253 Commits

Author SHA1 Message Date
KOSAKI Motohiro
7880639c3e mm/mempolicy.c: fix sp_node_init() argument ordering
Currently, n_new is wrongly initialized.  start and end parameter are
inverted.  Let's fix it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Jones <davej@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-03-08 15:05:34 -08:00
Hillf Danton
5ca3957510 mm/mempolicy.c: fix wrong sp_node insertion
n->end is accessed in sp_insert(). Thus it should be update
before calling sp_insert(). This mistake may make kernel panic.

Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Jones <davej@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-03-08 15:05:34 -08:00
David Rientjes
00ef2d2f84 mm: use NUMA_NO_NODE
Make a sweep through mm/ and convert code that uses -1 directly to using
the more appropriate NUMA_NO_NODE.

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:21 -08:00
Hugh Dickins
9c620e2bc5 mm: remove offlining arg to migrate_pages
No functional change, but the only purpose of the offlining argument to
migrate_pages() etc, was to ensure that __unmap_and_move() could migrate a
KSM page for memory hotremove (which took ksm_thread_mutex) but not for
other callers.  Now all cases are safe, remove the arg.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:19 -08:00
Hugh Dickins
b79bc0a0c7 ksm: enable KSM page migration
Migration of KSM pages is now safe: remove the PageKsm restrictions from
mempolicy.c and migrate.c.

But keep PageKsm out of __unmap_and_move()'s anon_vma contortions, which
are irrelevant to KSM: it looks as if that code was preventing hotremove
migration of KSM pages, unless they happened to be in swapcache.

There is some question as to whether enforcing a NUMA mempolicy migration
ought to migrate KSM pages, mapped into entirely unrelated processes; but
moving page_mapcount > 1 is only permitted with MPOL_MF_MOVE_ALL anyway,
and it seems reasonable to assume that you wouldn't set MADV_MERGEABLE on
any area where this is a worry.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:19 -08:00
Mel Gorman
22b751c3d0 mm: rename page struct field helpers
The function names page_xchg_last_nid(), page_last_nid() and
reset_page_last_nid() were judged to be inconsistent so rename them to a
struct_field_op style pattern.  As it looked jarring to have
reset_page_mapcount() and page_nid_reset_last() beside each other in
memmap_init_zone(), this patch also renames reset_page_mapcount() to
page_mapcount_reset().  There are others like init_page_count() but as
it is used throughout the arch code a rename would likely cause more
conflicts than it is worth.

[akpm@linux-foundation.org: fix zcache]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:18 -08:00
Lai Jiangshan
d3eb1570a9 mempolicy: fix is_valid_nodemask()
is_valid_nodemask() was introduced by commit 19770b32609b ("mm: filter
based on a nodemask as well as a gfp_mask").  but it does not match its
comments, because it does not check the zone which > policy_zone.

Also in commit b377fd3982ad ("Apply memory policies to top two highest
zones when highest zone is ZONE_MOVABLE"), this commits told us, if
highest zone is ZONE_MOVABLE, we should also apply memory policies to
it.  so ZONE_MOVABLE should be valid zone for policies.
is_valid_nodemask() need to be changed to match it.

Fix: check all zones, even its zoneid > policy_zone.  Use
nodes_intersects() instead open code to check it.

Reported-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:13 -08:00
Mel Gorman
42288fe366 mm: mempolicy: Convert shared_policy mutex to spinlock
Sasha was fuzzing with trinity and reported the following problem:

  BUG: sleeping function called from invalid context at kernel/mutex.c:269
  in_atomic(): 1, irqs_disabled(): 0, pid: 6361, name: trinity-main
  2 locks held by trinity-main/6361:
   #0:  (&mm->mmap_sem){++++++}, at: [<ffffffff810aa314>] __do_page_fault+0x1e4/0x4f0
   #1:  (&(&mm->page_table_lock)->rlock){+.+...}, at: [<ffffffff8122f017>] handle_pte_fault+0x3f7/0x6a0
  Pid: 6361, comm: trinity-main Tainted: G        W
  3.7.0-rc2-next-20121024-sasha-00001-gd95ef01-dirty #74
  Call Trace:
    __might_sleep+0x1c3/0x1e0
    mutex_lock_nested+0x29/0x50
    mpol_shared_policy_lookup+0x2e/0x90
    shmem_get_policy+0x2e/0x30
    get_vma_policy+0x5a/0xa0
    mpol_misplaced+0x41/0x1d0
    handle_pte_fault+0x465/0x6a0

This was triggered by a different version of automatic NUMA balancing
but in theory the current version is vunerable to the same problem.

do_numa_page
  -> numa_migrate_prep
    -> mpol_misplaced
      -> get_vma_policy
        -> shmem_get_policy

It's very unlikely this will happen as shared pages are not marked
pte_numa -- see the page_mapcount() check in change_pte_range() -- but
it is possible.

To address this, this patch restores sp->lock as originally implemented
by Kosaki Motohiro.  In the path where get_vma_policy() is called, it
should not be calling sp_alloc() so it is not necessary to treat the PTL
specially.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-02 17:32:13 -08:00
Hugh Dickins
a7a88b2373 mempolicy: remove arg from mpol_parse_str, mpol_to_str
Remove the unused argument (formerly no_context) from mpol_parse_str()
and from mpol_to_str().

Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-02 09:27:10 -08:00
Hugh Dickins
f2a07f40db tmpfs mempolicy: fix /proc/mounts corrupting memory
Recently I suggested using "mount -o remount,mpol=local /tmp" in NUMA
mempolicy testing.  Very nasty.  Reading /proc/mounts, /proc/pid/mounts
or /proc/pid/mountinfo may then corrupt one bit of kernel memory, often
in a page table (causing "Bad swap" or "Bad page map" warning or "Bad
pagetable" oops), sometimes in a vm_area_struct or rbnode or somewhere
worse.  "mpol=prefer" and "mpol=prefer:Node" are equally toxic.

Recent NUMA enhancements are not to blame: this dates back to 2.6.35,
when commit e17f74af351c "mempolicy: don't call mpol_set_nodemask() when
no_context" skipped mpol_parse_str()'s call to mpol_set_nodemask(),
which used to initialize v.preferred_node, or set MPOL_F_LOCAL in flags.
With slab poisoning, you can then rely on mpol_to_str() to set the bit
for node 0x6b6b, probably in the next page above the caller's stack.

mpol_parse_str() is only called from shmem_parse_options(): no_context
is always true, so call it unused for now, and remove !no_context code.
Set v.nodes or v.preferred_node or MPOL_F_LOCAL as mpol_to_str() might
expect.  Then mpol_to_str() can ignore its no_context argument also,
the mpol being appropriately initialized whether contextualized or not.
Rename its no_context unused too, and let subsequent patch remove them
(that's not needed for stable backporting, which would involve rejects).

I don't understand why MPOL_LOCAL is described as a pseudo-policy:
it's a reasonable policy which suffers from a confusing implementation
in terms of MPOL_PREFERRED with MPOL_F_LOCAL.  I believe this would be
much more robust if MPOL_LOCAL were recognized in switch statements
throughout, MPOL_F_LOCAL deleted, and MPOL_PREFERRED use the (possibly
empty) nodes mask like everyone else, instead of its preferred_node
variant (I presume an optimization from the days before MPOL_LOCAL).
But that would take me too long to get right and fully tested.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-02 09:27:10 -08:00
Linus Torvalds
3d59eebc5e Automatic NUMA Balancing V11
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.18 (GNU/Linux)
 
 iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
 Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
 vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
 xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
 DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
 72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
 YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
 3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
 hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
 CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
 BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
 Ka0JKgnWvsa6ez6FSzKI
 =ivQa
 -----END PGP SIGNATURE-----

Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma

Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
 "There are three implementations for NUMA balancing, this tree
  (balancenuma), numacore which has been developed in tip/master and
  autonuma which is in aa.git.

  In almost all respects balancenuma is the dumbest of the three because
  its main impact is on the VM side with no attempt to be smart about
  scheduling.  In the interest of getting the ball rolling, it would be
  desirable to see this much merged for 3.8 with the view to building
  scheduler smarts on top and adapting the VM where required for 3.9.

  The most recent set of comparisons available from different people are

    mel:    https://lkml.org/lkml/2012/12/9/108
    mingo:  https://lkml.org/lkml/2012/12/7/331
    tglx:   https://lkml.org/lkml/2012/12/10/437
    srikar: https://lkml.org/lkml/2012/12/10/397

  The results are a mixed bag.  In my own tests, balancenuma does
  reasonably well.  It's dumb as rocks and does not regress against
  mainline.  On the other hand, Ingo's tests shows that balancenuma is
  incapable of converging for this workloads driven by perf which is bad
  but is potentially explained by the lack of scheduler smarts.  Thomas'
  results show balancenuma improves on mainline but falls far short of
  numacore or autonuma.  Srikar's results indicate we all suffer on a
  large machine with imbalanced node sizes.

  My own testing showed that recent numacore results have improved
  dramatically, particularly in the last week but not universally.
  We've butted heads heavily on system CPU usage and high levels of
  migration even when it shows that overall performance is better.
  There are also cases where it regresses.  Of interest is that for
  specjbb in some configurations it will regress for lower numbers of
  warehouses and show gains for higher numbers which is not reported by
  the tool by default and sometimes missed in treports.  Recently I
  reported for numacore that the JVM was crashing with
  NullPointerExceptions but currently it's unclear what the source of
  this problem is.  Initially I thought it was in how numacore batch
  handles PTEs but I'm no longer think this is the case.  It's possible
  numacore is just able to trigger it due to higher rates of migration.

  These reports were quite late in the cycle so I/we would like to start
  with this tree as it contains much of the code we can agree on and has
  not changed significantly over the last 2-3 weeks."

* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
  mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
  mm/rmap: Convert the struct anon_vma::mutex to an rwsem
  mm: migrate: Account a transhuge page properly when rate limiting
  mm: numa: Account for failed allocations and isolations as migration failures
  mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
  mm: numa: Add THP migration for the NUMA working set scanning fault case.
  mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
  mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
  mm: sched: numa: Control enabling and disabling of NUMA balancing
  mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
  mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
  mm: numa: migrate: Set last_nid on newly allocated page
  mm: numa: split_huge_page: Transfer last_nid on tail page
  mm: numa: Introduce last_nid to the page frame
  sched: numa: Slowly increase the scanning period as NUMA faults are handled
  mm: numa: Rate limit setting of pte_numa if node is saturated
  mm: numa: Rate limit the amount of memory that is migrated between nodes
  mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
  mm: numa: Migrate pages handled during a pmd_numa hinting fault
  mm: numa: Migrate on reference policy
  ...
2012-12-16 15:18:08 -08:00
Lai Jiangshan
01f13bd607 mempolicy: use N_MEMORY instead N_HIGH_MEMORY
N_HIGH_MEMORY stands for the nodes that has normal or high memory.
N_MEMORY stands for the nodes that has any memory.

The code here need to handle with the nodes which have memory, we should
use N_MEMORY instead.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lin Feng <linfeng@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 17:38:33 -08:00
Kirill A. Shutemov
e180377f1a thp: change split_huge_page_pmd() interface
Pass vma instead of mm and add address parameter.

In most cases we already have vma on the stack. We provides
split_huge_page_pmd_mm() for few cases when we have mm, but not vma.

This change is preparation to huge zero pmd splitting implementation.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@linux.intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 17:38:31 -08:00
David Rientjes
212a0a6f28 mm, mempolicy: remove duplicate code
Remove some duplicate code and simplify alloc_pages_vma().  No functional
change.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11 17:22:27 -08:00
Mel Gorman
1a687c2e9a mm: sched: numa: Control enabling and disabling of NUMA balancing
This patch adds Kconfig options and kernel parameters to allow the
enabling and disabling of automatic NUMA balancing. The existance
of such a switch was and is very important when debugging problems
related to transparent hugepages and we should have the same for
automatic NUMA placement.

Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11 14:42:55 +00:00
Mel Gorman
e42c8ff299 mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
Note: This two-stage filter was taken directly from the sched/numa patch
	"sched, numa, mm: Add the scanning page fault machinery" but is
	only a partial extraction. As the end result is not necessarily
	recognisable, the signed-offs-by had to be removed. Will be added
	back if requested.

While it is desirable that all threads in a process run on its home
node, this is not always possible or necessary. There may be more
threads than exist within the node or the node might over-subscribed
with unrelated processes.

This can cause a situation whereby a page gets migrated off its home
node because the threads clearing pte_numa were running off-node. This
patch uses page->last_nid to build a two-stage filter before pages get
migrated to avoid problems with short or unlikely task<->node
relationships.

Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11 14:42:54 +00:00
Mel Gorman
5606e3877a mm: numa: Migrate on reference policy
This is the simplest possible policy that still does something of note.
When a pte_numa is faulted, it is moved immediately. Any replacement
policy must at least do better than this and in all likelihood this
policy regresses normal workloads.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
2012-12-11 14:42:48 +00:00
Mel Gorman
03c5a6e163 mm: numa: Add pte updates, hinting and migration stats
It is tricky to quantify the basic cost of automatic NUMA placement in a
meaningful manner. This patch adds some vmstats that can be used as part
of a basic costing model.

u    = basic unit = sizeof(void *)
Ca   = cost of struct page access = sizeof(struct page) / u
Cpte = Cost PTE access = Ca
Cupdate = Cost PTE update = (2 * Cpte) + (2 * Wlock)
	where Cpte is incurred twice for a read and a write and Wlock
	is a constant representing the cost of taking or releasing a
	lock
Cnumahint = Cost of a minor page fault = some high constant e.g. 1000
Cpagerw = Cost to read or write a full page = Ca + PAGE_SIZE/u
Ci = Cost of page isolation = Ca + Wi
	where Wi is a constant that should reflect the approximate cost
	of the locking operation
Cpagecopy = Cpagerw + (Cpagerw * Wnuma) + Ci + (Ci * Wnuma)
	where Wnuma is the approximate NUMA factor. 1 is local. 1.2
	would imply that remote accesses are 20% more expensive

Balancing cost = Cpte * numa_pte_updates +
		Cnumahint * numa_hint_faults +
		Ci * numa_pages_migrated +
		Cpagecopy * numa_pages_migrated

Note that numa_pages_migrated is used as a measure of how many pages
were isolated even though it would miss pages that failed to migrate. A
vmstat counter could have been added for it but the isolation cost is
pretty marginal in comparison to the overall cost so it seemed overkill.

The ideal way to measure automatic placement benefit would be to count
the number of remote accesses versus local accesses and do something like

	benefit = (remote_accesses_before - remove_access_after) * Wnuma

but the information is not readily available. As a workload converges, the
expection would be that the number of remote numa hints would reduce to 0.

	convergence = numa_hint_faults_local / numa_hint_faults
		where this is measured for the last N number of
		numa hints recorded. When the workload is fully
		converged the value is 1.

This can measure if the placement policy is converging and how fast it is
doing it.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
2012-12-11 14:42:48 +00:00
Mel Gorman
a720094ded mm: mempolicy: Hide MPOL_NOOP and MPOL_MF_LAZY from userspace for now
The use of MPOL_NOOP and MPOL_MF_LAZY to allow an application to
explicitly request lazy migration is a good idea but the actual
API has not been well reviewed and once released we have to support it.
For now this patch prevents an application using the services. This
will need to be revisited.

Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11 14:42:44 +00:00
Mel Gorman
4b10e7d562 mm: mempolicy: Implement change_prot_numa() in terms of change_protection()
This patch converts change_prot_numa() to use change_protection(). As
pte_numa and friends check the PTE bits directly it is necessary for
change_protection() to use pmd_mknuma(). Hence the required
modifications to change_protection() are a little clumsy but the
end result is that most of the numa page table helpers are just one or
two instructions.

Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11 14:42:44 +00:00
Lee Schermerhorn
b24f53a0be mm: mempolicy: Add MPOL_MF_LAZY
NOTE: Once again there is a lot of patch stealing and the end result
	is sufficiently different that I had to drop the signed-offs.
	Will re-add if the original authors are ok with that.

This patch adds another mbind() flag to request "lazy migration".  The
flag, MPOL_MF_LAZY, modifies MPOL_MF_MOVE* such that the selected
pages are marked PROT_NONE. The pages will be migrated in the fault
path on "first touch", if the policy dictates at that time.

"Lazy Migration" will allow testing of migrate-on-fault via mbind().
Also allows applications to specify that only subsequently touched
pages be migrated to obey new policy, instead of all pages in range.
This can be useful for multi-threaded applications working on a
large shared data area that is initialized by an initial thread
resulting in all pages on one [or a few, if overflowed] nodes.
After PROT_NONE, the pages in regions assigned to the worker threads
will be automatically migrated local to the threads on 1st touch.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11 14:42:43 +00:00
Lee Schermerhorn
771fb4d806 mm: mempolicy: Check for misplaced page
This patch provides a new function to test whether a page resides
on a node that is appropriate for the mempolicy for the vma and
address where the page is supposed to be mapped.  This involves
looking up the node where the page belongs.  So, the function
returns that node so that it may be used to allocated the page
without consulting the policy again.

A subsequent patch will call this function from the fault path.
Because of this, I don't want to go ahead and allocate the page, e.g.,
via alloc_page_vma() only to have to free it if it has the correct
policy.  So, I just mimic the alloc_page_vma() node computation
logic--sort of.

Note:  we could use this function to implement a MPOL_MF_STRICT
behavior when migrating pages to match mbind() mempolicy--e.g.,
to ensure that pages in an interleaved range are reinterleaved
rather than left where they are when they reside on any page in
the interleave nodemask.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
[ Added MPOL_F_LAZY to trigger migrate-on-fault;
  simplified code now that we don't have to bother
  with special crap for interleaved ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11 14:42:41 +00:00
Lee Schermerhorn
d3a710337b mm: mempolicy: Add MPOL_NOOP
This patch augments the MPOL_MF_LAZY feature by adding a "NOOP" policy
to mbind().  When the NOOP policy is used with the 'MOVE and 'LAZY
flags, mbind() will map the pages PROT_NONE so that they will be
migrated on the next touch.

This allows an application to prepare for a new phase of operation
where different regions of shared storage will be assigned to
worker threads, w/o changing policy.  Note that we could just use
"default" policy in this case.  However, this also allows an
application to request that pages be migrated, only if necessary,
to follow any arbitrary policy that might currently apply to a
range of pages, without knowing the policy, or without specifying
multiple mbind()s for ranges with different policies.

[ Bug in early version of mpol_parse_str() reported by Fengguang Wu. ]

Bug-Reported-by: Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11 14:42:40 +00:00
Peter Zijlstra
479e2802d0 mm: mempolicy: Make MPOL_LOCAL a real policy
Make MPOL_LOCAL a real and exposed policy such that applications that
relied on the previous default behaviour can explicitly request it.

Requested-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11 14:42:39 +00:00
Mel Gorman
7b2a2d4a18 mm: migrate: Add a tracepoint for migrate_pages
The pgmigrate_success and pgmigrate_fail vmstat counters tells the user
about migration activity but not the type or the reason. This patch adds
a tracepoint to identify the type of page migration and why the page is
being migrated.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11 14:28:35 +00:00
Mel Gorman
18a2f371f5 tmpfs: fix shared mempolicy leak
This fixes a regression in 3.7-rc, which has since gone into stable.

Commit 00442ad04a5e ("mempolicy: fix a memory corruption by refcount
imbalance in alloc_pages_vma()") changed get_vma_policy() to raise the
refcount on a shmem shared mempolicy; whereas shmem_alloc_page() went
on expecting alloc_page_vma() to drop the refcount it had acquired.
This deserves a rework: but for now fix the leak in shmem_alloc_page().

Hugh: shmem_swapin() did not need a fix, but surely it's clearer to use
the same refcounting there as in shmem_alloc_page(), delete its onstack
mempolicy, and the strange mpol_cond_copy() and __mpol_cond_copy() -
those were invented to let swapin_readahead() make an unknown number of
calls to alloc_pages_vma() with one mempolicy; but since 00442ad04a5e,
alloc_pages_vma() has kept refcount in balance, so now no problem.

Reported-and-tested-by: Tommi Rantala <tt.rantala@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-06 11:56:43 -08:00
David Rientjes
32f8516a8c mm, mempolicy: fix printing stack contents in numa_maps
When reading /proc/pid/numa_maps, it's possible to return the contents of
the stack where the mempolicy string should be printed if the policy gets
freed from beneath us.

This happens because mpol_to_str() may return an error the
stack-allocated buffer is then printed without ever being stored.

There are two possible error conditions in mpol_to_str():

 - if the buffer allocated is insufficient for the string to be stored,
   and

 - if the mempolicy has an invalid mode.

The first error condition is not triggered in any of the callers to
mpol_to_str(): at least 50 bytes is always allocated on the stack and this
is sufficient for the string to be written.  A future patch should convert
this into BUILD_BUG_ON() since we know the maximum strlen possible, but
that's not -rc material.

The second error condition is possible if a race occurs in dropping a
reference to a task's mempolicy causing it to be freed during the read().
The slab poison value is then used for the mode and mpol_to_str() returns
-EINVAL.

This race is only possible because get_vma_policy() believes that
mm->mmap_sem protects task->mempolicy, which isn't true.  The exit path
does not hold mm->mmap_sem when dropping the reference or setting
task->mempolicy to NULL: it uses task_lock(task) instead.

Thus, it's required for the caller of a task mempolicy to hold
task_lock(task) while grabbing the mempolicy and reading it.  Callers with
a vma policy store their mempolicy earlier and can simply increment the
reference count so it's guaranteed not to be freed.

Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-16 18:00:50 -07:00
Minchan Kim
082708072a mm: revert 0def08e3 ("mm/mempolicy.c: check return code of check_range")
Revert commit 0def08e3acc2 because check_range can't fail in
migrate_to_node with considering current usecases.

Quote from Johannes

: I think it makes sense to revert.  Not because of the semantics, but I
: just don't see how check_range() could even fail for this callsite:
:
: 1. we pass mm->mmap->vm_start in there, so we should not fail due to
:    find_vma()
:
: 2. we pass MPOL_MF_DISCONTIG_OK, so the discontig checks do not apply
:    and so can not fail
:
: 3. we pass MPOL_MF_MOVE | MPOL_MF_MOVE_ALL, the page table loops will
:    continue until addr == end, so we never fail with -EIO

And I added a new VM_BUG_ON for checking migrate_to_node's future usecase
which might pass to MPOL_MF_STRICT.

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vasiliy Kulikov <segooon@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:58 +09:00
Mel Gorman
00442ad04a mempolicy: fix a memory corruption by refcount imbalance in alloc_pages_vma()
Commit cc9a6c877661 ("cpuset: mm: reduce large amounts of memory barrier
related damage v3") introduced a potential memory corruption.
shmem_alloc_page() uses a pseudo vma and it has one significant unique
combination, vma->vm_ops=NULL and vma->policy->flags & MPOL_F_SHARED.

get_vma_policy() does NOT increase a policy ref when vma->vm_ops=NULL
and mpol_cond_put() DOES decrease a policy ref when a policy has
MPOL_F_SHARED.  Therefore, when a cpuset update race occurs,
alloc_pages_vma() falls in 'goto retry_cpuset' path, decrements the
reference count and frees the policy prematurely.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:22 +09:00
KOSAKI Motohiro
63f74ca21f mempolicy: fix refcount leak in mpol_set_shared_policy()
When shared_policy_replace() fails to allocate new->policy is not freed
correctly by mpol_set_shared_policy().  The problem is that shared
mempolicy code directly call kmem_cache_free() in multiple places where
it is easy to make a mistake.

This patch creates an sp_free wrapper function and uses it. The bug was
introduced pre-git age (IOW, before 2.6.12-rc2).

[mgorman@suse.de: Editted changelog]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:22 +09:00
Mel Gorman
b22d127a39 mempolicy: fix a race in shared_policy_replace()
shared_policy_replace() use of sp_alloc() is unsafe.  1) sp_node cannot
be dereferenced if sp->lock is not held and 2) another thread can modify
sp_node between spin_unlock for allocating a new sp node and next
spin_lock.  The bug was introduced before 2.6.12-rc2.

Kosaki's original patch for this problem was to allocate an sp node and
policy within shared_policy_replace and initialise it when the lock is
reacquired.  I was not keen on this approach because it partially
duplicates sp_alloc().  As the paths were sp->lock is taken are not that
performance critical this patch converts sp->lock to sp->mutex so it can
sleep when calling sp_alloc().

[kosaki.motohiro@jp.fujitsu.com: Original patch]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:22 +09:00
KOSAKI Motohiro
869833f2c5 mempolicy: remove mempolicy sharing
Dave Jones' system call fuzz testing tool "trinity" triggered the
following bug error with slab debugging enabled

    =============================================================================
    BUG numa_policy (Not tainted): Poison overwritten
    -----------------------------------------------------------------------------

    INFO: 0xffff880146498250-0xffff880146498250. First byte 0x6a instead of 0x6b
    INFO: Allocated in mpol_new+0xa3/0x140 age=46310 cpu=6 pid=32154
     __slab_alloc+0x3d3/0x445
     kmem_cache_alloc+0x29d/0x2b0
     mpol_new+0xa3/0x140
     sys_mbind+0x142/0x620
     system_call_fastpath+0x16/0x1b

    INFO: Freed in __mpol_put+0x27/0x30 age=46268 cpu=6 pid=32154
     __slab_free+0x2e/0x1de
     kmem_cache_free+0x25a/0x260
     __mpol_put+0x27/0x30
     remove_vma+0x68/0x90
     exit_mmap+0x118/0x140
     mmput+0x73/0x110
     exit_mm+0x108/0x130
     do_exit+0x162/0xb90
     do_group_exit+0x4f/0xc0
     sys_exit_group+0x17/0x20
     system_call_fastpath+0x16/0x1b

    INFO: Slab 0xffffea0005192600 objects=27 used=27 fp=0x          (null) flags=0x20000000004080
    INFO: Object 0xffff880146498250 @offset=592 fp=0xffff88014649b9d0

The problem is that the structure is being prematurely freed due to a
reference count imbalance. In the following case mbind(addr, len) should
replace the memory policies of both vma1 and vma2 and thus they will
become to share the same mempolicy and the new mempolicy will have the
MPOL_F_SHARED flag.

  +-------------------+-------------------+
  |     vma1          |     vma2(shmem)   |
  +-------------------+-------------------+
  |                                       |
 addr                                 addr+len

alloc_pages_vma() uses get_vma_policy() and mpol_cond_put() pair for
maintaining the mempolicy reference count.  The current rule is that
get_vma_policy() only increments refcount for shmem VMA and
mpol_conf_put() only decrements refcount if the policy has
MPOL_F_SHARED.

In above case, vma1 is not shmem vma and vma->policy has MPOL_F_SHARED!
The reference count will be decreased even though was not increased
whenever alloc_page_vma() is called.  This has been broken since commit
[52cd3b07: mempolicy: rework mempolicy Reference Counting] in 2008.

There is another serious bug with the sharing of memory policies.
Currently, mempolicy rebind logic (it is called from cpuset rebinding)
ignores a refcount of mempolicy and override it forcibly.  Thus, any
mempolicy sharing may cause mempolicy corruption.  The bug was
introduced by commit [68860ec1: cpusets: automatic numa mempolicy
rebinding].

Ideally, the shared policy handling would be rewritten to either
properly handle COW of the policy structures or at least reference count
MPOL_F_SHARED based exclusively on information within the policy.
However, this patch takes the easier approach of disabling any policy
sharing between VMAs.  Each new range allocated with sp_alloc will
allocate a new policy, set the reference count to 1 and drop the
reference count of the old policy.  This increases the memory footprint
but is not expected to be a major problem as mbind() is unlikely to be
used for fine-grained ranges.  It is also inefficient because it means
we allocate a new policy even in cases where mbind_range() could use the
new_policy passed to it.  However, it is more straight-forward and the
change should be invisible to the user.

[mgorman@suse.de: Edited changelog]
Reported-by: Dave Jones <davej@redhat.com>,
Cc: Christoph Lameter <cl@linux.com>,
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:21 +09:00
KOSAKI Motohiro
8d34694c1a revert "mm: mempolicy: Let vma_merge and vma_split handle vma->vm_policy linkages"
Commit 05f144a0d5c2 ("mm: mempolicy: Let vma_merge and vma_split handle
vma->vm_policy linkages") removed vma->vm_policy updates code but it is
the purpose of mbind_range().  Now, mbind_range() is virtually a no-op
and while it does not allow memory corruption it is not the right fix.
This patch is a revert.

[mgorman@suse.de: Edited changelog]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:21 +09:00
Dave Jones
80de7c3138 Remove user-triggerable BUG from mpol_to_str
Trivially triggerable, found by trinity:

  kernel BUG at mm/mempolicy.c:2546!
  Process trinity-child2 (pid: 23988, threadinfo ffff88010197e000, task ffff88007821a670)
  Call Trace:
    show_numa_map+0xd5/0x450
    show_pid_numa_map+0x13/0x20
    traverse+0xf2/0x230
    seq_read+0x34b/0x3e0
    vfs_read+0xac/0x180
    sys_pread64+0xa2/0xc0
    system_call_fastpath+0x1a/0x1f
  RIP: mpol_to_str+0x156/0x360

Cc: stable@vger.kernel.org
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-09-06 09:37:58 -07:00
Linus Torvalds
720d85075b Merge branch 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux
Pull SLAB changes from Pekka Enberg:
 "Most of the changes included are from Christoph Lameter's "common
  slab" patch series that unifies common parts of SLUB, SLAB, and SLOB
  allocators.  The unification is needed for Glauber Costa's "kmem
  memcg" work that will hopefully appear for v3.7.

  The rest of the changes are fixes and speedups by various people."

* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (32 commits)
  mm: Fix build warning in kmem_cache_create()
  slob: Fix early boot kernel crash
  mm, slub: ensure irqs are enabled for kmemcheck
  mm, sl[aou]b: Move kmem_cache_create mutex handling to common code
  mm, sl[aou]b: Use a common mutex definition
  mm, sl[aou]b: Common definition for boot state of the slab allocators
  mm, sl[aou]b: Extract common code for kmem_cache_create()
  slub: remove invalid reference to list iterator variable
  mm: Fix signal SIGFPE in slabinfo.c.
  slab: move FULL state transition to an initcall
  slab: Fix a typo in commit 8c138b "slab: Get rid of obj_size macro"
  mm, slab: Build fix for recent kmem_cache changes
  slab: rename gfpflags to allocflags
  slub: refactoring unfreeze_partials()
  slub: use __cmpxchg_double_slab() at interrupt disabled place
  slab/mempolicy: always use local policy from interrupt context
  slab: Get rid of obj_size macro
  mm, sl[aou]b: Extract common fields from struct kmem_cache
  slab: Remove some accessors
  slab: Use page struct fields instead of casting
  ...
2012-07-30 11:32:24 -07:00
David Rientjes
c4c0e9e544 mm, mempolicy: fix mbind() to do synchronous migration
If the range passed to mbind() is not allocated on nodes set in the
nodemask, it migrates the pages to respect the constraint.

The final formal of migrate_pages() is a mode of type enum migrate_mode,
not a boolean.  do_mbind() is currently passing "true" which is the
equivalent of MIGRATE_SYNC_LIGHT.  This should instead be MIGRATE_SYNC
for synchronous page migration.

Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-20 22:10:42 -07:00
Andi Kleen
e7b691b085 slab/mempolicy: always use local policy from interrupt context
slab_node() could access current->mempolicy from interrupt context.
However there's a race condition during exit where the mempolicy
is first freed and then the pointer zeroed.

Using this from interrupts seems bogus anyways. The interrupt
will interrupt a random process and therefore get a random
mempolicy. Many times, this will be idle's, which noone can change.

Just disable this here and always use local for slab
from interrupts. I also cleaned up the callers of slab_node a bit
which always passed the same argument.

I believe the original mempolicy code did that in fact,
so it's likely a regression.

v2: send version with correct logic
v3: simplify. fix typo.
Reported-by: Arun Sharma <asharma@fb.com>
Cc: penberg@kernel.org
Cc: cl@linux.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
[tdmackey@twitter.com: Rework control flow based on feedback from
cl@linux.com, fix logic, and cleanup current task_struct reference]
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Mackey <tdmackey@twitter.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-06-20 10:01:04 +03:00
Andrew Morton
0ce72d4f73 mm: do_migrate_pages(): rename arguments
s/from_nodes/from and s/to_nodes/to/.  The "_nodes" is redundant - it
duplicates the argument's type.

Done in a fit of irritation over 80-col issues :(

Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <mkosaki@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:20 -07:00
Larry Woodman
4a5b18cc19 mm: do_migrate_pages() calls migrate_to_node() even if task is already on a correct node
While running an application that moves tasks from one cpuset to another
I noticed that it takes much longer and moves many more pages than
expected.

The reason for this is do_migrate_pages() does its best to preserve the
relative node differential from the first node of the cpuset because the
application may have been written with that in mind.  If memory was
interleaved on the nodes of the source cpuset by an application
do_migrate_pages() will try its best to maintain that interleaving on
the nodes of the destination cpuset.  This means copying the memory from
all source nodes to the destination nodes even if the source and
destination nodes overlap.

This is a problem for userspace NUMA placement tools.  The amount of
time spent doing extra memory moves cancels out some of the NUMA
performance improvements.  Furthermore, if the number of source and
destination nodes are to maintain the previous interleaving layout
anyway.

This patch changes do_migrate_pages() to only preserve the relative
layout inside the program if the number of NUMA nodes in the source and
destination mask are the same.  If the number is different, we do a much
more efficient migration by not touching memory that is in an allowed
node.

This preserves the old behaviour for programs that want it, while
allowing a userspace NUMA placement tool to use the new, faster
migration.  This improves performance in our tests by up to a factor of
7.

Without this change migrating tasks from a cpuset containing nodes 0-7
to a cpuset containing nodes 3-4, we migrate from ALL the nodes even if
they are in the both the source and destination nodesets:

   Migrating 7 to 4
   Migrating 6 to 3
   Migrating 5 to 4
   Migrating 4 to 3
   Migrating 1 to 4
   Migrating 3 to 4
   Migrating 0 to 3
   Migrating 2 to 3

With this change we only migrate from nodes that are not in the
destination nodesets:

   Migrating 7 to 4
   Migrating 6 to 3
   Migrating 5 to 4
   Migrating 2 to 3
   Migrating 1 to 4
   Migrating 0 to 3

Yet if we move from a cpuset containing nodes 2,3,4 to a cpuset
containing 3,4,5 we still do move everything so that we preserve the
desired NUMA offsets:

   Migrating 4 to 5
   Migrating 3 to 4
   Migrating 2 to 3

As far as performance is concerned this simple patch improves the time
it takes to move 14, 20 and 26 large tasks from a cpuset containing
nodes 0-7 to a cpuset containing nodes 1 & 3 by up to a factor of 7.
Here are the timings with and without the patch:

BEFORE PATCH -- Move times: 59, 140, 651 seconds
============

  Moving 14 tasks from nodes (0-7) to nodes (1,3)
  numad(8780) do_migrate_pages (mm=0xffff88081d414400
  from_nodes=0xffff880818c81d28 to_nodes=0xffff880818c81ce8 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x7 dest=0x3 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x6 dest=0x1 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x5 dest=0x3 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x4 dest=0x1 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x2 dest=0x1 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x1 dest=0x3 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d414400 source=0x0 dest=0x1 flags=0x4)
  (Above moves repeated for each of the 14 tasks...)
  PID 8890 moved to node(s) 1,3 in 59.2 seconds

  Moving 20 tasks from nodes (0-7) to nodes (1,4-5)
  numad(8780) do_migrate_pages (mm=0xffff88081d88c700
  from_nodes=0xffff880818c81d28 to_nodes=0xffff880818c81ce8 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x7 dest=0x4 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x6 dest=0x1 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x3 dest=0x1 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x2 dest=0x5 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x1 dest=0x4 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d88c700 source=0x0 dest=0x1 flags=0x4)
  (Above moves repeated for each of the 20 tasks...)
  PID 8962 moved to node(s) 1,4-5 in 139.88 seconds

  Moving 26 tasks from nodes (0-7) to nodes (1-3,5)
  numad(8780) do_migrate_pages (mm=0xffff88081d5bc740
  from_nodes=0xffff880818c81d28 to_nodes=0xffff880818c81ce8 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x7 dest=0x5 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x6 dest=0x3 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x5 dest=0x2 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x3 dest=0x5 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x2 dest=0x3 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x1 dest=0x2 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x0 dest=0x1 flags=0x4)
  numad(8780) migrate_to_node (mm=0xffff88081d5bc740 source=0x4 dest=0x1 flags=0x4)
  (Above moves repeated for each of the 26 tasks...)
  PID 9058 moved to node(s) 1-3,5 in 651.45 seconds

AFTER PATCH -- Move times: 42, 56, 93 seconds
===========

  Moving 14 tasks from nodes (0-7) to nodes (5,7)
  numad(33209) do_migrate_pages (mm=0xffff88101d5ff140
  from_nodes=0xffff88101e7b5d28 to_nodes=0xffff88101e7b5ce8 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x6 dest=0x5 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x4 dest=0x5 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x3 dest=0x7 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x2 dest=0x5 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x1 dest=0x7 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d5ff140 source=0x0 dest=0x5 flags=0x4)
  (Above moves repeated for each of the 14 tasks...)
  PID 33221 moved to node(s) 5,7 in 41.67 seconds

  Moving 20 tasks from nodes (0-7) to nodes (1,3,5)
  numad(33209) do_migrate_pages (mm=0xffff88101d6c37c0
  from_nodes=0xffff88101e7b5d28 to_nodes=0xffff88101e7b5ce8 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x7 dest=0x3 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x6 dest=0x1 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x4 dest=0x3 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x2 dest=0x5 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d6c37c0 source=0x0 dest=0x1 flags=0x4)
  (Above moves repeated for each of the 20 tasks...)
  PID 33289 moved to node(s) 1,3,5 in 56.3 seconds

  Moving 26 tasks from nodes (0-7) to nodes (1,3,5,7)
  numad(33209) do_migrate_pages (mm=0xffff88101d924400
  from_nodes=0xffff88101e7b5d28 to_nodes=0xffff88101e7b5ce8 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x6 dest=0x5 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x4 dest=0x1 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x2 dest=0x5 flags=0x4)
  numad(33209) migrate_to_node (mm=0xffff88101d924400 source=0x0 dest=0x1 flags=0x4)
  (Above moves repeated for each of the 26 tasks...)
  PID 33372 moved to node(s) 1,3,5,7 in 92.67 seconds

[akpm@linux-foundation.org: clean up comment layout]
Signed-off-by: Larry Woodman <lwoodman@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:20 -07:00
Wang Sheng-Hui
89c522c78a mm/mempolicy.c: use enum value MPOL_REBIND_ONCE in mpol_rebind_policy()
We have enum definition in mempolicy.h: MPOL_REBIND_ONCE.  It should
replace the magic number 0 for step comparison in function
mpol_rebind_policy.

Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:18 -07:00
Mel Gorman
05f144a0d5 mm: mempolicy: Let vma_merge and vma_split handle vma->vm_policy linkages
Dave Jones' system call fuzz testing tool "trinity" triggered the
following bug error with slab debugging enabled

    =============================================================================
    BUG numa_policy (Not tainted): Poison overwritten
    -----------------------------------------------------------------------------

    INFO: 0xffff880146498250-0xffff880146498250. First byte 0x6a instead of 0x6b
    INFO: Allocated in mpol_new+0xa3/0x140 age=46310 cpu=6 pid=32154
     __slab_alloc+0x3d3/0x445
     kmem_cache_alloc+0x29d/0x2b0
     mpol_new+0xa3/0x140
     sys_mbind+0x142/0x620
     system_call_fastpath+0x16/0x1b
    INFO: Freed in __mpol_put+0x27/0x30 age=46268 cpu=6 pid=32154
     __slab_free+0x2e/0x1de
     kmem_cache_free+0x25a/0x260
     __mpol_put+0x27/0x30
     remove_vma+0x68/0x90
     exit_mmap+0x118/0x140
     mmput+0x73/0x110
     exit_mm+0x108/0x130
     do_exit+0x162/0xb90
     do_group_exit+0x4f/0xc0
     sys_exit_group+0x17/0x20
     system_call_fastpath+0x16/0x1b
    INFO: Slab 0xffffea0005192600 objects=27 used=27 fp=0x          (null) flags=0x20000000004080
    INFO: Object 0xffff880146498250 @offset=592 fp=0xffff88014649b9d0

This implied a reference counting bug and the problem happened during
mbind().

mbind() applies a new memory policy to a range and uses mbind_range() to
merge existing VMAs or split them as necessary.  In the event of splits,
mpol_dup() will allocate a new struct mempolicy and maintain existing
reference counts whose rules are documented in
Documentation/vm/numa_memory_policy.txt .

The problem occurs with shared memory policies.  The vm_op->set_policy
increments the reference count if necessary and split_vma() and
vma_merge() have already handled the existing reference counts.
However, policy_vma() screws it up by replacing an existing
vma->vm_policy with one that potentially has the wrong reference count
leading to a premature free.  This patch removes the damage caused by
policy_vma().

With this patch applied Dave's trinity tool runs an mbind test for 5
minutes without error.  /proc/slabinfo reported that there are no
numa_policy or shared_policy_node objects allocated after the test
completed and the shared memory region was deleted.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Dave Jones <davej@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Stephen Wilson <wilsons@start.ca>
Cc: Christoph Lameter <cl@linux.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-23 17:57:33 -07:00
Linus Torvalds
644473e9c6 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace enhancements from Eric Biederman:
 "This is a course correction for the user namespace, so that we can
  reach an inexpensive, maintainable, and reasonably complete
  implementation.

  Highlights:
   - Config guards make it impossible to enable the user namespace and
     code that has not been converted to be user namespace safe.

   - Use of the new kuid_t type ensures the if you somehow get past the
     config guards the kernel will encounter type errors if you enable
     user namespaces and attempt to compile in code whose permission
     checks have not been updated to be user namespace safe.

   - All uids from child user namespaces are mapped into the initial
     user namespace before they are processed.  Removing the need to add
     an additional check to see if the user namespace of the compared
     uids remains the same.

   - With the user namespaces compiled out the performance is as good or
     better than it is today.

   - For most operations absolutely nothing changes performance or
     operationally with the user namespace enabled.

   - The worst case performance I could come up with was timing 1
     billion cache cold stat operations with the user namespace code
     enabled.  This went from 156s to 164s on my laptop (or 156ns to
     164ns per stat operation).

   - (uid_t)-1 and (gid_t)-1 are reserved as an internal error value.
     Most uid/gid setting system calls treat these value specially
     anyway so attempting to use -1 as a uid would likely cause
     entertaining failures in userspace.

   - If setuid is called with a uid that can not be mapped setuid fails.
     I have looked at sendmail, login, ssh and every other program I
     could think of that would call setuid and they all check for and
     handle the case where setuid fails.

   - If stat or a similar system call is called from a context in which
     we can not map a uid we lie and return overflowuid.  The LFS
     experience suggests not lying and returning an error code might be
     better, but the historical precedent with uids is different and I
     can not think of anything that would break by lying about a uid we
     can't map.

   - Capabilities are localized to the current user namespace making it
     safe to give the initial user in a user namespace all capabilities.

  My git tree covers all of the modifications needed to convert the core
  kernel and enough changes to make a system bootable to runlevel 1."

Fix up trivial conflicts due to nearby independent changes in fs/stat.c

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits)
  userns:  Silence silly gcc warning.
  cred: use correct cred accessor with regards to rcu read lock
  userns: Convert the move_pages, and migrate_pages permission checks to use uid_eq
  userns: Convert cgroup permission checks to use uid_eq
  userns: Convert tmpfs to use kuid and kgid where appropriate
  userns: Convert sysfs to use kgid/kuid where appropriate
  userns: Convert sysctl permission checks to use kuid and kgids.
  userns: Convert proc to use kuid/kgid where appropriate
  userns: Convert ext4 to user kuid/kgid where appropriate
  userns: Convert ext3 to use kuid/kgid where appropriate
  userns: Convert ext2 to use kuid/kgid where appropriate.
  userns: Convert devpts to use kuid/kgid where appropriate
  userns: Convert binary formats to use kuid/kgid where appropriate
  userns: Add negative depends on entries to avoid building code that is userns unsafe
  userns: signal remove unnecessary map_cred_ns
  userns: Teach inode_capable to understand inodes whose uids map to other namespaces.
  userns: Fail exec for suid and sgid binaries with ids outside our user namespace.
  userns: Convert stat to return values mapped from kuids and kgids
  userns: Convert user specfied uids and gids in chown into kuids and kgid
  userns: Use uid_eq gid_eq helpers when comparing kuids and kgids in the vfs
  ...
2012-05-23 17:42:39 -07:00
Eric W. Biederman
b38a86eb19 userns: Convert the move_pages, and migrate_pages permission checks to use uid_eq
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-05-15 14:59:30 -07:00
Sasha Levin
f2a9ef8807 mm: fix NULL ptr dereference in migrate_pages
Commit 3268c63 ("mm: fix move/migrate_pages() race on task struct") has
added an odd construct where 'mm' is checked for being NULL, and if it is,
it would get dereferenced anyways by mput()ing it.

This would lead to the following NULL ptr deref and BUG() when calling
migrate_pages() with a pid that has no mm struct:

[25904.193704] BUG: unable to handle kernel NULL pointer dereference at 0000000000000050
[25904.194235] IP: [<ffffffff810b0de7>] mmput+0x27/0xf0
[25904.194235] PGD 773e6067 PUD 77da0067 PMD 0
[25904.194235] Oops: 0002 [#1] PREEMPT SMP
[25904.194235] CPU 2
[25904.194235] Pid: 31608, comm: trinity Tainted: G        W    3.4.0-rc2-next-20120412-sasha #69
[25904.194235] RIP: 0010:[<ffffffff810b0de7>]  [<ffffffff810b0de7>] mmput+0x27/0xf0
[25904.194235] RSP: 0018:ffff880077d49e08  EFLAGS: 00010202
[25904.194235] RAX: 0000000000000286 RBX: 0000000000000000 RCX: 0000000000000000
[25904.194235] RDX: ffff880075ef8000 RSI: 000000000000023d RDI: 0000000000000286
[25904.194235] RBP: ffff880077d49e18 R08: 0000000000000001 R09: 0000000000000001
[25904.194235] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
[25904.194235] R13: 00000000ffffffea R14: ffff880034287740 R15: ffff8800218d3010
[25904.194235] FS:  00007fc8b244c700(0000) GS:ffff880029800000(0000) knlGS:0000000000000000
[25904.194235] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[25904.194235] CR2: 0000000000000050 CR3: 00000000767c6000 CR4: 00000000000406e0
[25904.194235] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[25904.194235] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[25904.194235] Process trinity (pid: 31608, threadinfo ffff880077d48000, task ffff880075ef8000)
[25904.194235] Stack:
[25904.194235]  ffff8800342876c0 0000000000000000 ffff880077d49f78 ffffffff811b8020
[25904.194235]  ffffffff811b7d91 ffff880075ef8000 ffff88002256d200 0000000000000000
[25904.194235]  00000000000003ff 0000000000000000 0000000000000000 0000000000000000
[25904.194235] Call Trace:
[25904.194235]  [<ffffffff811b8020>] sys_migrate_pages+0x340/0x3a0
[25904.194235]  [<ffffffff811b7d91>] ? sys_migrate_pages+0xb1/0x3a0
[25904.194235]  [<ffffffff8266cbb9>] system_call_fastpath+0x16/0x1b
[25904.194235] Code: c9 c3 66 90 55 31 d2 48 89 e5 be 3d 02 00 00 48 83 ec 10 48 89 1c 24 4c 89 64 24 08 48 89 fb 48 c7 c7 cf 0e e1 82 e8 69 18 03 00 <f0> ff 4b 50 0f 94 c0 84 c0 0f 84 aa 00 00 00 48 89 df e8 72 f1
[25904.194235] RIP  [<ffffffff810b0de7>] mmput+0x27/0xf0
[25904.194235]  RSP <ffff880077d49e08>
[25904.194235] CR2: 0000000000000050
[25904.348999] ---[ end trace a307b3ed40206b4b ]---

Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-04-25 21:26:34 -07:00
Mel Gorman
cc9a6c8776 cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.

[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths.  This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32.  The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.

For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.

This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side.  This is much cheaper on some architectures, including x86.  The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.

While updating the nodemask, a check is made to see if a false failure
is a risk.  If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.

In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%.  The
actual results were

                             3.3.0-rc3          3.3.0-rc3
                             rc3-vanilla        nobarrier-v2r1
    Clients   1 UserTime       0.07 (  0.00%)   0.08 (-14.19%)
    Clients   2 UserTime       0.07 (  0.00%)   0.07 (  2.72%)
    Clients   4 UserTime       0.08 (  0.00%)   0.07 (  3.29%)
    Clients   1 SysTime        0.70 (  0.00%)   0.65 (  6.65%)
    Clients   2 SysTime        0.85 (  0.00%)   0.82 (  3.65%)
    Clients   4 SysTime        1.41 (  0.00%)   1.41 (  0.32%)
    Clients   1 WallTime       0.77 (  0.00%)   0.74 (  4.19%)
    Clients   2 WallTime       0.47 (  0.00%)   0.45 (  3.73%)
    Clients   4 WallTime       0.38 (  0.00%)   0.37 (  1.58%)
    Clients   1 Flt/sec/cpu  497620.28 (  0.00%) 520294.53 (  4.56%)
    Clients   2 Flt/sec/cpu  414639.05 (  0.00%) 429882.01 (  3.68%)
    Clients   4 Flt/sec/cpu  257959.16 (  0.00%) 258761.48 (  0.31%)
    Clients   1 Flt/sec      495161.39 (  0.00%) 517292.87 (  4.47%)
    Clients   2 Flt/sec      820325.95 (  0.00%) 850289.77 (  3.65%)
    Clients   4 Flt/sec      1020068.93 (  0.00%) 1022674.06 (  0.26%)
    MMTests Statistics: duration
    Sys Time Running Test (seconds)             135.68    132.17
    User+Sys Time Running Test (seconds)         164.2    160.13
    Total Elapsed Time (seconds)                123.46    120.87

The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected).  The
actual number of page faults is noticeably improved.

For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.

To test the actual bug the commit fixed I opened two terminals.  The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data.  In a second window, the nodemask of the
cpuset was continually randomised in a loop.

Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:59 -07:00
Christoph Lameter
3268c63ede mm: fix move/migrate_pages() race on task struct
Migration functions perform the rcu_read_unlock too early.  As a result
the task pointed to may change from under us.  This can result in an oops,
as reported by Dave Hansen in https://lkml.org/lkml/2012/2/23/302.

The following patch extend the period of the rcu_read_lock until after the
permissions checks are done.  We also take a refcount so that the task
reference is stable when calling security check functions and performing
cpuset node validation (which takes a mutex).

The refcount is dropped before actual page migration occurs so there is no
change to the refcounts held during page migration.

Also move the determination of the mm of the task struct to immediately
before the do_migrate*() calls so that it is clear that we switch from
handling the task during permission checks to the mm for the actual
migration.  Since the determination is only done once and we then no
longer use the task_struct we can be sure that we operate on a specific
address space that will not change from under us.

[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Reported-by: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Andrea Arcangeli
1a5a9906d4 mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode.  In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.

It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds).  The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().

Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously.  This is
probably why it wasn't common to run into this.  For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.

Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).

The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value.  Even if the real pmd is changing under the
value we hold on the stack, we don't care.  If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).

All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd.  The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds).  I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).

		if (pmd_trans_huge(*pmd)) {
			if (next-addr != HPAGE_PMD_SIZE) {
				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
				split_huge_page_pmd(vma->vm_mm, pmd);
			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
				continue;
			/* fall through */
		}
		if (pmd_none_or_clear_bad(pmd))

Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.

The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.

====== start quote =======
      mapcount 0 page_mapcount 1
      kernel BUG at mm/huge_memory.c:1384!

    At some point prior to the panic, a "bad pmd ..." message similar to the
    following is logged on the console:

      mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).

    The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
    the page's PMD table entry.

        143 void pmd_clear_bad(pmd_t *pmd)
        144 {
    ->  145         pmd_ERROR(*pmd);
        146         pmd_clear(pmd);
        147 }

    After the PMD table entry has been cleared, there is an inconsistency
    between the actual number of PMD table entries that are mapping the page
    and the page's map count (_mapcount field in struct page). When the page
    is subsequently reclaimed, __split_huge_page() detects this inconsistency.

       1381         if (mapcount != page_mapcount(page))
       1382                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
       1383                        mapcount, page_mapcount(page));
    -> 1384         BUG_ON(mapcount != page_mapcount(page));

    The root cause of the problem is a race of two threads in a multithreaded
    process. Thread B incurs a page fault on a virtual address that has never
    been accessed (PMD entry is zero) while Thread A is executing an madvise()
    system call on a virtual address within the same 2 MB (huge page) range.

               virtual address space
              .---------------------.
              |                     |
              |                     |
            .-|---------------------|
            | |                     |
            | |                     |<-- B(fault)
            | |                     |
      2 MB  | |/////////////////////|-.
      huge <  |/////////////////////|  > A(range)
      page  | |/////////////////////|-'
            | |                     |
            | |                     |
            '-|---------------------|
              |                     |
              |                     |
              '---------------------'

    - Thread A is executing an madvise(..., MADV_DONTNEED) system call
      on the virtual address range "A(range)" shown in the picture.

    sys_madvise
      // Acquire the semaphore in shared mode.
      down_read(&current->mm->mmap_sem)
      ...
      madvise_vma
        switch (behavior)
        case MADV_DONTNEED:
             madvise_dontneed
               zap_page_range
                 unmap_vmas
                   unmap_page_range
                     zap_pud_range
                       zap_pmd_range
                         //
                         // Assume that this huge page has never been accessed.
                         // I.e. content of the PMD entry is zero (not mapped).
                         //
                         if (pmd_trans_huge(*pmd)) {
                             // We don't get here due to the above assumption.
                         }
                         //
                         // Assume that Thread B incurred a page fault and
             .---------> // sneaks in here as shown below.
             |           //
             |           if (pmd_none_or_clear_bad(pmd))
             |               {
             |                 if (unlikely(pmd_bad(*pmd)))
             |                     pmd_clear_bad
             |                     {
             |                       pmd_ERROR
             |                         // Log "bad pmd ..." message here.
             |                       pmd_clear
             |                         // Clear the page's PMD entry.
             |                         // Thread B incremented the map count
             |                         // in page_add_new_anon_rmap(), but
             |                         // now the page is no longer mapped
             |                         // by a PMD entry (-> inconsistency).
             |                     }
             |               }
             |
             v
    - Thread B is handling a page fault on virtual address "B(fault)" shown
      in the picture.

    ...
    do_page_fault
      __do_page_fault
        // Acquire the semaphore in shared mode.
        down_read_trylock(&mm->mmap_sem)
        ...
        handle_mm_fault
          if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
              // We get here due to the above assumption (PMD entry is zero).
              do_huge_pmd_anonymous_page
                alloc_hugepage_vma
                  // Allocate a new transparent huge page here.
                ...
                __do_huge_pmd_anonymous_page
                  ...
                  spin_lock(&mm->page_table_lock)
                  ...
                  page_add_new_anon_rmap
                    // Here we increment the page's map count (starts at -1).
                    atomic_set(&page->_mapcount, 0)
                  set_pmd_at
                    // Here we set the page's PMD entry which will be cleared
                    // when Thread A calls pmd_clear_bad().
                  ...
                  spin_unlock(&mm->page_table_lock)

    The mmap_sem does not prevent the race because both threads are acquiring
    it in shared mode (down_read).  Thread B holds the page_table_lock while
    the page's map count and PMD table entry are updated.  However, Thread A
    does not synchronize on that lock.

====== end quote =======

[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>		[2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:54 -07:00
Linus Torvalds
097d59106a vm: avoid using find_vma_prev() unnecessarily
Several users of "find_vma_prev()" were not in fact interested in the
previous vma if there was no primary vma to be found either.  And in
those cases, we're much better off just using the regular "find_vma()",
and then "prev" can be looked up by just checking vma->vm_prev.

The find_vma_prev() semantics are fairly subtle (see Mikulas' recent
commit 83cd904d271b: "mm: fix find_vma_prev"), and the whole "return
prev by reference" means that it generates worse code too.

Thus this "let's avoid using this inconvenient and clearly too subtle
interface when we don't really have to" patch.

Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-06 18:23:36 -08:00
Mel Gorman
a6bc32b899 mm: compaction: introduce sync-light migration for use by compaction
This patch adds a lightweight sync migrate operation MIGRATE_SYNC_LIGHT
mode that avoids writing back pages to backing storage.  Async compaction
maps to MIGRATE_ASYNC while sync compaction maps to MIGRATE_SYNC_LIGHT.
For other migrate_pages users such as memory hotplug, MIGRATE_SYNC is
used.

This avoids sync compaction stalling for an excessive length of time,
particularly when copying files to a USB stick where there might be a
large number of dirty pages backed by a filesystem that does not support
->writepages.

[aarcange@redhat.com: This patch is heavily based on Andrea's work]
[akpm@linux-foundation.org: fix fs/nfs/write.c build]
[akpm@linux-foundation.org: fix fs/btrfs/disk-io.c build]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:09 -08:00
KOSAKI Motohiro
fcfb4dcc96 mm/mempolicy.c: mpol_equal(): use bool
mpol_equal() logically returns a boolean.  Use a bool type to slightly
improve readability.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Stephen Wilson <wilsons@start.ca>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:45 -08:00