFDP SCCR Map, so that we don't pollute the
flash info flags.
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Link: https://lore.kernel.org/r/20201005153138.6437-9-p.yadav@ti.com
Some controllers, like the cadence qspi controller, have trouble reading
only 1 byte in DTR mode. So, do 2 byte reads for SR and FSR commands in
DTR mode, and then discard the second byte.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-8-p.yadav@ti.com
The xSPI Profile 1.0 table specifies how many dummy cycles and address
bytes are needed for the Read Status Register command in octal DTR mode.
Use that information to send the correct Read SR command.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-7-p.yadav@ti.com
This table is indication that the flash is xSPI compliant and hence
supports octal DTR mode. Extract information like the fast read opcode,
dummy cycles, the number of dummy cycles needed for a Read Status
Register command, and the number of address bytes needed for a Read
Status Register command.
We don't know what speed the controller is running at. Find the fast
read dummy cycles for the fastest frequency the flash can run at to be
sure we are never short of dummy cycles. If nothing is available,
default to 20. Flashes that use a different value should update it in
their fixup hooks.
Since we want to set read settings, expose spi_nor_set_read_settings()
in core.h.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-6-p.yadav@ti.com
Some devices in DTR mode expect an extra command byte called the
extension. The extension can either be same as the opcode, bitwise
inverse of the opcode, or another additional byte forming a 16-byte
opcode. Get the extension type from the BFPT. For now, only flashes with
"repeat" and "inverse" extensions are supported.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-5-p.yadav@ti.com
Double Transfer Rate (DTR) is SPI protocol in which data is transferred
on each clock edge as opposed to on each clock cycle. Make
framework-level changes to allow supporting flashes in DTR mode.
Right now, mixed DTR modes are not supported. So, for example a mode
like 4S-4D-4D will not work. All phases need to be either DTR or STR.
The xSPI spec says that "The program commands provide SPI backward
compatible commands for programming data...". So 8D-8D-8D page program
opcodes are populated with using 1S-1S-1S opcodes.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-4-p.yadav@ti.com
They are thin wrappers around
nor->controller_ops->{read_reg,write_reg,erase}(). In a future commit
DTR support will be added. These ops can not be supported by the
controller_ops hooks and these helpers will make it easier to reject
those calls.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-3-p.yadav@ti.com
ENOTSUPP is not a SUSV4 error code. Using EOPNOTSUPP is preferred
in its stead.
Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005153138.6437-2-p.yadav@ti.com
Since commit d7157ff49a5b ("mtd: rawnand: Use the ECC framework user
input parsing bits"), ECC are broken in FMC2 driver in case of
nand-ecc-step-size and nand-ecc-strength are not set in the device tree.
To avoid this issue, the default settings are now set in
stm32_fmc2_nfc_attach_chip function.
Signed-off-by: Christophe Kerello <christophe.kerello@st.com>
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/1604064819-26861-1-git-send-email-christophe.kerello@st.com
If a flash chip has more than 16MB capacity but its BFPT reports
BFPT_DWORD1_ADDRESS_BYTES_3_OR_4, the spi-nor framework defaults to 3.
The check in spi_nor_set_addr_width() doesn't catch it because addr_width
did get set. This fixes that check.
Fixes: f9acd7fa80be ("mtd: spi-nor: sfdp: default to addr_width of 3 for configurable widths")
Signed-off-by: Bert Vermeulen <bert@biot.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Reviewed-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Joel Stanley <joel@jms.id.au>
Tested-by: Cédric Le Goater <clg@kaod.org>
Link: https://lore.kernel.org/r/20201006132346.12652-1-bert@biot.com