There just check the user call ID isn't already in use, hence should
compare user_call_ID with xcall->user_call_ID, which is current
node's user_call_ID.
Fixes: 540b1c48c37a ("rxrpc: Fix deadlock between call creation and sendmsg/recvmsg")
Suggested-by: David Howells <dhowells@redhat.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull networking updates from David Miller:
1) Support offloading wireless authentication to userspace via
NL80211_CMD_EXTERNAL_AUTH, from Srinivas Dasari.
2) A lot of work on network namespace setup/teardown from Kirill Tkhai.
Setup and cleanup of namespaces now all run asynchronously and thus
performance is significantly increased.
3) Add rx/tx timestamping support to mv88e6xxx driver, from Brandon
Streiff.
4) Support zerocopy on RDS sockets, from Sowmini Varadhan.
5) Use denser instruction encoding in x86 eBPF JIT, from Daniel
Borkmann.
6) Support hw offload of vlan filtering in mvpp2 dreiver, from Maxime
Chevallier.
7) Support grafting of child qdiscs in mlxsw driver, from Nogah
Frankel.
8) Add packet forwarding tests to selftests, from Ido Schimmel.
9) Deal with sub-optimal GSO packets better in BBR congestion control,
from Eric Dumazet.
10) Support 5-tuple hashing in ipv6 multipath routing, from David Ahern.
11) Add path MTU tests to selftests, from Stefano Brivio.
12) Various bits of IPSEC offloading support for mlx5, from Aviad
Yehezkel, Yossi Kuperman, and Saeed Mahameed.
13) Support RSS spreading on ntuple filters in SFC driver, from Edward
Cree.
14) Lots of sockmap work from John Fastabend. Applications can use eBPF
to filter sendmsg and sendpage operations.
15) In-kernel receive TLS support, from Dave Watson.
16) Add XDP support to ixgbevf, this is significant because it should
allow optimized XDP usage in various cloud environments. From Tony
Nguyen.
17) Add new Intel E800 series "ice" ethernet driver, from Anirudh
Venkataramanan et al.
18) IP fragmentation match offload support in nfp driver, from Pieter
Jansen van Vuuren.
19) Support XDP redirect in i40e driver, from Björn Töpel.
20) Add BPF_RAW_TRACEPOINT program type for accessing the arguments of
tracepoints in their raw form, from Alexei Starovoitov.
21) Lots of striding RQ improvements to mlx5 driver with many
performance improvements, from Tariq Toukan.
22) Use rhashtable for inet frag reassembly, from Eric Dumazet.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1678 commits)
net: mvneta: improve suspend/resume
net: mvneta: split rxq/txq init and txq deinit into SW and HW parts
ipv6: frags: fix /proc/sys/net/ipv6/ip6frag_low_thresh
net: bgmac: Fix endian access in bgmac_dma_tx_ring_free()
net: bgmac: Correctly annotate register space
route: check sysctl_fib_multipath_use_neigh earlier than hash
fix typo in command value in drivers/net/phy/mdio-bitbang.
sky2: Increase D3 delay to sky2 stops working after suspend
net/mlx5e: Set EQE based as default TX interrupt moderation mode
ibmvnic: Disable irqs before exiting reset from closed state
net: sched: do not emit messages while holding spinlock
vlan: also check phy_driver ts_info for vlan's real device
Bluetooth: Mark expected switch fall-throughs
Bluetooth: Set HCI_QUIRK_SIMULTANEOUS_DISCOVERY for BTUSB_QCA_ROME
Bluetooth: btrsi: remove unused including <linux/version.h>
Bluetooth: hci_bcm: Remove DMI quirk for the MINIX Z83-4
sh_eth: kill useless check in __sh_eth_get_regs()
sh_eth: add sh_eth_cpu_data::no_xdfar flag
ipv6: factorize sk_wmem_alloc updates done by __ip6_append_data()
ipv4: factorize sk_wmem_alloc updates done by __ip_append_data()
...
rxrpc_local objects cannot be disposed of until all the connections that
point to them have been RCU'd as a connection object holds refcount on the
local endpoint it is communicating through. Currently, this can cause an
assertion failure to occur when a network namespace is destroyed as there's
no check that the RCU destructors for the connections have been run before
we start trying to destroy local endpoints.
The kernel reports:
rxrpc: AF_RXRPC: Leaked local 0000000036a41bc1 {5}
------------[ cut here ]------------
kernel BUG at ../net/rxrpc/local_object.c:439!
Fix this by keeping a count of the live connections and waiting for it to
go to zero at the end of rxrpc_destroy_all_connections().
Fixes: dee46364ce6f ("rxrpc: Add RCU destruction for connections and calls")
Signed-off-by: David Howells <dhowells@redhat.com>
rxrpc_call structs don't pin sockets or network namespaces, but may attempt
to access both after their refcount reaches 0 so that they can detach
themselves from the network namespace. However, there's no guarantee that
the socket still exists at this point (so sock_net(&call->socket->sk) may
be invalid) and the namespace may have gone away if the call isn't pinning
a peer.
Fix this by (a) carrying a net pointer in the rxrpc_call struct and (b)
waiting for all calls to be destroyed when the network namespace goes away.
This was detected by checker:
net/rxrpc/call_object.c:634:57: warning: incorrect type in argument 1 (different address spaces)
net/rxrpc/call_object.c:634:57: expected struct sock const *sk
net/rxrpc/call_object.c:634:57: got struct sock [noderef] <asn:4>*<noident>
Fixes: 2baec2c3f854 ("rxrpc: Support network namespacing")
Signed-off-by: David Howells <dhowells@redhat.com>
Fix various issues detected by checker.
Errors:
(*) rxrpc_discard_prealloc() should be using rcu_assign_pointer to set
call->socket.
Warnings:
(*) rxrpc_service_connection_reaper() should be passing NULL rather than 0 to
trace_rxrpc_conn() as the where argument.
(*) rxrpc_disconnect_client_call() should get its net pointer via the
call->conn rather than call->sock to avoid a warning about accessing
an RCU pointer without protection.
(*) Proc seq start/stop functions need annotation as they pass locks
between the functions.
False positives:
(*) Checker doesn't correctly handle of seq-retry lock context balance in
rxrpc_find_service_conn_rcu().
(*) Checker thinks execution may proceed past the BUG() in
rxrpc_publish_service_conn().
(*) Variable length array warnings from SKCIPHER_REQUEST_ON_STACK() in
rxkad.c.
Signed-off-by: David Howells <dhowells@redhat.com>
In rxrpc and afs, use the debug_ids that are monotonically allocated to
various objects as they're allocated rather than pointers as kernel
pointers are now hashed making them less useful. Further, the debug ids
aren't reused anywhere nearly as quickly.
In addition, allow kernel services that use rxrpc, such as afs, to take
numbers from the rxrpc counter, assign them to their own call struct and
pass them in to rxrpc for both client and service calls so that the trace
lines for each will have the same ID tag.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix IPv6 support in AF_RXRPC in the following ways:
(1) When extracting the address from a received IPv4 packet, if the local
transport socket is open for IPv6 then fill out the sockaddr_rxrpc
struct for an IPv4-mapped-to-IPv6 AF_INET6 transport address instead
of an AF_INET one.
(2) When sending CHALLENGE or RESPONSE packets, the transport length needs
to be set from the sockaddr_rxrpc::transport_len field rather than
sizeof() on the IPv4 transport address.
(3) When processing an IPv4 ICMP packet received by an IPv6 socket, set up
the address correctly before searching for the affected peer.
Signed-off-by: David Howells <dhowells@redhat.com>
rxrpc_service_prealloc_one() doesn't set the socket pointer on any new call
it preallocates, but does add it to the rxrpc net namespace call list.
This, however, causes rxrpc_put_call() to oops when the call is discarded
when the socket is closed. rxrpc_put_call() needs the socket to be able to
reach the namespace so that it can use a lock held therein.
Fix this by setting a call's socket pointer immediately before discarding
it.
This can be triggered by unloading the kafs module, resulting in an oops
like the following:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000030
IP: rxrpc_put_call+0x1e2/0x32d
PGD 0
P4D 0
Oops: 0000 [#1] SMP
Modules linked in: kafs(E-)
CPU: 3 PID: 3037 Comm: rmmod Tainted: G E 4.12.0-fscache+ #213
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
task: ffff8803fc92e2c0 task.stack: ffff8803fef74000
RIP: 0010:rxrpc_put_call+0x1e2/0x32d
RSP: 0018:ffff8803fef77e08 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff8803fab99ac0 RCX: 000000000000000f
RDX: ffffffff81c50a40 RSI: 000000000000000c RDI: ffff8803fc92ea88
RBP: ffff8803fef77e30 R08: ffff8803fc87b941 R09: ffffffff82946d20
R10: ffff8803fef77d10 R11: 00000000000076fc R12: 0000000000000005
R13: ffff8803fab99c20 R14: 0000000000000001 R15: ffffffff816c6aee
FS: 00007f915a059700(0000) GS:ffff88041fb80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000030 CR3: 00000003fef39000 CR4: 00000000001406e0
Call Trace:
rxrpc_discard_prealloc+0x325/0x341
rxrpc_listen+0xf9/0x146
kernel_listen+0xb/0xd
afs_close_socket+0x3e/0x173 [kafs]
afs_exit+0x1f/0x57 [kafs]
SyS_delete_module+0x10f/0x19a
do_syscall_64+0x8a/0x149
entry_SYSCALL64_slow_path+0x25/0x25
Fixes: 2baec2c3f854 ("rxrpc: Support network namespacing")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cache the congestion window setting that was determined during a call's
transmission phase when it finishes so that it can be used by the next call
to the same peer, thereby shortcutting the slow-start algorithm.
The value is stored in the rxrpc_peer struct and is accessed without
locking. Each call takes the value that happens to be there when it starts
and just overwrites the value when it finishes.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implement AuriStor's service upgrade facility. There are three problems
that this is meant to deal with:
(1) Various of the standard AFS RPC calls have IPv4 addresses in their
requests and/or replies - but there's no room for including IPv6
addresses.
(2) Definition of IPv6-specific RPC operations in the standard operation
sets has not yet been achieved.
(3) One could envision the creation a new service on the same port that as
the original service. The new service could implement improved
operations - and the client could try this first, falling back to the
original service if it's not there.
Unfortunately, certain servers ignore packets addressed to a service
they don't implement and don't respond in any way - not even with an
ABORT. This means that the client must then wait for the call timeout
to occur.
What service upgrade does is to see if the connection is marked as being
'upgradeable' and if so, change the service ID in the server and thus the
request and reply formats. Note that the upgrade isn't mandatory - a
server that supports only the original call set will ignore the upgrade
request.
In the protocol, the procedure is then as follows:
(1) To request an upgrade, the first DATA packet in a new connection must
have the userStatus set to 1 (this is normally 0). The userStatus
value is normally ignored by the server.
(2) If the server doesn't support upgrading, the reply packets will
contain the same service ID as for the first request packet.
(3) If the server does support upgrading, all future reply packets on that
connection will contain the new service ID and the new service ID will
be applied to *all* further calls on that connection as well.
(4) The RPC op used to probe the upgrade must take the same request data
as the shadow call in the upgrade set (but may return a different
reply). GetCapability RPC ops were added to all standard sets for
just this purpose. Ops where the request formats differ cannot be
used for probing.
(5) The client must wait for completion of the probe before sending any
further RPC ops to the same destination. It should then use the
service ID that recvmsg() reported back in all future calls.
(6) The shadow service must have call definitions for all the operation
IDs defined by the original service.
To support service upgrading, a server should:
(1) Call bind() twice on its AF_RXRPC socket before calling listen().
Each bind() should supply a different service ID, but the transport
addresses must be the same. This allows the server to receive
requests with either service ID.
(2) Enable automatic upgrading by calling setsockopt(), specifying
RXRPC_UPGRADEABLE_SERVICE and passing in a two-member array of
unsigned shorts as the argument:
unsigned short optval[2];
This specifies a pair of service IDs. They must be different and must
match the service IDs bound to the socket. Member 0 is the service ID
to upgrade from and member 1 is the service ID to upgrade to.
Signed-off-by: David Howells <dhowells@redhat.com>
Permit bind() to be called on an AF_RXRPC socket more than once (currently
maximum twice) to bind multiple listening services to it. There are some
restrictions:
(1) All bind() calls involved must have a non-zero service ID.
(2) The service IDs must all be different.
(3) The rest of the address (notably the transport part) must be the same
in all (a single UDP socket is shared).
(4) This must be done before listen() or sendmsg() is called.
This allows someone to connect to the service socket with different service
IDs and lays the foundation for service upgrading.
The service ID used by an incoming call can be extracted from the msg_name
returned by recvmsg().
Signed-off-by: David Howells <dhowells@redhat.com>
Support network namespacing in AF_RXRPC with the following changes:
(1) All the local endpoint, peer and call lists, locks, counters, etc. are
moved into the per-namespace record.
(2) All the connection tracking is moved into the per-namespace record
with the exception of the client connection ID tree, which is kept
global so that connection IDs are kept unique per-machine.
(3) Each namespace gets its own epoch. This allows each network namespace
to pretend to be a separate client machine.
(4) The /proc/net/rxrpc_xxx files are now called /proc/net/rxrpc/xxx and
the contents reflect the namespace.
fs/afs/ should be okay with this patch as it explicitly requires the current
net namespace to be init_net to permit a mount to proceed at the moment. It
will, however, need updating so that cells, IP addresses and DNS records are
per-namespace also.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use negative error codes in struct rxrpc_call::error because that's what
the kernel normally deals with and to make the code consistent. We only
turn them positive when transcribing into a cmsg for userspace recvmsg.
Signed-off-by: David Howells <dhowells@redhat.com>
All the routines by which rxrpc is accessed from the outside are serialised
by means of the socket lock (sendmsg, recvmsg, bind,
rxrpc_kernel_begin_call(), ...) and this presents a problem:
(1) If a number of calls on the same socket are in the process of
connection to the same peer, a maximum of four concurrent live calls
are permitted before further calls need to wait for a slot.
(2) If a call is waiting for a slot, it is deep inside sendmsg() or
rxrpc_kernel_begin_call() and the entry function is holding the socket
lock.
(3) sendmsg() and recvmsg() or the in-kernel equivalents are prevented
from servicing the other calls as they need to take the socket lock to
do so.
(4) The socket is stuck until a call is aborted and makes its slot
available to the waiter.
Fix this by:
(1) Provide each call with a mutex ('user_mutex') that arbitrates access
by the users of rxrpc separately for each specific call.
(2) Make rxrpc_sendmsg() and rxrpc_recvmsg() unlock the socket as soon as
they've got a call and taken its mutex.
Note that I'm returning EWOULDBLOCK from recvmsg() if MSG_DONTWAIT is
set but someone else has the lock. Should I instead only return
EWOULDBLOCK if there's nothing currently to be done on a socket, and
sleep in this particular instance because there is something to be
done, but we appear to be blocked by the interrupt handler doing its
ping?
(3) Make rxrpc_new_client_call() unlock the socket after allocating a new
call, locking its user mutex and adding it to the socket's call tree.
The call is returned locked so that sendmsg() can add data to it
immediately.
From the moment the call is in the socket tree, it is subject to
access by sendmsg() and recvmsg() - even if it isn't connected yet.
(4) Lock new service calls in the UDP data_ready handler (in
rxrpc_new_incoming_call()) because they may already be in the socket's
tree and the data_ready handler makes them live immediately if a user
ID has already been preassigned.
Note that the new call is locked before any notifications are sent
that it is live, so doing mutex_trylock() *ought* to always succeed.
Userspace is prevented from doing sendmsg() on calls that are in a
too-early state in rxrpc_do_sendmsg().
(5) Make rxrpc_new_incoming_call() return the call with the user mutex
held so that a ping can be scheduled immediately under it.
Note that it might be worth moving the ping call into
rxrpc_new_incoming_call() and then we can drop the mutex there.
(6) Make rxrpc_accept_call() take the lock on the call it is accepting and
release the socket after adding the call to the socket's tree. This
is slightly tricky as we've dequeued the call by that point and have
to requeue it.
Note that requeuing emits a trace event.
(7) Make rxrpc_kernel_send_data() and rxrpc_kernel_recv_data() take the
new mutex immediately and don't bother with the socket mutex at all.
This patch has the nice bonus that calls on the same socket are now to some
extent parallelisable.
Note that we might want to move rxrpc_service_prealloc() calls out from the
socket lock and give it its own lock, so that we don't hang progress in
other calls because we're waiting for the allocator.
We probably also want to avoid calling rxrpc_notify_socket() from within
the socket lock (rxrpc_accept_call()).
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marc Dionne <marc.c.dionne@auristor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow listen() with a backlog of 0 to be used to disable listening on an
AF_RXRPC socket. This also releases any preallocation, thereby making it
easier for a kernel service to account for all allocated call structures
when shutting down the service.
The socket cannot thereafter have listening reenabled, but must rather be
closed and reopened.
Signed-off-by: David Howells <dhowells@redhat.com>
Split rxrpc_send_data_packet() to separate ACK generation (which is more
complicated) from ABORT generation. This simplifies the code a bit and
fixes the following warning:
In file included from ../net/rxrpc/output.c:20:0:
net/rxrpc/output.c: In function 'rxrpc_send_call_packet':
net/rxrpc/ar-internal.h:1187:27: error: 'top' may be used uninitialized in this function [-Werror=maybe-uninitialized]
net/rxrpc/output.c:103:24: note: 'top' was declared here
net/rxrpc/output.c:225:25: error: 'hard_ack' may be used uninitialized in this function [-Werror=maybe-uninitialized]
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
If an call comes in to a local endpoint that isn't listening for any
incoming calls at the moment, an oops will happen. We need to check that
the local endpoint's service pointer isn't NULL before we dereference it.
Signed-off-by: David Howells <dhowells@redhat.com>
Reduce the rxrpc_local::services list to just a pointer as we don't permit
multiple service endpoints to bind to a single transport endpoints (this is
excluded by rxrpc_lookup_local()).
The reason we don't allow this is that if you send a request to an AFS
filesystem service, it will try to talk back to your cache manager on the
port you sent from (this is how file change notifications are handled). To
prevent someone from stealing your CM callbacks, we don't let AF_RXRPC
sockets share a UDP socket if at least one of them has a service bound.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a pair of tracepoints, one to track rxrpc_connection struct ref
counting and the other to track the client connection cache state.
Signed-off-by: David Howells <dhowells@redhat.com>
Record calls that need to be accepted using sk_acceptq_added() otherwise
the backlog counter goes negative because sk_acceptq_removed() is called.
This causes the preallocator to malfunction.
Calls that are preaccepted by AFS within the kernel aren't affected by
this.
Signed-off-by: David Howells <dhowells@redhat.com>
The preallocated call buffer holds a ref on the calls within that buffer.
The ref was being released in the wrong place - it worked okay for incoming
calls to the AFS cache manager service, but doesn't work right for incoming
calls to a userspace service.
Instead of releasing an extra ref service calls in rxrpc_release_call(),
the ref needs to be released during the acceptance/rejectance process. To
this end:
(1) The prealloc ref is now normally released during
rxrpc_new_incoming_call().
(2) For preallocated kernel API calls, the kernel API's ref needs to be
released when the call is discarded on socket close.
(3) We shouldn't take a second ref in rxrpc_accept_call().
(4) rxrpc_recvmsg_new_call() needs to get a ref of its own when it adds
the call to the to_be_accepted socket queue.
In doing (4) above, we would prefer not to put the call's refcount down to
0 as that entails doing cleanup in softirq context, but it's unlikely as
there are several refs held elsewhere, at least one of which must be put by
someone in process context calling rxrpc_release_call(). However, it's not
a problem if we do have to do that.
Signed-off-by: David Howells <dhowells@redhat.com>
Adjust the call ref tracepoint to show references held on a call by the
kernel API separately as much as possible and add an additional trace to at
the allocation point from the preallocation buffer for an incoming call.
Note that this doesn't show the allocation of a client call for the kernel
separately at the moment.
Signed-off-by: David Howells <dhowells@redhat.com>
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
Make it possible for the data_ready handler called from the UDP transport
socket to completely instantiate an rxrpc_call structure and make it
immediately live by preallocating all the memory it might need. The idea
is to cut out the background thread usage as much as possible.
[Note that the preallocated structs are not actually used in this patch -
that will be done in a future patch.]
If insufficient resources are available in the preallocation buffers, it
will be possible to discard the DATA packet in the data_ready handler or
schedule a BUSY packet without the need to schedule an attempt at
allocation in a background thread.
To this end:
(1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a
maximum number each of the listen backlog size. The backlog size is
limited to a maxmimum of 32. Only this many of each can be in the
preallocation buffer.
(2) For userspace sockets, the preallocation is charged initially by
listen() and will be recharged by accepting or rejecting pending
new incoming calls.
(3) For kernel services {,re,dis}charging of the preallocation buffers is
handled manually. Two notifier callbacks have to be provided before
kernel_listen() is invoked:
(a) An indication that a new call has been instantiated. This can be
used to trigger background recharging.
(b) An indication that a call is being discarded. This is used when
the socket is being released.
A function, rxrpc_kernel_charge_accept() is called by the kernel
service to preallocate a single call. It should be passed the user ID
to be used for that call and a callback to associate the rxrpc call
with the kernel service's side of the ID.
(4) Discard the preallocation when the socket is closed.
(5) Temporarily bump the refcount on the call allocated in
rxrpc_incoming_call() so that rxrpc_release_call() can ditch the
preallocation ref on service calls unconditionally. This will no
longer be necessary once the preallocation is used.
Note that this does not yet control the number of active service calls on a
client - that will come in a later patch.
A future development would be to provide a setsockopt() call that allows a
userspace server to manually charge the preallocation buffer. This would
allow user call IDs to be provided in advance and the awkward manual accept
stage to be bypassed.
Signed-off-by: David Howells <dhowells@redhat.com>
Convert the rxrpc_local::services list to an hlist so that it can be
accessed under RCU conditions more readily.
Signed-off-by: David Howells <dhowells@redhat.com>
rxrpc calls shouldn't hold refs on the sock struct. This was done so that
the socket wouldn't go away whilst the call was in progress, such that the
call could reach the socket's queues.
However, we can mark the socket as requiring an RCU release and rely on the
RCU read lock.
To make this work, we do:
(1) rxrpc_release_call() removes the call's call user ID. This is now
only called from socket operations and not from the call processor:
rxrpc_accept_call() / rxrpc_kernel_accept_call()
rxrpc_reject_call() / rxrpc_kernel_reject_call()
rxrpc_kernel_end_call()
rxrpc_release_calls_on_socket()
rxrpc_recvmsg()
Though it is also called in the cleanup path of
rxrpc_accept_incoming_call() before we assign a user ID.
(2) Pass the socket pointer into rxrpc_release_call() rather than getting
it from the call so that we can get rid of uninitialised calls.
(3) Fix call processor queueing to pass a ref to the work queue and to
release that ref at the end of the processor function (or to pass it
back to the work queue if we have to requeue).
(4) Skip out of the call processor function asap if the call is complete
and don't requeue it if the call is complete.
(5) Clean up the call immediately that the refcount reaches 0 rather than
trying to defer it. Actual deallocation is deferred to RCU, however.
(6) Don't hold socket refs for allocated calls.
(7) Use the RCU read lock when queueing a message on a socket and treat
the call's socket pointer according to RCU rules and check it for
NULL.
We also need to use the RCU read lock when viewing a call through
procfs.
(8) Transmit the final ACK/ABORT to a client call in rxrpc_release_call()
if this hasn't been done yet so that we can then disconnect the call.
Once the call is disconnected, it won't have any access to the
connection struct and the UDP socket for the call work processor to be
able to send the ACK. Terminal retransmission will be handled by the
connection processor.
(9) Release all calls immediately on the closing of a socket rather than
trying to defer this. Incomplete calls will be aborted.
The call refcount model is much simplified. Refs are held on the call by:
(1) A socket's user ID tree.
(2) A socket's incoming call secureq and acceptq.
(3) A kernel service that has a call in progress.
(4) A queued call work processor. We have to take care to put any call
that we failed to queue.
(5) sk_buffs on a socket's receive queue. A future patch will get rid of
this.
Whilst we're at it, we can do:
(1) Get rid of the RXRPC_CALL_EV_RELEASE event. Release is now done
entirely from the socket routines and never from the call's processor.
(2) Get rid of the RXRPC_CALL_DEAD state. Calls now end in the
RXRPC_CALL_COMPLETE state.
(3) Get rid of the rxrpc_call::destroyer work item. Calls are now torn
down when their refcount reaches 0 and then handed over to RCU for
final cleanup.
(4) Get rid of the rxrpc_call::deadspan timer. Calls are cleaned up
immediately they're finished with and don't hang around.
Post-completion retransmission is handled by the connection processor
once the call is disconnected.
(5) Get rid of the dead call expiry setting as there's no longer a timer
to set.
(6) rxrpc_destroy_all_calls() can just check that the call list is empty.
Signed-off-by: David Howells <dhowells@redhat.com>
Improve the call tracking tracepoint by showing more differentiation
between some of the put and get events, including:
(1) Getting and putting refs for the socket call user ID tree.
(2) Getting and putting refs for queueing and failing to queue the call
processor work item.
Note that these aren't necessarily used in this patch, but will be taken
advantage of in future patches.
An enum is added for the event subtype numbers rather than coding them
directly as decimal numbers and a table of 3-letter strings is provided
rather than a sequence of ?: operators.
Signed-off-by: David Howells <dhowells@redhat.com>
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Condense the terminal states of a call state machine to a single state,
plus a separate completion type value. The value is then set, along with
error and abort code values, only when the call is transitioned to the
completion state.
Helpers are provided to simplify this.
Signed-off-by: David Howells <dhowells@redhat.com>
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Move the lookup of a peer from a call that's being accepted into the
function that creates a new incoming connection. This will allow us to
avoid incrementing the peer's usage count in some cases in future.
Note that I haven't bother to integrate rxrpc_get_addr_from_skb() with
rxrpc_extract_addr_from_skb() as I'm going to delete the former in the very
near future.
Signed-off-by: David Howells <dhowells@redhat.com>
Rather than calling rxrpc_get_connection() manually before calling
rxrpc_queue_conn(), do it inside the queue wrapper.
This allows us to do some important fixes:
(1) If the usage count is 0, do nothing. This prevents connections from
being reanimated once they're dead.
(2) If rxrpc_queue_work() fails because the work item is already queued,
retract the usage count increment which would otherwise be lost.
(3) Don't take a ref on the connection in the work function. By passing
the ref through the work item, this is unnecessary. Doing it in the
work function is too late anyway. Previously, connection-directed
packets held a ref on the connection, but that's not really the best
idea.
And another useful changes:
(*) Don't need to take a refcount on the connection in the data_ready
handler unless we invoke the connection's work item. We're using RCU
there so that's otherwise redundant.
Signed-off-by: David Howells <dhowells@redhat.com>
Turn the connection event and state #define lists into enums and move
outside of the struct definition.
Whilst we're at it, change _SERVER to _SERVICE in those identifiers and add
EV_ into the event name to distinguish them from flags and states.
Also add a symbol indicating the number of states and use that in the state
text array.
Signed-off-by: David Howells <dhowells@redhat.com>
The rxrpc_transport struct is now redundant, given that the rxrpc_peer
struct is now per peer port rather than per peer host, so get rid of it.
Service connection lists are transferred to the rxrpc_peer struct, as is
the conn_lock. Previous patches moved the client connection handling out
of the rxrpc_transport struct and discarded the connection bundling code.
Signed-off-by: David Howells <dhowells@redhat.com>
Provide refcount helper functions for connections so that the code doesn't
touch local or connection usage counts directly.
Also make it such that local and peer put functions can take a NULL
pointer.
Signed-off-by: David Howells <dhowells@redhat.com>
Pass a pointer to struct sk_buff rather than struct rxrpc_host_header to
functions so that they can in the future get at transport protocol parameters
rather than just RxRPC parameters.
Signed-off-by: David Howells <dhowells@redhat.com>
rxrpc_lookup_peer_rcu() and rxrpc_lookup_peer() return NULL on error, never
error pointers, so IS_ERR() can't be used.
Fix three callers of those functions.
Fixes: be6e6707f6ee ('rxrpc: Rework peer object handling to use hash table and RCU')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Rework the local RxRPC endpoint management.
Local endpoint objects are maintained in a flat list as before. This
should be okay as there shouldn't be more than one per open AF_RXRPC socket
(there can be fewer as local endpoints can be shared if their local service
ID is 0 and they share the same local transport parameters).
Changes:
(1) Local endpoints may now only be shared if they have local service ID 0
(ie. they're not being used for listening).
This prevents a scenario where process A is listening of the Cache
Manager port and process B contacts a fileserver - which may then
attempt to send CM requests back to B. But if A and B are sharing a
local endpoint, A will get the CM requests meant for B.
(2) We use a mutex to handle lookups and don't provide RCU-only lookups
since we only expect to access the list when opening a socket or
destroying an endpoint.
The local endpoint object is pointed to by the transport socket's
sk_user_data for the life of the transport socket - allowing us to
refer to it directly from the sk_data_ready and sk_error_report
callbacks.
(3) atomic_inc_not_zero() now exists and can be used to only share a local
endpoint if the last reference hasn't yet gone.
(4) We can remove rxrpc_local_lock - a spinlock that had to be taken with
BH processing disabled given that we assume sk_user_data won't change
under us.
(5) The transport socket is shut down before we clear the sk_user_data
pointer so that we can be sure that the transport socket's callbacks
won't be invoked once the RCU destruction is scheduled.
(6) Local endpoints have a work item that handles both destruction and
event processing. The means that destruction doesn't then need to
wait for event processing. The event queues can then be cleared after
the transport socket is shut down.
(7) Local endpoints are no longer available for resurrection beyond the
life of the sockets that had them open. As soon as their last ref
goes, they are scheduled for destruction and may not have their usage
count moved from 0.
Signed-off-by: David Howells <dhowells@redhat.com>
Rework peer object handling to use a hash table instead of a flat list and
to use RCU. Peer objects are no longer destroyed by passing them to a
workqueue to process, but rather are just passed to the RCU garbage
collector as kfree'able objects.
The hash function uses the local endpoint plus all the components of the
remote address, except for the RxRPC service ID. Peers thus represent a
UDP port on the remote machine as contacted by a UDP port on this machine.
The RCU read lock is used to handle non-creating lookups so that they can
be called from bottom half context in the sk_error_report handler without
having to lock the hash table against modification.
rxrpc_lookup_peer_rcu() *does* take a reference on the peer object as in
the future, this will be passed to a work item for error distribution in
the error_report path and this function will cease being used in the
data_ready path.
Creating lookups are done under spinlock rather than mutex as they might be
set up due to an external stimulus if the local endpoint is a server.
Captured network error messages (ICMP) are handled with respect to this
struct and MTU size and RTT are cached here.
Signed-off-by: David Howells <dhowells@redhat.com>
Rename files matching net/rxrpc/ar-*.c to get rid of the "ar-" prefix.
This will aid splitting those files by making easier to come up with new
names.
Note that the not all files are simply renamed from ar-X.c to X.c. The
following exceptions are made:
(*) ar-call.c -> call_object.c
ar-ack.c -> call_event.c
call_object.c is going to contain the core of the call object
handling. Call event handling is all going to be in call_event.c.
(*) ar-accept.c -> call_accept.c
Incoming call handling is going to be here.
(*) ar-connection.c -> conn_object.c
ar-connevent.c -> conn_event.c
The former file is going to have the basic connection object handling,
but there will likely be some differentiation between client
connections and service connections in additional files later. The
latter file will have all the connection-level event handling.
(*) ar-local.c -> local_object.c
This will have the local endpoint object handling code. The local
endpoint event handling code will later be split out into
local_event.c.
(*) ar-peer.c -> peer_object.c
This will have the peer endpoint object handling code. Peer event
handling code will be placed in peer_event.c (for the moment, there is
none).
(*) ar-error.c -> peer_event.c
This will become the peer event handling code, though for the moment
it's actually driven from the local endpoint's perspective.
Note that I haven't renamed ar-transport.c to transport_object.c as the
intention is to delete it when the rxrpc_transport struct is excised.
The only file that actually has its contents changed is net/rxrpc/Makefile.
net/rxrpc/ar-internal.h will need its section marker comments updating, but
I'll do that in a separate patch to make it easier for git to follow the
history across the rename. I may also want to rename ar-internal.h at some
point - but that would mean updating all the #includes and I'd rather do
that in a separate step.
Signed-off-by: David Howells <dhowells@redhat.com.