Moving things around to give us better packing in the btrfs_inode. This reduces
the size of our inode by 8 bytes. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
The btrfs file defrag code will loop through the extents and
force COW on them. But there is a concurrent truncate in the middle of
the defrag, it might end up defragging the same range over and over
again.
The problem is that writepage won't go through and do anything on pages
past i_size, so the cow won't happen, so the file will appear to still
be fragmented. defrag will end up hitting the same extents again and
again.
In the worst case, the truncate can actually live lock with the defrag
because the defrag keeps creating new ordered extents which the truncate
code keeps waiting on.
The fix here is to make defrag check for i_size inside the main loop,
instead of just once before the looping starts.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Follow those steps:
# mount -o autodefrag /dev/sda7 /mnt
# dd if=/dev/urandom of=/mnt/tmp bs=200K count=1
# sync
# dd if=/dev/urandom of=/mnt/tmp bs=8K count=1 conv=notrunc
and then it'll go into a loop: writeback -> defrag -> writeback ...
It's because writeback writes [8K, 200K] and then writes [0, 8K].
I tried to make writeback know if the pages are dirtied by defrag,
but the patch was a bit intrusive. Here I simply set writeback_index
when we defrag a file.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Scrub uses a simple tree-enumeration to bring the relevant portions
of the extent- and csum-tree into the page cache before starting the
scrub-I/O. This is now replaced by using the new readahead-API.
During readahead the scrub is being accounted as paused, so it won't
hold off transaction commits.
This change raises the average disk bandwith utilisation on my test
volume from 70% to 90%. On another volume, the time for a test run
went down from 89s to 43s.
Changes v5:
- reada1/2 are now of type struct reada_control *
Signed-off-by: Arne Jansen <sensille@gmx.net>
This adds the hooks needed for readahead. In the readpage_end_io_hook,
the extent state is checked for the EXTENT_READAHEAD flag. Only in this
case the readahead hook is called, to keep the impact on non-ra as low
as possible.
Additionally, a hook for a failed IO is added, otherwise readahead would
wait indefinitely for the extent to finish.
Changes for v2:
- eliminate race condition
Signed-off-by: Arne Jansen <sensille@gmx.net>
This is the implementation for the generic read ahead framework.
To trigger a readahead, btrfs_reada_add must be called. It will start
a read ahead for the given range [start, end) on tree root. The returned
handle can either be used to wait on the readahead to finish
(btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
The read ahead works as follows:
On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
reada_start_machine will then search for extents to prefetch and trigger
some reads. When a read finishes for a node, all contained node/leaf
pointers that lie in the given range will also be enqueued. The reads will
be triggered in sequential order, thus giving a big win over a naive
enumeration. It will also make use of multi-device layouts. Each disk
will have its on read pointer and all disks will by utilized in parallel.
Also will no two disks read both sides of a mirror simultaneously, as this
would waste seeking capacity. Instead both disks will read different parts
of the filesystem.
Any number of readaheads can be started in parallel. The read order will be
determined globally, i.e. 2 parallel readaheads will normally finish faster
than the 2 started one after another.
Changes v2:
- protect root->node by transaction instead of node_lock
- fix missed branches:
The readahead had a too simple check to determine if a branch from
a node should be checked or not. It now also records the upper bound
of each node to see if the requested RA range lies within.
- use KERN_CONT to debug output, to avoid line breaks
- defer reada_start_machine to worker to avoid deadlock
Changes v3:
- protect root->node by rcu
Changes v5:
- changed EIO-semantics of reada_tree_block_flagged
- remove spin_lock from reada_control and make elems an atomic_t
- remove unused read_total from reada_control
- kill reada_key_cmp, use btrfs_comp_cpu_keys instead
- use kref-style release functions where possible
- return struct reada_control * instead of void * from btrfs_reada_add
Signed-off-by: Arne Jansen <sensille@gmx.net>
Add state information for readahead to btrfs_fs_info and btrfs_device
Changes v2:
- don't wait in radix_trees
- add own set of workers for readahead
Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Arne Jansen <sensille@gmx.net>
Add a READAHEAD extent buffer flag.
Add a function to trigger a read with this flag set.
Changes v2:
- use extent buffer flags instead of extent state flags
Changes v5:
- adapt to changed read_extent_buffer_pages interface
- don't return eb from reada_tree_block_flagged if it has CORRUPT flag set
Signed-off-by: Arne Jansen <sensille@gmx.net>
read_extent_buffer_pages currently has two modes, either trigger a read
without waiting for anything, or wait for the I/O to finish. The former
also bails when it's unable to lock the page. This patch now adds an
additional parameter to allow it to block on page lock, but don't wait
for completion.
Changes v5:
- merge the 2 wait parameters into one and define WAIT_NONE, WAIT_COMPLETE and
WAIT_PAGE_LOCK
Change v6:
- fix bug introduced in v5
Signed-off-by: Arne Jansen <sensille@gmx.net>
A user reported a problem where ceph was getting into 100% cpu usage while doing
some writing. It turns out it's because we were doing a short write on a not
uptodate page, which means we'd fall back at one page at a time and fault the
page in. The problem is our position is on the page boundary, so our fault in
logic wasn't actually reading the page, so we'd just spin forever or until the
page got read in by somebody else. This will force a readpage if we end up
doing a short copy. Alexandre could reproduce this easily with ceph and reports
it fixes his problem. I also wrote a reproducer that no longer hangs my box
with this patch. Thanks,
Reported-and-tested-by: Alexandre Oliva <aoliva@redhat.com>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This ties nodatasum fixup in scrub together with raid repair patches. While
both series are working fine alone, scrub will report uncorrectable errors
if they occur in a nodatasum extent *and* the page is in the page cache.
Previously, we would have triggered readpage to find good data and do the
repair. However, readpage wouldn't read anything in the case where the page
is up to date in the cache. So, we simply take that good data we have and
call repair_io_failure directly (unless the page in the cache is dirty).
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
The raid-retry code in inode.c can be generalized so that it works for
metadata as well. Thus, this patch moves it to extent_io.c and makes the
raid-retry code a raid-repair code.
Repair works that way: Whenever a read error occurs and we have more
mirrors to try, note the failed mirror, and retry another. If we find a
good one, check if we did note a failure earlier and if so, do not allow
the read to complete until after the bad sector was written with the good
data we just fetched. As we have the extent locked while reading, no one
can change the data in between.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
The error correction code wants to make sure that only the bad mirror is
rewritten. Thus, we need to know which mirror is the bad one. I did not
find a more apropriate field than bi_bdev. But I think using this is fine,
because it is modified by the block layer, anyway, and should not be read
after the bio returned.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
The block layer modifies bio->bi_bdev and bio->bi_sector while working on
the bio, they do _not_ come back unmodified in the completion callback.
To call add_page, we need at least some bi_bdev set, which is why the code
was working, previously. With this patch, we use the latest_bdev from
fsinfo instead of the leftover in the bio. This gives us the possibility to
use the bi_bdev field for another purpose.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
btrfs_bio is a bio abstraction able to split and not complete after the last
bio has returned (like the old btrfs_multi_bio). Additionally, btrfs_bio
tracks the mirror_num used to read data which can be used for error
correction purposes.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
these ioctls make use of the new functions initially added for scrub. they
return all inodes belonging to a logical address (BTRFS_IOC_LOGICAL_INO) and
all paths belonging to an inode (BTRFS_IOC_INO_PATHS).
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
This removes a FIXME comment and introduces the first part of nodatasum
fixup: It gets the corresponding inode for a logical address and triggers a
regular readpage for the corrupted sector.
Once we have on-the-fly error correction our error will be automatically
corrected. The correction code is expected to clear the newly introduced
EXTENT_DAMAGED flag, making scrub report that error as "corrected" instead
of "uncorrectable" eventually.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Currently, extent_read_full_page always assumes we are trying to read mirror
0, which generally is the best we can do. To add flexibility, pass it as a
parameter. This will be needed by scrub fixup code.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Fix the mirror_num determination in scrub_stripe. The rest of the scrub code
did not use mirror_num for anything important and that error went unnoticed.
The nodatasum fixup patch of this set depends on a correct mirror_num.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
While scrubbing, we may encounter various errors. Previously, a logical
address was printed to the log only. Now, all paths belonging to that
address are resolved and printed separately. That should work for hardlinks
as well as reflinks.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
In normal operation, scrub is reading data sequentially in large portions.
In case of an i/o error, we try to find the corrupted area(s) by issuing
page sized read requests. With this commit we increment the
unverified_errors counter if all of the small size requests succeed.
Userland patches carrying such conspicous events to the administrator should
already be around.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
These helper functions iterate back references and call a function for each
backref. There is also a function to resolve an inode to a path in the
file system.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Fix a crash/BUG_ON in the clone ioctl due to insufficient reservation. We
need to reserve space for:
- adjusting the old extent (possibly splitting it)
- adding the new extent
- updating the inode
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We can race with readdir and the RCU path walking stuff. This is because we
clear the need lookup flag before actually instantiating the inode. This will
lead the RCU path walk stuff to find a dentry it thinks is valid without a
d_inode attached. So instead unhash the dentry when we first start the lookup,
and then clear the flag after we've instantiated the dentry so we're garunteed
to either try the slow lookup, or have the d_inode set properly.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The recent reworking of btrfs' lseek lead to incorrect
values being returned. This adds checks for seeking
beyond EOF in SEEK_HOLE and makes sure the error
values come back correct.
Andi Kleen also sent in similar patches.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The dst file will have the same inode flags with dst file after
file clone, and I think it's unexpected.
For example, the dst file will suddenly become immutable after
getting some share of data with src file, if the src is immutable.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
To reproduce the bug:
# mount /dev/sda7 /mnt
# dd if=/dev/zero of=/mnt/src bs=4K count=1
# umount /mnt
# mount -o nodatasum /dev/sda7 /mnt
# dd if=/dev/zero of=/mnt/dst bs=4K count=1
# clone_range -s 4K -l 4K /mnt/src /mnt/dst
# echo 3 > /proc/sys/vm/drop_caches
# cat /mnt/dst
# dmesg
...
btrfs no csum found for inode 258 start 0
btrfs csum failed ino 258 off 0 csum 2566472073 private 0
It's because part of the file is checksummed and the other part is not,
and then btrfs will complain checksum is not found when we read the file.
Disallow file clone if src and dst file have different checksum flag,
so we ensure a file is completely checksummed or unchecksummed.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
It's a bug in commit f81c9cdc567cd3160ff9e64868d9a1a7ee226480
(Btrfs: truncate pages from clone ioctl target range)
We should pass the dest range to the truncate function, but not the
src range.
Also move the function before locking extent state.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Since the d_off in the first dirent for "." (that originates from
the 4th argument "offset" of filldir() for the 2nd dirent for "..")
is wrongly assigned in btrfs_real_readdir(), telldir returns same
offset for different locations.
| # mkfs.btrfs /dev/sdb1
| # mount /dev/sdb1 fs0
| # cd fs0
| # touch file0 file1
| # ../test
| telldir: 0
| readdir: d_off = 2, d_name = "."
| telldir: 2
| readdir: d_off = 2, d_name = ".."
| telldir: 2
| readdir: d_off = 3, d_name = "file0"
| telldir: 3
| readdir: d_off = 2147483647, d_name = "file1"
| telldir: 2147483647
To fix this problem, pass filp->f_pos (which is loff_t) instead.
| # ../test
| telldir: 0
| readdir: d_off = 1, d_name = "."
| telldir: 1
| readdir: d_off = 2, d_name = ".."
| telldir: 2
| readdir: d_off = 3, d_name = "file0"
:
At the moment the "offset" for "." is unused because there is no
preceding dirent, however it is better to pass filp->f_pos to follow
grammatical usage.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://github.com/chrismason/linux:
Btrfs: add dummy extent if dst offset excceeds file end in
Btrfs: calc file extent num_bytes correctly in file clone
btrfs: xattr: fix attribute removal
Btrfs: fix wrong nbytes information of the inode
Btrfs: fix the file extent gap when doing direct IO
Btrfs: fix unclosed transaction handle in btrfs_cont_expand
Btrfs: fix misuse of trans block rsv
Btrfs: reset to appropriate block rsv after orphan operations
Btrfs: skip locking if searching the commit root in csum lookup
btrfs: fix warning in iput for bad-inode
Btrfs: fix an oops when deleting snapshots
You can see there's no file extent with range [0, 4096]. Check this by
btrfsck:
# btrfsck /dev/sda7
root 5 inode 258 errors 100
...
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
An attribute is not removed by 'setfattr -x attr file' and remains
visible in attr list. This makes xfstests/062 pass again.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If we write some data into the data hole of the file(no preallocation for this
hole), Btrfs will allocate some disk space, and update nbytes of the inode, but
the other element--disk_i_size needn't be updated. At this condition, we must
update inode metadata though disk_i_size is not changed(btrfs_ordered_update_i_size()
return 1).
# mkfs.btrfs /dev/sdb1
# mount /dev/sdb1 /mnt
# touch /mnt/a
# truncate -s 856002 /mnt/a
# dd if=/dev/zero of=/mnt/a bs=4K count=1 conv=nocreat,notrunc
# umount /mnt
# btrfsck /dev/sdb1
root 5 inode 257 errors 400
found 32768 bytes used err is 1
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we write some data to the place that is beyond the end of the file
in direct I/O mode, a data hole will be created. And Btrfs should insert
a file extent item that point to this hole into the fs tree. But unfortunately
Btrfs forgets doing it.
The following is a simple way to reproduce it:
# mkfs.btrfs /dev/sdc2
# mount /dev/sdc2 /test4
# touch /test4/a
# dd if=/dev/zero of=/test4/a seek=8 count=1 bs=4K oflag=direct conv=nocreat,notrunc
# umount /test4
# btrfsck /dev/sdc2
root 5 inode 257 errors 100
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The function - btrfs_cont_expand() forgot to close the transaction handle before
it jump out the while loop. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
At the beginning of create_pending_snapshot, trans->block_rsv is set
to pending->block_rsv and is used for snapshot things, however, when
it is done, we do not recover it as will.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
While truncating free space cache, we forget to change trans->block_rsv
back to the original one, but leave it with the orphan_block_rsv, and
then with option inode_cache enable, it leads to countless warnings of
btrfs_alloc_free_block and btrfs_orphan_commit_root:
WARNING: at fs/btrfs/extent-tree.c:5711 btrfs_alloc_free_block+0x180/0x350 [btrfs]()
...
WARNING: at fs/btrfs/inode.c:2193 btrfs_orphan_commit_root+0xb0/0xc0 [btrfs]()
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
It's not enough to just search the commit root, since we could be cow'ing the
very block we need to search through, which would mean that its locked and we'll
still deadlock. So use path->skip_locking as well. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
iput() shouldn't be called for inodes in I_NEW state.
We need to mark inode as constructed first.
WARNING: at fs/inode.c:1309 iput+0x20b/0x210()
Call Trace:
[<ffffffff8103e7ba>] warn_slowpath_common+0x7a/0xb0
[<ffffffff8103e805>] warn_slowpath_null+0x15/0x20
[<ffffffff810eaf0b>] iput+0x20b/0x210
[<ffffffff811b96fb>] btrfs_iget+0x1eb/0x4a0
[<ffffffff811c3ad6>] btrfs_run_defrag_inodes+0x136/0x210
[<ffffffff811ad55f>] cleaner_kthread+0x17f/0x1a0
[<ffffffff81035b7d>] ? sub_preempt_count+0x9d/0xd0
[<ffffffff811ad3e0>] ? transaction_kthread+0x280/0x280
[<ffffffff8105af86>] kthread+0x96/0xa0
[<ffffffff814336d4>] kernel_thread_helper+0x4/0x10
[<ffffffff8105aef0>] ? kthread_worker_fn+0x190/0x190
[<ffffffff814336d0>] ? gs_change+0xb/0xb
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
CC: Konstantin Khlebnikov <khlebnikov@openvz.org>
Tested-by: David Sterba <dsterba@suse.cz>
CC: Josef Bacik <josef@redhat.com>
CC: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We can reproduce this oops via the following steps:
$ mkfs.btrfs /dev/sdb7
$ mount /dev/sdb7 /mnt/btrfs
$ for ((i=0; i<3; i++)); do btrfs sub snap /mnt/btrfs /mnt/btrfs/s_$i; done
$ rm -fr /mnt/btrfs/*
$ rm -fr /mnt/btrfs/*
then we'll get
------------[ cut here ]------------
kernel BUG at fs/btrfs/inode.c:2264!
[...]
Call Trace:
[<ffffffffa05578c7>] btrfs_rmdir+0xf7/0x1b0 [btrfs]
[<ffffffff81150b95>] vfs_rmdir+0xa5/0xf0
[<ffffffff81153cc3>] do_rmdir+0x123/0x140
[<ffffffff81145ac7>] ? fput+0x197/0x260
[<ffffffff810aecff>] ? audit_syscall_entry+0x1bf/0x1f0
[<ffffffff81153d0d>] sys_unlinkat+0x2d/0x40
[<ffffffff8147896b>] system_call_fastpath+0x16/0x1b
RIP [<ffffffffa054f7b9>] btrfs_orphan_add+0x179/0x1a0 [btrfs]
When it comes to btrfs_lookup_dentry, we may set a snapshot's inode->i_ino
to BTRFS_EMPTY_SUBVOL_DIR_OBJECTID instead of BTRFS_FIRST_FREE_OBJECTID,
while the snapshot's location.objectid remains unchanged.
However, btrfs_ino() does not take this into account, and returns a wrong ino,
and causes the oops.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This fixes a regression introduced by commit cdcb725c05fe ("Btrfs: check
if there is enough space for balancing smarter"). We can't do 64-bit
divides on 32-bit architectures.
In cases where we need to divide/multiply by 2 we should just left/right
shift respectively, and in cases where theres N number of devices use
do_div. Also make the counters u64 to match up with rw_devices.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Acked-and-tested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>