- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized to
address serialization some of the serialization on the LPI injection
path
- Support for _architectural_ VHE-only systems, advertised through the
absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCZepBjgAKCRCivnWIJHzd
FnngAP93VxjCkJ+5qSmYpFNG6r0ECVIbLHFQ59nKn0+GgvbPEgEAwt8svdLdW06h
njFTpdzvl4Po+aD/V9xHgqVz3kVvZwE=
=1FbW
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.9' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.9
- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized to
address serialization some of the serialization on the LPI injection
path
- Support for _architectural_ VHE-only systems, advertised through the
absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
1. Set reserved bits as zero in CPUCFG.
2. Start SW timer only when vcpu is blocking.
3. Do not restart SW timer when it is expired.
4. Remove unnecessary CSR register saving during enter guest.
-----BEGIN PGP SIGNATURE-----
iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmXoeWIWHGNoZW5odWFj
YWlAa2VybmVsLm9yZwAKCRAChivD8uImehb3D/9C5IrdyU/2f3fEUuuXO0a2ZS1p
l2OT+yr7C6/jATokGcd+53CF8MzYawzuAT3tSXYyoqAxRu0HUkvuS1oA/eFM4EwV
iIoUC3jnqcsQ5LCPt6yt+Tzgug64Xm5F4btYWIpmXgCJWx/VVG6+z3JarXAfA2it
vgVMGgrrfHt68sEsenNFNgiJ5tCCubjR7XFwjM8rsL7AzUDdmXpF7gFyH2Ufgosi
a5CxcPPauO1y5ZCGU4JU9QvxnVqW1kt/TRZIGqqGfULtlBSoZbD9zP3OcCQkL+ai
SPNxvU5I+BeX6honpmO6aR/F1EphQhRji3ZKxI8UBo4aJD5+FtMG/YOEPI+ZAS0/
JPuWpDqJH46SN3jfKTQay8jXc+mcnOYXJ9Yrixd4UCf66WJit/+BOma/wP638u2j
RUzm1kqhNGad6QiDDtSjISM6sg6FozAGc/KhCkWAhV+lHLnfkXtaf3S+GIu5OiWz
ETCKlmIGiy0y774+iftlD7RDRGmtrC4cx5ibl7cKKi62Y5vgujCdDofAyYC+D5cW
puaIuHOx1hWtPRT9p1WfUL310ED+Qj3N2pDDcJcqdCIiRRZ5l/hxGS7V687a30WV
GcegEqh19CjI9KDat4E1ld4jUHJxaFrw3pr2z3SP7cW3IgdngPJL57M0M2jSazaQ
479xZPJ/i4xhJaKACg==
=8HOW
-----END PGP SIGNATURE-----
Merge tag 'loongarch-kvm-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD
LoongArch KVM changes for v6.9
* Set reserved bits as zero in CPUCFG.
* Start SW timer only when vcpu is blocking.
* Do not restart SW timer when it is expired.
* Remove unnecessary CSR register saving during enter guest.
The general expectation with debugfs is that any initialization failure
is nonfatal. Nevertheless, kvm_arch_create_vm_debugfs() allows
implementations to return an error and kvm_create_vm_debugfs() allows
that to fail VM creation.
Change to a void return to discourage architectures from making debugfs
failures fatal for the VM. Seems like everyone already had the right
idea, as all implementations already return 0 unconditionally.
Acked-by: Marc Zyngier <maz@kernel.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20240216155941.2029458-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Currently, rebooting a pseries nested qemu-kvm guest (L2) results in
below error as L1 qemu sends PVR value 'arch_compat' == 0 via
ppc_set_compat ioctl. This triggers a condition failure in
kvmppc_set_arch_compat() resulting in an EINVAL.
qemu-system-ppc64: Unable to set CPU compatibility mode in KVM: Invalid
argument
Also, a value of 0 for arch_compat generally refers the default
compatibility of the host. But, arch_compat, being a Guest Wide Element
in nested API v2, cannot be set to 0 in GSB as PowerVM (L0) expects a
non-zero value. A value of 0 triggers a kernel trap during a reboot and
consequently causes it to fail:
[ 22.106360] reboot: Restarting system
KVM: unknown exit, hardware reason ffffffffffffffea
NIP 0000000000000100 LR 000000000000fe44 CTR 0000000000000000 XER 0000000020040092 CPU#0
MSR 0000000000001000 HID0 0000000000000000 HF 6c000000 iidx 3 didx 3
TB 00000000 00000000 DECR 0
GPR00 0000000000000000 0000000000000000 c000000002a8c300 000000007fe00000
GPR04 0000000000000000 0000000000000000 0000000000001002 8000000002803033
GPR08 000000000a000000 0000000000000000 0000000000000004 000000002fff0000
GPR12 0000000000000000 c000000002e10000 0000000105639200 0000000000000004
GPR16 0000000000000000 000000010563a090 0000000000000000 0000000000000000
GPR20 0000000105639e20 00000001056399c8 00007fffe54abab0 0000000105639288
GPR24 0000000000000000 0000000000000001 0000000000000001 0000000000000000
GPR28 0000000000000000 0000000000000000 c000000002b30840 0000000000000000
CR 00000000 [ - - - - - - - - ] RES 000@ffffffffffffffff
SRR0 0000000000000000 SRR1 0000000000000000 PVR 0000000000800200 VRSAVE 0000000000000000
SPRG0 0000000000000000 SPRG1 0000000000000000 SPRG2 0000000000000000 SPRG3 0000000000000000
SPRG4 0000000000000000 SPRG5 0000000000000000 SPRG6 0000000000000000 SPRG7 0000000000000000
HSRR0 0000000000000000 HSRR1 0000000000000000
CFAR 0000000000000000
LPCR 0000000000020400
PTCR 0000000000000000 DAR 0000000000000000 DSISR 0000000000000000
kernel:trap=0xffffffea | pc=0x100 | msr=0x1000
This patch updates kvmppc_set_arch_compat() to use the host PVR value if
'compat_pvr' == 0 indicating that qemu doesn't want to enforce any
specific PVR compat mode.
The relevant part of the code might need a rework if PowerVM implements
a support for `arch_compat == 0` in nestedv2 API.
Fixes: 19d31c5f1157 ("KVM: PPC: Add support for nestedv2 guests")
Reviewed-by: "Aneesh Kumar K.V (IBM)" <aneesh.kumar@kernel.org>
Reviewed-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Signed-off-by: Amit Machhiwal <amachhiw@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20240207054526.3720087-1-amachhiw@linux.ibm.com
CONFIG_IRQ_BYPASS_MANAGER is a dependency of the common code included by
CONFIG_HAVE_KVM_IRQ_BYPASS. There is no advantage in adding the corresponding
"select" directive to each architecture.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
switch a memory area between guest_memfd and regular anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that guarantees
confidentiality (AMD PSP, Intel TDX module, or EL2 in the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new guest_memfd
and page attributes infrastructure. This is mostly useful for testing,
since there is no pKVM-like infrastructure to provide a meaningfully
reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages during
CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf
TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually care
about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a stable TSC",
because some of them don't expect the "TSC stable" bit (added to the pvclock
ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM always
flushes on nested transitions, i.e. always satisfies flush requests. This
allows running bleeding edge versions of VMware Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV support.
- On AMD machines with vNMI, always rely on hardware instead of intercepting
IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB
base granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with
a prefix branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV
support to that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing flag
in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix the
various bugs that were lurking due to lack of said annotation.
There are two non-KVM patches buried in the middle of guest_memfd support:
fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmWcMWkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO15gf/WLmmg3SET6Uzw9iEq2xo28831ZA+
6kpILfIDGKozV5safDmMvcInlc/PTnqOFrsKyyN4kDZ+rIJiafJdg/loE0kPXBML
wdR+2ix5kYI1FucCDaGTahskBDz8Lb/xTpwGg9BFLYFNmuUeHc74o6GoNvr1uliE
4kLZL2K6w0cSMPybUD+HqGaET80ZqPwecv+s1JL+Ia0kYZJONJifoHnvOUJ7DpEi
rgudVdgzt3EPjG0y1z6MjvDBXTCOLDjXajErlYuZD3Ej8N8s59Dh2TxOiDNTLdP4
a4zjRvDmgyr6H6sz+upvwc7f4M4p+DBvf+TkWF54mbeObHUYliStqURIoA==
=66Ws
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Generic:
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all
architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be
resized. guest_memfd files do however support PUNCH_HOLE, which can
be used to switch a memory area between guest_memfd and regular
anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that
guarantees confidentiality (AMD PSP, Intel TDX module, or EL2 in
the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new
guest_memfd and page attributes infrastructure. This is mostly
useful for testing, since there is no pKVM-like infrastructure to
provide a meaningfully reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages
during CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in
non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with
a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually
care about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a
stable TSC", because some of them don't expect the "TSC stable" bit
(added to the pvclock ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for
TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM
always flushes on nested transitions, i.e. always satisfies flush
requests. This allows running bleeding edge versions of VMware
Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV
support.
- On AMD machines with vNMI, always rely on hardware instead of
intercepting IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters
and other state prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events
using a dedicated field instead of snapshotting the "previous"
counter. If the hardware PMC count triggers overflow that is
recognized in the same VM-Exit that KVM manually bumps an event
count, KVM would pend PMIs for both the hardware-triggered overflow
and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be
problematic for subsystems that require no regressions for W=1
builds.
- Advertise all of the host-supported CPUID bits that enumerate
IA32_SPEC_CTRL "features".
- Don't force a masterclock update when a vCPU synchronizes to the
current TSC generation, as updating the masterclock can cause
kvmclock's time to "jump" unexpectedly, e.g. when userspace
hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter
fault paths, partly as a super minor optimization, but mostly to
make KVM play nice with position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the
code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV
"emulation" at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB base
granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with a prefix
branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV support to
that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list
selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing
flag in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix
the various bugs that were lurking due to lack of said annotation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (185 commits)
x86/kvm: Do not try to disable kvmclock if it was not enabled
KVM: x86: add missing "depends on KVM"
KVM: fix direction of dependency on MMU notifiers
KVM: introduce CONFIG_KVM_COMMON
KVM: arm64: Add missing memory barriers when switching to pKVM's hyp pgd
KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache
RISC-V: KVM: selftests: Add get-reg-list test for STA registers
RISC-V: KVM: selftests: Add steal_time test support
RISC-V: KVM: selftests: Add guest_sbi_probe_extension
RISC-V: KVM: selftests: Move sbi_ecall to processor.c
RISC-V: KVM: Implement SBI STA extension
RISC-V: KVM: Add support for SBI STA registers
RISC-V: KVM: Add support for SBI extension registers
RISC-V: KVM: Add SBI STA info to vcpu_arch
RISC-V: KVM: Add steal-update vcpu request
RISC-V: KVM: Add SBI STA extension skeleton
RISC-V: paravirt: Implement steal-time support
RISC-V: Add SBI STA extension definitions
RISC-V: paravirt: Add skeleton for pv-time support
RISC-V: KVM: Fix indentation in kvm_riscv_vcpu_set_reg_csr()
...
The goal is to get sched.h down to a type only header, so the main thing
happening in this patchset is splitting out various _types.h headers and
dependency fixups, as well as moving some things out of sched.h to
better locations.
This is prep work for the memory allocation profiling patchset which
adds new sched.h interdepencencies.
Testing - it's been in -next, and fixes from pretty much all
architectures have percolated in - nothing major.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmWfBwwACgkQE6szbY3K
bnZPwBAAmuRojXaeWxi01IPIOehSGDe68vw44PR9glEMZvxdnZuPOdvE4/+245/L
bRKU2WBCjBUokUbV9msIShwRkFTZAmEMPNfPAAsFMA+VXeDYHKB+ZRdwTggNAQ+I
SG6fZgh5m0HsewCDxU8oqVHkjVq4fXn0cy+aL6xLEd9gu67GoBzX2pDieS2Kvy6j
jnyoKTxFwb+LTQgph0P4EIpq5I2umAsdLwdSR8EJ+8e9NiNvMo1pI00Lx/ntAnFZ
JftWUJcMy3TQ5u1GkyfQN9y/yThX1bZK5GvmHS9SJ2Dkacaus5d+xaKCHtRuFS1I
7C6b8PsNgRczUMumBXus44HdlNfNs1yU3lvVxFvBIPE1qC9pYRHrkWIXXIocXLLC
oxTEJ6B2G3BQZVQgLIA4fOaxMVhmvKffi/aEZLi9vN9VVosd1a6XNKI6KbyRnXFp
GSs9qDqszhn5I3GYNlDNQTc/8UsRlhPFgS6nS0By6QnvxtGi9QkU2tBRBsXvqwCy
cLoCYIhc2tvugHvld70dz26umiJ4rnmxGlobStNoigDvIKAIUt1UmIdr1so8P8eH
xehnL9ZcOX6xnANDL0AqMFFHV6I58CJynhFdUoXfVQf/DWLGX48mpi9LVNsYBzsI
CAwVOAQ0UjGrpdWmJ9ueY/ABYqg9vRjzaDEXQ+MhAYO55CLaVsg=
=3tyT
-----END PGP SIGNATURE-----
Merge tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs
Pull header cleanups from Kent Overstreet:
"The goal is to get sched.h down to a type only header, so the main
thing happening in this patchset is splitting out various _types.h
headers and dependency fixups, as well as moving some things out of
sched.h to better locations.
This is prep work for the memory allocation profiling patchset which
adds new sched.h interdepencencies"
* tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs: (51 commits)
Kill sched.h dependency on rcupdate.h
kill unnecessary thread_info.h include
Kill unnecessary kernel.h include
preempt.h: Kill dependency on list.h
rseq: Split out rseq.h from sched.h
LoongArch: signal.c: add header file to fix build error
restart_block: Trim includes
lockdep: move held_lock to lockdep_types.h
sem: Split out sem_types.h
uidgid: Split out uidgid_types.h
seccomp: Split out seccomp_types.h
refcount: Split out refcount_types.h
uapi/linux/resource.h: fix include
x86/signal: kill dependency on time.h
syscall_user_dispatch.h: split out *_types.h
mm_types_task.h: Trim dependencies
Split out irqflags_types.h
ipc: Kill bogus dependency on spinlock.h
shm: Slim down dependencies
workqueue: Split out workqueue_types.h
...
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW8F4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5urcP/Rex6Too26aHJXelUVHlFOGw3hfOnvbq
Wr/P3kPqB/1Mncx3aiYTpEvUxFjVTvIkMB5dWba39Eq/G1BbOT2CAHCunlvKJrXy
L83YgOl17QtZZJS1KmLTRCj1umfl4Z0c+GEIH+P1FOuOmllNXlLJ1+GWmolP6LLf
u4DF2/tyVZf8JXXeJWYITHsU0YQQ0MhHgYL8/aMYJK8epNFpR3wKIqT3428ASxV3
Ru4WH7jpYkFF7PaKbvjKdepr+1wyVt4PXJDDpciCScz45/8eebgfylLJbMglpsR1
JSUTzd6KdCbekgzp51NnRdoIxP+MXgKA3dIuzXKyIDzm2Xq6tna87ve/aWDGw8JC
nUMkP/vAuaKT+/QTOwskGAvK2GYDQD1UwVcFNLi12Iis50H0qPwcxsUionQuZgUC
ykCmY4N31rSX4DhPg1WLiqsvC/EeDhfXprYrfSd4HQq08NgD45orRJw0Kov+shcS
xijIlE1e3aVJMRrbfoSWyc4m79AcooxjYwojQC1Ayqsq0ZTTzzIpd6rqjmY+LbLL
aP/wNz8hCfMhFekUV7dDk9rMdZY+bBnTiolyKAN66E6EnPYfl2EdrDEGnZOCPXF4
L/O/kMCXHE90cszzrmiR40yNHLkPelij8sK+ligE4JpqteQ7ia/knh8YAiPBxDw6
XcIfftXMm5XG
=wpT4
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-generic-6.8' of https://github.com/kvm-x86/linux into HEAD
Common KVM changes for 6.8:
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures.
CONFIG_HAVE_KVM is currently used by some architectures to either
enabled the KVM config proper, or to enable host-side code that is
not part of the KVM module. However, CONFIG_KVM's "select" statement
in virt/kvm/Kconfig corresponds to a third meaning, namely to
enable common Kconfigs required by all architectures that support
KVM.
These three meanings can be replaced respectively by an
architecture-specific Kconfig, by IS_ENABLED(CONFIG_KVM), or by
a new Kconfig symbol that is in turn selected by the
architecture-specific "config KVM".
Start by introducing such a new Kconfig symbol, CONFIG_KVM_COMMON.
Unlike CONFIG_HAVE_KVM, it is selected by CONFIG_KVM, not by
architecture code, and it brings in all dependencies of common
KVM code. In particular, INTERVAL_TREE was missing in loongarch
and riscv, so that is another thing that is fixed.
Fixes: 8132d887a702 ("KVM: remove CONFIG_HAVE_KVM_EVENTFD", 2023-12-08)
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Closes: https://lore.kernel.org/all/44907c6b-c5bd-4e4a-a921-e4d3825539d8@infradead.org/
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
by moving cond_resched_rcu() to rcupdate_wait.h, we can kill another big
sched.h dependency.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
All platforms with a kernel irqchip have support for irqfd. Unify the
two configuration items so that userspace can expect to use irqfd to
inject interrupts into the irqchip.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
virt/kvm/eventfd.c is compiled unconditionally, meaning that the ioeventfds
member of struct kvm is accessed unconditionally. CONFIG_HAVE_KVM_EVENTFD
therefore must be defined for KVM common code to compile successfully,
remove it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the nestedv2 case, if there is a pending decrementer exception, the
L1 must get the L2's timebase from the L0 to see if the exception should
be cancelled. This adds the overhead of a H_GUEST_GET_STATE call to the
likely case in which the decrementer should not be cancelled.
Avoid this logic for the nestedv2 case.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-13-vaibhav@linux.ibm.com
Commit 709236039964 ("KVM: PPC: Reimplement non-SIMD LOAD/STORE
instruction mmio emulation with analyse_instr() input") and
commit 2b33cb585f94 ("KVM: PPC: Reimplement LOAD_FP/STORE_FP instruction
mmio emulation with analyse_instr() input") made
kvmppc_emulate_loadstore() use the results from analyse_instr() for
instruction emulation. In particular the effective address from
analyse_instr() is used for UPDATE type instructions and fact that
op.val is all ready endian corrected is used in the STORE case.
However, these changes now have some negative implications for the
nestedv2 case. For analyse_instr() to determine the correct effective
address, the GPRs must be loaded from the L0. This is not needed as
vcpu->arch.vaddr_accessed is already set. Change back to using
vcpu->arch.vaddr_accessed.
In the STORE case, use kvmppc_get_gpr() value instead of the op.val.
kvmppc_get_gpr() will reload from the L0 if needed in the nestedv2 case.
This means if a byte reversal is needed must now be passed to
kvmppc_handle_store() like in the kvmppc_handle_load() case.
This means the call to kvmhv_nestedv2_reload_ptregs() can be avoided as
there is no concern about op.val being stale. Drop the call to
kvmhv_nestedv2_mark_dirty_ptregs() as without the call to
kvmhv_nestedv2_reload_ptregs(), stale state could be marked as valid.
This is fine as the required marking things dirty is already handled for
the UPDATE case by the call to kvmppc_set_gpr(). For LOADs, it is
handled in kvmppc_complete_mmio_load(). This is called either directly
in __kvmppc_handle_load() if the load can be handled in KVM, or on the
next kvm_arch_vcpu_ioctl_run() if an exit was required.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-12-vaibhav@linux.ibm.com
In the nestedv2 case, the L1 may register the L2's VPA with the L0. This
allows the L0 to manage the L2's dispatch count, as well as enable
possible performance optimisations by seeing if certain resources are
not being used by the L2 (such as the PMCs).
Use the H_GUEST_SET_STATE call to inform the L0 of the L2's VPA
address. This can not be done in the H_GUEST_VCPU_RUN input buffer.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-11-vaibhav@linux.ibm.com
H_COPY_TOFROM_GUEST is part of the nestedv1 API and so should not be
called by a nestedv2 host. Do not attempt to call it.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-10-vaibhav@linux.ibm.com
The msr check in kvmppc_handle_exit_hv() is not needed for nestedv2 hosts,
skip the check to avoid a H_GUEST_GET_STATE hcall.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-9-vaibhav@linux.ibm.com
There is no need to inject an external interrupt in
kvmppc_book3s_irqprio_deliver() as the test for BOOK3S_IRQPRIO_EXTERNAL
in kvmhv_run_single_vcpu() before guest entry will raise LPCR_MER if
needed. There is also no need to inject the decrementer interrupt as
this will be raised within the L2 if needed. Avoiding these injections
reduces H_GUEST_GET_STATE hcalls by the L1.
Suggested-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-8-vaibhav@linux.ibm.com
Commit 026728dc5d41 ("KVM: PPC: Book3S HV P9: Inject pending xive
interrupts at guest entry") changed guest entry so that if external
interrupts are enabled, BOOK3S_IRQPRIO_EXTERNAL is not tested for. Test
for this regardless of MSR_EE.
For an L1 host, do not inject an interrupt, but always
use LPCR_MER. If the L0 desires it can inject an interrupt.
Fixes: 026728dc5d41 ("KVM: PPC: Book3S HV P9: Inject pending xive interrupts at guest entry")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[jpn: use kvmpcc_get_msr(), write commit message]
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-7-vaibhav@linux.ibm.com
LPCR_MER is conditionally set during entry to a guest if there is a
pending external interrupt. In the nestedv2 case, this change is not
being communicated to the L0, which means it is not being set in the L2.
Ensure the updated LPCR value is passed to the L0.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-6-vaibhav@linux.ibm.com
kvmhv_copy_tofrom_guest_radix() gets the PID at the start of the
function. If pid is not used, then this is a wasteful H_GUEST_GET_STATE
hcall for nestedv2 hosts. Move the assignment to where pid will be used.
Suggested-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-5-vaibhav@linux.ibm.com
The check for a hcall coming from userspace is done for KVM-PR. This is
not supported for nestedv2 and the L0 will directly inject the necessary
exception to the L2 if userspace performs a hcall. Avoid checking the
MSR and thus avoid a H_GUEST_GET_STATE hcall in the L1.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-4-vaibhav@linux.ibm.com
An L0 must invalidate the L2's RPT during H_GUEST_DELETE if this has not
already been done. This is a slow operation that means H_GUEST_DELETE
must return H_BUSY multiple times before completing. Invalidating the
tables before deleting the guest so there is less work for the L0 to do.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231201132618.555031-2-vaibhav@linux.ibm.com
KVM_CAP_DEVICE_CTRL allows userspace to check if the kvm_device
framework (e.g. KVM_CREATE_DEVICE) is supported by KVM. Move
KVM_CAP_DEVICE_CTRL to the generic check for the two reasons:
1) it already supports arch agnostic usages (i.e. KVM_DEV_TYPE_VFIO).
For example, userspace VFIO implementation may needs to create
KVM_DEV_TYPE_VFIO on x86, riscv, or arm etc. It is simpler to have it
checked at the generic code than at each arch's code.
2) KVM_CREATE_DEVICE has been added to the generic code.
Link: https://lore.kernel.org/all/20221215115207.14784-1-wei.w.wang@intel.com
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Acked-by: Anup Patel <anup@brainfault.org> (riscv)
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Link: https://lore.kernel.org/r/20230315101606.10636-1-wei.w.wang@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Introduce several new KVM uAPIs to ultimately create a guest-first memory
subsystem within KVM, a.k.a. guest_memfd. Guest-first memory allows KVM
to provide features, enhancements, and optimizations that are kludgly
or outright impossible to implement in a generic memory subsystem.
The core KVM ioctl() for guest_memfd is KVM_CREATE_GUEST_MEMFD, which
similar to the generic memfd_create(), creates an anonymous file and
returns a file descriptor that refers to it. Again like "regular"
memfd files, guest_memfd files live in RAM, have volatile storage,
and are automatically released when the last reference is dropped.
The key differences between memfd files (and every other memory subystem)
is that guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
convert a guest memory area between the shared and guest-private states.
A second KVM ioctl(), KVM_SET_MEMORY_ATTRIBUTES, allows userspace to
specify attributes for a given page of guest memory. In the long term,
it will likely be extended to allow userspace to specify per-gfn RWX
protections, including allowing memory to be writable in the guest
without it also being writable in host userspace.
The immediate and driving use case for guest_memfd are Confidential
(CoCo) VMs, specifically AMD's SEV-SNP, Intel's TDX, and KVM's own pKVM.
For such use cases, being able to map memory into KVM guests without
requiring said memory to be mapped into the host is a hard requirement.
While SEV+ and TDX prevent untrusted software from reading guest private
data by encrypting guest memory, pKVM provides confidentiality and
integrity *without* relying on memory encryption. In addition, with
SEV-SNP and especially TDX, accessing guest private memory can be fatal
to the host, i.e. KVM must be prevent host userspace from accessing
guest memory irrespective of hardware behavior.
Long term, guest_memfd may be useful for use cases beyond CoCo VMs,
for example hardening userspace against unintentional accesses to guest
memory. As mentioned earlier, KVM's ABI uses userspace VMA protections to
define the allow guest protection (with an exception granted to mapping
guest memory executable), and similarly KVM currently requires the guest
mapping size to be a strict subset of the host userspace mapping size.
Decoupling the mappings sizes would allow userspace to precisely map
only what is needed and with the required permissions, without impacting
guest performance.
A guest-first memory subsystem also provides clearer line of sight to
things like a dedicated memory pool (for slice-of-hardware VMs) and
elimination of "struct page" (for offload setups where userspace _never_
needs to DMA from or into guest memory).
guest_memfd is the result of 3+ years of development and exploration;
taking on memory management responsibilities in KVM was not the first,
second, or even third choice for supporting CoCo VMs. But after many
failed attempts to avoid KVM-specific backing memory, and looking at
where things ended up, it is quite clear that of all approaches tried,
guest_memfd is the simplest, most robust, and most extensible, and the
right thing to do for KVM and the kernel at-large.
The "development cycle" for this version is going to be very short;
ideally, next week I will merge it as is in kvm/next, taking this through
the KVM tree for 6.8 immediately after the end of the merge window.
The series is still based on 6.6 (plus KVM changes for 6.7) so it
will require a small fixup for changes to get_file_rcu() introduced in
6.7 by commit 0ede61d8589c ("file: convert to SLAB_TYPESAFE_BY_RCU").
The fixup will be done as part of the merge commit, and most of the text
above will become the commit message for the merge.
Pending post-merge work includes:
- hugepage support
- looking into using the restrictedmem framework for guest memory
- introducing a testing mechanism to poison memory, possibly using
the same memory attributes introduced here
- SNP and TDX support
There are two non-KVM patches buried in the middle of this series:
fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
Let x86 track the number of address spaces on a per-VM basis so that KVM
can disallow SMM memslots for confidential VMs. Confidentials VMs are
fundamentally incompatible with emulating SMM, which as the name suggests
requires being able to read and write guest memory and register state.
Disallowing SMM will simplify support for guest private memory, as KVM
will not need to worry about tracking memory attributes for multiple
address spaces (SMM is the only "non-default" address space across all
architectures).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert KVM_ARCH_WANT_MMU_NOTIFIER into a Kconfig and select it where
appropriate to effectively maintain existing behavior. Using a proper
Kconfig will simplify building more functionality on top of KVM's
mmu_notifier infrastructure.
Add a forward declaration of kvm_gfn_range to kvm_types.h so that
including arch/powerpc/include/asm/kvm_ppc.h's with CONFIG_KVM=n doesn't
generate warnings due to kvm_gfn_range being undeclared. PPC defines
hooks for PR vs. HV without guarding them via #ifdeffery, e.g.
bool (*unmap_gfn_range)(struct kvm *kvm, struct kvm_gfn_range *range);
bool (*age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);
bool (*test_age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);
bool (*set_spte_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);
Alternatively, PPC could forward declare kvm_gfn_range, but there's no
good reason not to define it in common KVM.
Acked-by: Anup Patel <anup@brainfault.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Advertise that KVM's MMU is synchronized with the primary MMU for all
flavors of PPC KVM support, i.e. advertise that the MMU is synchronized
when CONFIG_KVM_BOOK3S_HV_POSSIBLE=y but the VM is not using hypervisor
mode (a.k.a. PR VMs). PR VMs, via kvm_unmap_gfn_range_pr(), do the right
thing for mmu_notifier invalidation events, and more tellingly, KVM
returns '1' for KVM_CAP_SYNC_MMU when CONFIG_KVM_BOOK3S_HV_POSSIBLE=n
and CONFIG_KVM_BOOK3S_PR_POSSIBLE=y, i.e. KVM already advertises a
synchronized MMU for PR VMs, just not when CONFIG_KVM_BOOK3S_HV_POSSIBLE=y.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Assert that both KVM_ARCH_WANT_MMU_NOTIFIER and CONFIG_MMU_NOTIFIER are
defined when KVM is enabled, and return '1' unconditionally for the
CONFIG_KVM_BOOK3S_HV_POSSIBLE=n path. All flavors of PPC support for KVM
select MMU_NOTIFIER, and KVM_ARCH_WANT_MMU_NOTIFIER is unconditionally
defined by arch/powerpc/include/asm/kvm_host.h.
Effectively dropping use of KVM_ARCH_WANT_MMU_NOTIFIER will simplify a
future cleanup to turn KVM_ARCH_WANT_MMU_NOTIFIER into a Kconfig, i.e.
will allow combining all of the
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
checks into a single
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
without having to worry about PPC's "bare" usage of
KVM_ARCH_WANT_MMU_NOTIFIER.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Add support for KVM running as a nested hypervisor under development versions
of PowerVM, using the new PAPR nested virtualisation API.
- Add support for the BPF prog pack allocator.
- A rework of the non-server MMU handling to support execute-only on all platforms.
- Some optimisations & cleanups for the powerpc qspinlock code.
- Various other small features and fixes.
Thanks to: Aboorva Devarajan, Aditya Gupta, Amit Machhiwal, Benjamin Gray,
Christophe Leroy, Dr. David Alan Gilbert, Gaurav Batra, Gautam Menghani, Geert
Uytterhoeven, Haren Myneni, Hari Bathini, Joel Stanley, Jordan Niethe, Julia
Lawall, Kautuk Consul, Kuan-Wei Chiu, Michael Neuling, Minjie Du, Muhammad
Muzammil, Naveen N Rao, Nicholas Piggin, Nick Child, Nysal Jan K.A, Peter
Lafreniere, Rob Herring, Sachin Sant, Sebastian Andrzej Siewior, Shrikanth
Hegde, Srikar Dronamraju, Stanislav Kinsburskii, Vaibhav Jain, Wang Yufen, Yang
Yingliang, Yuan Tan.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAmVEf38THG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgMKgD/4vmPVcBE31xCAuuksrVvmMDRsCoC8N
IJe4A5dHda1tYgdN2YdeK4LBszv5pWICjf2xZHlNh+L0s3Vxpngd4ycAWGPfDAyk
SOlM24NCKl5j3327QZEt+iZVmJeTSnrmjxO0A1y04yvzLrfvFT7mbP4EXoidjShd
GNb/EoH9kkCFn65zulc+lN2itQEX6Ht2GQTAz5z5GKtF6d1zZGM8ftOW+SQ5LeU3
5JOkQtMtwAKhzBiglA4BB3pQyjaOOkPaTaj/WLoxx5tbVaCkV4wrFq48Bmtbm7E3
kYkMNoI3IsC615GqY1CaRs/RSpMt74tIVh3tstSecHWRIwNGnfF6zeZpKLvJSs8k
Qa5greGWMUDuJdDg9oDwAX2AKtO+3byI2v1hKE+sMhMh0eeMtDP9WIrIRg4BDjKL
mq8RffXLTCtepehgfwBpoZbcvFSwFUMwuihBD7+bDMZQeDbtuFdZ2ouMFXBP9M1n
cuv4KySouvKv9Xp5EeCkHlpL7QmSqrtSHOPYjoPeLueJYlmjheWdreLM9p7Nl2ma
5wBxLpdLCGCpDJOyGgWNoQRHXucBNlU97DLx2V70nXG4wvvRyXh9EZ6I2niPSdPx
N3LJnINz4MJ52Gd1KWJvufOyJlLwXxuI07rzCq67ZegpEPh+baWqVcPscuKU8+q0
dSh2DPCht8gw1A==
=ddT4
-----END PGP SIGNATURE-----
Merge tag 'powerpc-6.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- Add support for KVM running as a nested hypervisor under development
versions of PowerVM, using the new PAPR nested virtualisation API
- Add support for the BPF prog pack allocator
- A rework of the non-server MMU handling to support execute-only on
all platforms
- Some optimisations & cleanups for the powerpc qspinlock code
- Various other small features and fixes
Thanks to Aboorva Devarajan, Aditya Gupta, Amit Machhiwal, Benjamin
Gray, Christophe Leroy, Dr. David Alan Gilbert, Gaurav Batra, Gautam
Menghani, Geert Uytterhoeven, Haren Myneni, Hari Bathini, Joel Stanley,
Jordan Niethe, Julia Lawall, Kautuk Consul, Kuan-Wei Chiu, Michael
Neuling, Minjie Du, Muhammad Muzammil, Naveen N Rao, Nicholas Piggin,
Nick Child, Nysal Jan K.A, Peter Lafreniere, Rob Herring, Sachin Sant,
Sebastian Andrzej Siewior, Shrikanth Hegde, Srikar Dronamraju, Stanislav
Kinsburskii, Vaibhav Jain, Wang Yufen, Yang Yingliang, and Yuan Tan.
* tag 'powerpc-6.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (100 commits)
powerpc/vmcore: Add MMU information to vmcoreinfo
Revert "powerpc: add `cur_cpu_spec` symbol to vmcoreinfo"
powerpc/bpf: use bpf_jit_binary_pack_[alloc|finalize|free]
powerpc/bpf: rename powerpc64_jit_data to powerpc_jit_data
powerpc/bpf: implement bpf_arch_text_invalidate for bpf_prog_pack
powerpc/bpf: implement bpf_arch_text_copy
powerpc/code-patching: introduce patch_instructions()
powerpc/32s: Implement local_flush_tlb_page_psize()
powerpc/pseries: use kfree_sensitive() in plpks_gen_password()
powerpc/code-patching: Perform hwsync in __patch_instruction() in case of failure
powerpc/fsl_msi: Use device_get_match_data()
powerpc: Remove cpm_dp...() macros
powerpc/qspinlock: Rename yield_propagate_owner tunable
powerpc/qspinlock: Propagate sleepy if previous waiter is preempted
powerpc/qspinlock: don't propagate the not-sleepy state
powerpc/qspinlock: propagate owner preemptedness rather than CPU number
powerpc/qspinlock: stop queued waiters trying to set lock sleepy
powerpc/perf: Fix disabling BHRB and instruction sampling
powerpc/trace: Add support for HAVE_FUNCTION_ARG_ACCESS_API
powerpc/tools: Pass -mabi=elfv2 to gcc-check-mprofile-kernel.sh
...
Sparse reports several function implementations annotated with extern.
This is clearly incorrect, likely just copied from an actual extern
declaration in another file.
Fix the sparse warnings by removing extern.
Signed-off-by: Benjamin Gray <bgray@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231011053711.93427-6-bgray@linux.ibm.com
Sparse reports several uses of 0 for pointer arguments and comparisons.
Replace with NULL to better convey the intent. Remove entirely if a
comparison to follow the kernel style of implicit boolean conversions.
Signed-off-by: Benjamin Gray <bgray@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231011053711.93427-5-bgray@linux.ibm.com
and fix all in-tree references.
Architecture-specific documentation is being moved into Documentation/arch/
as a way of cleaning up the top-level documentation directory and making
the docs hierarchy more closely match the source hierarchy.
Signed-off-by: Costa Shulyupin <costa.shul@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20230826165737.2101199-1-costa.shul@redhat.com
A series of hcalls have been added to the PAPR which allow a regular
guest partition to create and manage guest partitions of its own. KVM
already had an interface that allowed this on powernv platforms. This
existing interface will now be called "nestedv1". The newly added PAPR
interface will be called "nestedv2". PHYP will support the nestedv2
interface. At this time the host side of the nestedv2 interface has not
been implemented on powernv but there is no technical reason why it
could not be added.
The nestedv1 interface is still supported.
Add support to KVM to utilize these hcalls to enable running nested
guests as a pseries guest on PHYP.
Overview of the new hcall usage:
- L1 and L0 negotiate capabilities with
H_GUEST_{G,S}ET_CAPABILITIES()
- L1 requests the L0 create a L2 with
H_GUEST_CREATE() and receives a handle to use in future hcalls
- L1 requests the L0 create a L2 vCPU with
H_GUEST_CREATE_VCPU()
- L1 sets up the L2 using H_GUEST_SET and the
H_GUEST_VCPU_RUN input buffer
- L1 requests the L0 runs the L2 vCPU using H_GUEST_VCPU_RUN()
- L2 returns to L1 with an exit reason and L1 reads the
H_GUEST_VCPU_RUN output buffer populated by the L0
- L1 handles the exit using H_GET_STATE if necessary
- L1 reruns L2 vCPU with H_GUEST_VCPU_RUN
- L1 frees the L2 in the L0 with H_GUEST_DELETE()
Support for the new API is determined by trying
H_GUEST_GET_CAPABILITIES. On a successful return, use the nestedv2
interface.
Use the vcpu register state setters for tracking modified guest state
elements and copy the thread wide values into the H_GUEST_VCPU_RUN input
buffer immediately before running a L2. The guest wide
elements can not be added to the input buffer so send them with a
separate H_GUEST_SET call if necessary.
Make the vcpu register getter load the corresponding value from the real
host with H_GUEST_GET. To avoid unnecessarily calling H_GUEST_GET, track
which values have already been loaded between H_GUEST_VCPU_RUN calls. If
an element is present in the H_GUEST_VCPU_RUN output buffer it also does
not need to be loaded again.
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Signed-off-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Signed-off-by: Gautam Menghani <gautam@linux.ibm.com>
Signed-off-by: Kautuk Consul <kconsul@linux.vnet.ibm.com>
Signed-off-by: Amit Machhiwal <amachhiw@linux.vnet.ibm.com>
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-11-jniethe5@gmail.com
The LPID register is 32 bits long. The host keeps the lpids for each
guest in an unsigned word struct kvm_arch. Currently, LPIDs are already
limited by mmu_lpid_bits and KVM_MAX_NESTED_GUESTS_SHIFT.
The nestedv2 API returns a 64 bit "Guest ID" to be used be the L1 host
for each L2 guest. This value is used as an lpid, e.g. it is the
parameter used by H_RPT_INVALIDATE. To minimize needless special casing
it makes sense to keep this "Guest ID" in struct kvm_arch::lpid.
This means that struct kvm_arch::lpid is too small so prepare for this
and make it an unsigned long. This is not a problem for the KVM-HV and
nestedv1 cases as their lpid values are already limited to valid ranges
so in those contexts the lpid can be used as an unsigned word safely as
needed.
In the PAPR, the H_RPT_INVALIDATE pid/lpid parameter is already
specified as an unsigned long so change pseries_rpt_invalidate() to
match that. Update the callers of pseries_rpt_invalidate() to also take
an unsigned long if they take an lpid value.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-10-jniethe5@gmail.com
The PAPR "Nestedv2" guest API introduces the concept of a Guest State
Buffer for communication about L2 guests between L1 and L0 hosts.
In the new API, the L0 manages the L2 on behalf of the L1. This means
that if the L1 needs to change L2 state (e.g. GPRs, SPRs, partition
table...), it must request the L0 perform the modification. If the
nested host needs to read L2 state likewise this request must
go through the L0.
The Guest State Buffer is a Type-Length-Value style data format defined
in the PAPR which assigns all relevant partition state a unique
identity. Unlike a typical TLV format the length is redundant as the
length of each identity is fixed but is included for checking
correctness.
A guest state buffer consists of an element count followed by a stream
of elements, where elements are composed of an ID number, data length,
then the data:
Header:
<---4 bytes--->
+----------------+-----
| Element Count | Elements...
+----------------+-----
Element:
<----2 bytes---> <-2 bytes-> <-Length bytes->
+----------------+-----------+----------------+
| Guest State ID | Length | Data |
+----------------+-----------+----------------+
Guest State IDs have other attributes defined in the PAPR such as
whether they are per thread or per guest, or read-only.
Introduce a library for using guest state buffers. This includes support
for actions such as creating buffers, adding elements to buffers,
reading the value of elements and parsing buffers. This will be used
later by the nestedv2 guest support.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-9-jniethe5@gmail.com
kvmppc_get_msr() and kvmppc_set_msr_fast() serve as accessors for the
MSR. However because the MSR is kept in the shared regs they include a
conditional check for kvmppc_shared_big_endian() and endian conversion.
Within the Book3S HV specific code there are direct reads and writes of
shregs::msr. In preparation for Nested APIv2 these accesses need to be
replaced with accessor functions so it is possible to extend their
behavior. However, using the kvmppc_get_msr() and kvmppc_set_msr_fast()
functions is undesirable because it would introduce a conditional branch
and endian conversion that is not currently present.
kvmppc_set_msr_hv() already exists, it is used for the
kvmppc_ops::set_msr callback.
Introduce a low level accessor __kvmppc_{s,g}et_msr_hv() that simply
gets and sets shregs::msr. This will be extend for Nested APIv2 support.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-8-jniethe5@gmail.com
Introduce accessor generator macros for Book3S HV VCPU registers. Use
the accessor functions to replace direct accesses to this registers.
This will be important later for Nested APIv2 support which requires
additional functionality for accessing and modifying VCPU state.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-7-jniethe5@gmail.com
Introduce accessor generator macros for VCORE registers. Use the accessor
functions to replace direct accesses to this registers.
This will be important later for Nested APIv2 support which requires
additional functionality for accessing and modifying VCPU state.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-6-jniethe5@gmail.com
Introduce accessor generator macros for VCPU registers. Use the accessor
functions to replace direct accesses to this registers.
This will be important later for Nested APIv2 support which requires
additional functionality for accessing and modifying VCPU state.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-5-jniethe5@gmail.com
Introduce accessor functions for floating point and vector registers
like the ones that exist for GPRs. Use these to replace the existing FPR
and VR accessor macros.
This will be important later for Nested APIv2 support which requires
additional functionality for accessing and modifying VCPU state.
Signed-off-by: Gautam Menghani <gautam@linux.ibm.com>
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-3-jniethe5@gmail.com
Always use the GPR accessor functions. This will be important later for
Nested APIv2 support which requires additional functionality for
accessing and modifying VCPU state.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230914030600.16993-2-jniethe5@gmail.com
- Add HOTPLUG_SMT support (/sys/devices/system/cpu/smt) and honour the
configured SMT state when hotplugging CPUs into the system.
- Combine final TLB flush and lazy TLB mm shootdown IPIs when using the Radix
MMU to avoid a broadcast TLBIE flush on exit.
- Drop the exclusion between ptrace/perf watchpoints, and drop the now unused
associated arch hooks.
- Add support for the "nohlt" command line option to disable CPU idle.
- Add support for -fpatchable-function-entry for ftrace, with GCC >= 13.1.
- Rework memory block size determination, and support 256MB size on systems
with GPUs that have hotpluggable memory.
- Various other small features and fixes.
Thanks to: Andrew Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Athira Rajeev,
Benjamin Gray, Christophe Leroy, Frederic Barrat, Gautam Menghani, Geoff Levand,
Hari Bathini, Immad Mir, Jialin Zhang, Joel Stanley, Jordan Niethe, Justin
Stitt, Kajol Jain, Kees Cook, Krzysztof Kozlowski, Laurent Dufour, Liang He,
Linus Walleij, Mahesh Salgaonkar, Masahiro Yamada, Michal Suchanek, Nageswara
R Sastry, Nathan Chancellor, Nathan Lynch, Naveen N Rao, Nicholas Piggin, Nick
Desaulniers, Omar Sandoval, Randy Dunlap, Reza Arbab, Rob Herring, Russell
Currey, Sourabh Jain, Thomas Gleixner, Trevor Woerner, Uwe Kleine-König, Vaibhav
Jain, Xiongfeng Wang, Yuan Tan, Zhang Rui, Zheng Zengkai.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAmTwgbwTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgFmpD/432vipeoqvkAYsyK0xi/Y3GcY0wcyd
WJApLXXadEbtKQrgXQ6sowWqalg5thYnQCRarg/tXKK/po3KfgwkPjGDpOL+cIdr
12QVN2XJm9VmJ1wYJxzk+yXx4F43AdmMdr94qWAGufbTHezwb4UpzVR1NxtFrOE/
X5TNsC2+2mdZY/ZaNHS5vsTIFv3EhQfqgjZPlIAdLn6CGc8xWT514Q/uHA8+ytM/
HL7Hqs33DoPSvgTa5TT/2E0d0k5nO3P5KObzAjpYlireTPaBi51mpKGewcrtm0o2
v3cBlbfx3C7pe9ZhKBK9BH8cjynfiqsVZ9/lCw/7eBNdm9tHuzG0jeS7Db9tCZXS
fM7G2R7SoIusPTqxlBmkU5DpYslwrHiVgCyy3ijxkoA/fakVwh/GgTcMsRt73IY6
n6DsUvWwuYHCIeIiHmHQJqCqCRtV+aMzU3AbbBHOjtdIanhlW16M686dEsgCirh7
akRVRD5VqKaqXs34PpkRL89Xv3wZRjl6XZ3hZFfCjSYXfpXDXhgSToIskpHYhKL8
gpY7WtG9YQP05Xz5HRCx6EluaZVeKe0lZi6fezX7Mi9AygJQO8FfXqP1mHBlEq40
ThWtvL9D89RV6lADqqFN20XepgvKNOyAXcE4szvsnIZYUSPmZQZSPxx+DHtROaLP
jX3ifxtxJp92pQ==
=5g7K
-----END PGP SIGNATURE-----
Merge tag 'powerpc-6.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- Add HOTPLUG_SMT support (/sys/devices/system/cpu/smt) and honour the
configured SMT state when hotplugging CPUs into the system
- Combine final TLB flush and lazy TLB mm shootdown IPIs when using the
Radix MMU to avoid a broadcast TLBIE flush on exit
- Drop the exclusion between ptrace/perf watchpoints, and drop the now
unused associated arch hooks
- Add support for the "nohlt" command line option to disable CPU idle
- Add support for -fpatchable-function-entry for ftrace, with GCC >=
13.1
- Rework memory block size determination, and support 256MB size on
systems with GPUs that have hotpluggable memory
- Various other small features and fixes
Thanks to Andrew Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Athira
Rajeev, Benjamin Gray, Christophe Leroy, Frederic Barrat, Gautam
Menghani, Geoff Levand, Hari Bathini, Immad Mir, Jialin Zhang, Joel
Stanley, Jordan Niethe, Justin Stitt, Kajol Jain, Kees Cook, Krzysztof
Kozlowski, Laurent Dufour, Liang He, Linus Walleij, Mahesh Salgaonkar,
Masahiro Yamada, Michal Suchanek, Nageswara R Sastry, Nathan Chancellor,
Nathan Lynch, Naveen N Rao, Nicholas Piggin, Nick Desaulniers, Omar
Sandoval, Randy Dunlap, Reza Arbab, Rob Herring, Russell Currey, Sourabh
Jain, Thomas Gleixner, Trevor Woerner, Uwe Kleine-König, Vaibhav Jain,
Xiongfeng Wang, Yuan Tan, Zhang Rui, and Zheng Zengkai.
* tag 'powerpc-6.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (135 commits)
macintosh/ams: linux/platform_device.h is needed
powerpc/xmon: Reapply "Relax frame size for clang"
powerpc/mm/book3s64: Use 256M as the upper limit with coherent device memory attached
powerpc/mm/book3s64: Fix build error with SPARSEMEM disabled
powerpc/iommu: Fix notifiers being shared by PCI and VIO buses
powerpc/mpc5xxx: Add missing fwnode_handle_put()
powerpc/config: Disable SLAB_DEBUG_ON in skiroot
powerpc/pseries: Remove unused hcall tracing instruction
powerpc/pseries: Fix hcall tracepoints with JUMP_LABEL=n
powerpc: dts: add missing space before {
powerpc/eeh: Use pci_dev_id() to simplify the code
powerpc/64s: Move CPU -mtune options into Kconfig
powerpc/powermac: Fix unused function warning
powerpc/pseries: Rework lppaca_shared_proc() to avoid DEBUG_PREEMPT
powerpc: Don't include lppaca.h in paca.h
powerpc/pseries: Move hcall_vphn() prototype into vphn.h
powerpc/pseries: Move VPHN constants into vphn.h
cxl: Drop unused detach_spa()
powerpc: Drop zalloc_maybe_bootmem()
powerpc/powernv: Use struct opal_prd_msg in more places
...
By adding a forward declaration for struct lppaca we can untangle paca.h
and lppaca.h. Also move get_lppaca() into lppaca.h for consistency.
Add includes of lppaca.h to some files that need it.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230823055317.751786-3-mpe@ellerman.id.au
Implicit vma locking inside vm_flags_reset() and vm_flags_reset_once() is
not obvious and makes it hard to understand where vma locking is happening.
Also in some cases (like in dup_userfaultfd()) vma should be locked earlier
than vma_flags modification. To make locking more visible, change these
functions to assert that the vma write lock is taken and explicitly lock
the vma beforehand. Fix userfaultfd functions which should lock the vma
earlier.
Link: https://lkml.kernel.org/r/20230804152724.3090321-5-surenb@google.com
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Making virt_to_pfn() a static inline taking a strongly typed
(const void *) makes the contract of a passing a pointer of that
type to the function explicit and exposes any misuse of the
macro virt_to_pfn() acting polymorphic and accepting many types
such as (void *), (unitptr_t) or (unsigned long) as arguments
without warnings.
Move the virt_to_pfn() and related functions below the
declaration of __pa() so it compiles.
For symmetry do the same with pfn_to_kaddr().
As the file is included right into the linker file, we need
to surround the functions with ifndef __ASSEMBLY__ so we
don't cause compilation errors.
The conversion moreover exposes the fact that pmd_page_vaddr()
was returning an unsigned long rather than a const void * as
could be expected, so all the sites defining pmd_page_vaddr()
had to be augmented as well.
Finally the KVM code in book3s_64_mmu_hv.c was passing an
unsigned int to virt_to_phys() so fix that up with a cast so the
result compiles.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
[mpe: Fixup kfence.h, simplify pfn_to_kaddr() & pmd_page_vaddr()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230809-virt-to-phys-powerpc-v1-1-12e912a7d439@linaro.org
Commit ddb5cdbafaaa ("kbuild: generate KSYMTAB entries by modpost")
deprecated <asm/export.h>, which is now a wrapper of <linux/export.h>.
Replace #include <asm/export.h> with #include <linux/export.h>.
After all the <asm/export.h> lines are converted, <asm/export.h> and
<asm-generic/export.h> will be removed.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
[mpe: Fixup selftests that stub asm/export.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230806150954.394189-2-masahiroy@kernel.org