Allow the mremap test to be skipped due to errors such as failing to
parse the mmap_min_addr sysctl.
Link: https://lkml.kernel.org/r/20220420215721.4868-4-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use ksft_test_result_xfail for the tests which are expected to fail.
Link: https://lkml.kernel.org/r/20220420215721.4868-3-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because mremap does not have a MAP_FIXED_NOREPLACE flag, it can destroy
existing mappings. This causes a segfault when regions such as text are
remapped and the permissions are changed.
Verify the requested mremap destination address does not overlap any
existing mappings by using mmap's MAP_FIXED_NOREPLACE flag. Keep
incrementing the destination address until a valid mapping is found or
fail the current test once the max address is reached.
Link: https://lkml.kernel.org/r/20220420215721.4868-2-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Avoid calling mmap with requested addresses that are less than the
system's mmap_min_addr. When run as root, mmap returns EACCES when
trying to map addresses < mmap_min_addr. This is not one of the error
codes for the condition to retry the mmap in the test.
Rather than arbitrarily retrying on EACCES, don't attempt an mmap until
addr > vm.mmap_min_addr.
Add a munmap call after an alignment check as the mappings are retained
after the retry and can reach the vm.max_map_count sysctl.
Link: https://lkml.kernel.org/r/20220420215721.4868-1-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a fix for commit f6795053dac8 ("mm: mmap: Allow for "high"
userspace addresses") for hugetlb.
This patch adds support for "high" userspace addresses that are
optionally supported on the system and have to be requested via a hint
mechanism ("high" addr parameter to mmap).
Architectures such as powerpc and x86 achieve this by making changes to
their architectural versions of hugetlb_get_unmapped_area() function.
However, arm64 uses the generic version of that function.
So take into account arch_get_mmap_base() and arch_get_mmap_end() in
hugetlb_get_unmapped_area(). To allow that, move those two macros out
of mm/mmap.c into include/linux/sched/mm.h
If these macros are not defined in architectural code then they default
to (TASK_SIZE) and (base) so should not introduce any behavioural
changes to architectures that do not define them.
For the time being, only ARM64 is affected by this change.
Catalin (ARM64) said
"We should have fixed hugetlb_get_unmapped_area() as well when we added
support for 52-bit VA. The reason for commit f6795053dac8 was to
prevent normal mmap() from returning addresses above 48-bit by default
as some user-space had hard assumptions about this.
It's a slight ABI change if you do this for hugetlb_get_unmapped_area()
but I doubt anyone would notice. It's more likely that the current
behaviour would cause issues, so I'd rather have them consistent.
Basically when arm64 gained support for 52-bit addresses we did not
want user-space calling mmap() to suddenly get such high addresses,
otherwise we could have inadvertently broken some programs (similar
behaviour to x86 here). Hence we added commit f6795053dac8. But we
missed hugetlbfs which could still get such high mmap() addresses. So
in theory that's a potential regression that should have bee addressed
at the same time as commit f6795053dac8 (and before arm64 enabled
52-bit addresses)"
Link: https://lkml.kernel.org/r/ab847b6edb197bffdfe189e70fb4ac76bfe79e0d.1650033747.git.christophe.leroy@csgroup.eu
Fixes: f6795053dac8 ("mm: mmap: Allow for "high" userspace addresses")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> [5.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a PTE is set by UFFD operations such as UFFDIO_COPY, the PTE is
currently only marked as write-protected if the VMA has VM_WRITE flag
set. This seems incorrect or at least would be unexpected by the users.
Consider the following sequence of operations that are being performed
on a certain page:
mprotect(PROT_READ)
UFFDIO_COPY(UFFDIO_COPY_MODE_WP)
mprotect(PROT_READ|PROT_WRITE)
At this point the user would expect to still get UFFD notification when
the page is accessed for write, but the user would not get one, since
the PTE was not marked as UFFD_WP during UFFDIO_COPY.
Fix it by always marking PTEs as UFFD_WP regardless on the
write-permission in the VMA flags.
Link: https://lkml.kernel.org/r/20220217211602.2769-1-namit@vmware.com
Fixes: 292924b26024 ("userfaultfd: wp: apply _PAGE_UFFD_WP bit")
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Daniel Dao has reported [1] a regression on workloads that may trigger a
lot of refaults (anon and file). The underlying issue is that flushing
rstat is expensive. Although rstat flush are batched with (nr_cpus *
MEMCG_BATCH) stat updates, it seems like there are workloads which
genuinely do stat updates larger than batch value within short amount of
time. Since the rstat flush can happen in the performance critical
codepaths like page faults, such workload can suffer greatly.
This patch fixes this regression by making the rstat flushing
conditional in the performance critical codepaths. More specifically,
the kernel relies on the async periodic rstat flusher to flush the stats
and only if the periodic flusher is delayed by more than twice the
amount of its normal time window then the kernel allows rstat flushing
from the performance critical codepaths.
Now the question: what are the side-effects of this change? The worst
that can happen is the refault codepath will see 4sec old lruvec stats
and may cause false (or missed) activations of the refaulted page which
may under-or-overestimate the workingset size. Though that is not very
concerning as the kernel can already miss or do false activations.
There are two more codepaths whose flushing behavior is not changed by
this patch and we may need to come to them in future. One is the
writeback stats used by dirty throttling and second is the deactivation
heuristic in the reclaim. For now keeping an eye on them and if there
is report of regression due to these codepaths, we will reevaluate then.
Link: https://lore.kernel.org/all/CA+wXwBSyO87ZX5PVwdHm-=dBjZYECGmfnydUicUyrQqndgX2MQ@mail.gmail.com [1]
Link: https://lkml.kernel.org/r/20220304184040.1304781-1-shakeelb@google.com
Fixes: 1f828223b799 ("memcg: flush lruvec stats in the refault")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Daniel Dao <dqminh@cloudflare.com>
Tested-by: Ivan Babrou <ivan@cloudflare.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Frank Hofmann <fhofmann@cloudflare.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race condition between memory_failure_hugetlb() and hugetlb
free/demotion, which causes setting PageHWPoison flag on the wrong page.
The one simple result is that wrong processes can be killed, but another
(more serious) one is that the actual error is left unhandled, so no one
prevents later access to it, and that might lead to more serious results
like consuming corrupted data.
Think about the below race window:
CPU 1 CPU 2
memory_failure_hugetlb
struct page *head = compound_head(p);
hugetlb page might be freed to
buddy, or even changed to another
compound page.
get_hwpoison_page -- page is not what we want now...
The current code first does prechecks roughly and then reconfirms after
taking refcount, but it's found that it makes code overly complicated,
so move the prechecks in a single hugetlb_lock range.
A newly introduced function, try_memory_failure_hugetlb(), always takes
hugetlb_lock (even for non-hugetlb pages). That can be improved, but
memory_failure() is rare in principle, so should not be a big problem.
Link: https://lkml.kernel.org/r/20220408135323.1559401-2-naoya.horiguchi@linux.dev
Fixes: 761ad8d7c7b5 ("mm: hwpoison: introduce memory_failure_hugetlb()")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the file preallocated blocks and fsync'ed, we should not truncate them during
roll-forward recovery which will recover i_size correctly back.
Fixes: d4dd19ec1ea0 ("f2fs: do not expose unwritten blocks to user by DIO")
Cc: <stable@vger.kernel.org> # 5.17+
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Before detecting the cable type on the dma bar, the driver should check
whether the 'bmdma_addr' is zero, which means the adapter does not
support DMA, otherwise we will get the following error:
[ 5.146634] Bad IO access at port 0x1 (return inb(port))
[ 5.147206] WARNING: CPU: 2 PID: 303 at lib/iomap.c:44 ioread8+0x4a/0x60
[ 5.150856] RIP: 0010:ioread8+0x4a/0x60
[ 5.160238] Call Trace:
[ 5.160470] <TASK>
[ 5.160674] marvell_cable_detect+0x6e/0xc0 [pata_marvell]
[ 5.161728] ata_eh_recover+0x3520/0x6cc0
[ 5.168075] ata_do_eh+0x49/0x3c0
Signed-off-by: Zheyu Ma <zheyuma97@gmail.com>
Signed-off-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
There can be lots of build errors when building cpuidle-riscv-sbi.o.
They are all caused by a kconfig problem with this warning:
WARNING: unmet direct dependencies detected for RISCV_SBI_CPUIDLE
Depends on [n]: CPU_IDLE [=y] && RISCV [=y] && RISCV_SBI [=n]
Selected by [y]:
- SOC_VIRT [=y] && CPU_IDLE [=y]
so make the 'select' of RISCV_SBI_CPUIDLE also depend on RISCV_SBI.
Fixes: c5179ef1ca0c ("RISC-V: Enable RISC-V SBI CPU Idle driver for QEMU virt machine")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Cc: stable@vger.kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
When Sv57 is not available the satp.MODE test in set_satp_mode() will
fail and lead to pgdir re-programming for Sv48. The pgdir re-programming
will fail as well due to pre-existing pgdir entry used for Sv57 and as
a result kernel fails to boot on RISC-V platform not having Sv57.
To fix above issue, we should clear the pgdir memory in set_satp_mode()
before re-programming.
Fixes: 011f09d12052 ("riscv: mm: Set sv57 on defaultly")
Reported-by: Mayuresh Chitale <mchitale@ventanamicro.com>
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Cc: stable@vger.kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Clean up code that was hardcoding masks for various fields,
now that the masks are included in processor.h.
For more cleanup, define PAGE_SIZE and PAGE_MASK just like in Linux.
PAGE_SIZE in particular was defined by several tests.
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Red Hat's QE team reported test failure on access_tracking_perf_test:
Testing guest mode: PA-bits:ANY, VA-bits:48, 4K pages
guest physical test memory offset: 0x3fffbffff000
Populating memory : 0.684014577s
Writing to populated memory : 0.006230175s
Reading from populated memory : 0.004557805s
==== Test Assertion Failure ====
lib/kvm_util.c:1411: false
pid=125806 tid=125809 errno=4 - Interrupted system call
1 0x0000000000402f7c: addr_gpa2hva at kvm_util.c:1411
2 (inlined by) addr_gpa2hva at kvm_util.c:1405
3 0x0000000000401f52: lookup_pfn at access_tracking_perf_test.c:98
4 (inlined by) mark_vcpu_memory_idle at access_tracking_perf_test.c:152
5 (inlined by) vcpu_thread_main at access_tracking_perf_test.c:232
6 0x00007fefe9ff81ce: ?? ??:0
7 0x00007fefe9c64d82: ?? ??:0
No vm physical memory at 0xffbffff000
I can easily reproduce it with a Intel(R) Xeon(R) CPU E5-2630 with 46 bits
PA.
It turns out that the address translation for clearing idle page tracking
returned a wrong result; addr_gva2gpa()'s last step, which is based on
"pte[index[0]].pfn", did the calculation with 40 bits length and the
high 12 bits got truncated. In above case the GPA address to be returned
should be 0x3fffbffff000 for GVA 0xc0000000, but it got truncated into
0xffbffff000 and the subsequent gpa2hva lookup failed.
The width of operations on bit fields greater than 32-bit is
implementation defined, and differs between GCC (which uses the bitfield
precision) and clang (which uses 64-bit arithmetic), so this is a
potential minefield. Remove the bit fields and using manual masking
instead.
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=2075036
Reported-by: Nana Liu <nanliu@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Tested-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush the CPU caches when memory is reclaimed from an SEV guest (where
reclaim also includes it being unmapped from KVM's memslots). Due to lack
of coherency for SEV encrypted memory, failure to flush results in silent
data corruption if userspace is malicious/broken and doesn't ensure SEV
guest memory is properly pinned and unpinned.
Cache coherency is not enforced across the VM boundary in SEV (AMD APM
vol.2 Section 15.34.7). Confidential cachelines, generated by confidential
VM guests have to be explicitly flushed on the host side. If a memory page
containing dirty confidential cachelines was released by VM and reallocated
to another user, the cachelines may corrupt the new user at a later time.
KVM takes a shortcut by assuming all confidential memory remain pinned
until the end of VM lifetime. Therefore, KVM does not flush cache at
mmu_notifier invalidation events. Because of this incorrect assumption and
the lack of cache flushing, malicous userspace can crash the host kernel:
creating a malicious VM and continuously allocates/releases unpinned
confidential memory pages when the VM is running.
Add cache flush operations to mmu_notifier operations to ensure that any
physical memory leaving the guest VM get flushed. In particular, hook
mmu_notifier_invalidate_range_start and mmu_notifier_release events and
flush cache accordingly. The hook after releasing the mmu lock to avoid
contention with other vCPUs.
Cc: stable@vger.kernel.org
Suggested-by: Sean Christpherson <seanjc@google.com>
Reported-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current release - regressions:
- rxrpc: restore removed timer deletion
Current release - new code bugs:
- gre: fix device lookup for l3mdev use-case
- xfrm: fix egress device lookup for l3mdev use-case
Previous releases - regressions:
- sched: cls_u32: fix netns refcount changes in u32_change()
- smc: fix sock leak when release after smc_shutdown()
- xfrm: limit skb_page_frag_refill use to a single page
- eth: atlantic: invert deep par in pm functions, preventing null
derefs
- eth: stmmac: use readl_poll_timeout_atomic() in atomic state
Previous releases - always broken:
- gre: fix skb_under_panic on xmit
- openvswitch: fix OOB access in reserve_sfa_size()
- dsa: hellcreek: calculate checksums in tagger
- eth: ice: fix crash in switchdev mode
- eth: igc:
- fix infinite loop in release_swfw_sync
- fix scheduling while atomic
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmJhLbcSHHBhYmVuaUBy
ZWRoYXQuY29tAAoJECkkeY3MjxOknxkP/jiAATyBt/HQFykQNiZ7cdrcv1gzJ3Lg
BmrV1QmbrNwfffBtmBHRliP7x0vNF6fV8LUKjfyQh1YgJw8I9F/FDH/1fojhBZq/
JJpZrh+TFikBBM4RDMJ0aQi6ssOEo8S9gfN4W48F/49O4S3Q/Gbgv7Lk0jL8utRz
7RgGUVxX+xOSklvh2Tn/xHdYPeebPhLojiKhmH+l6xghyDEUHkemF3AkLwV9QMnq
LXmNP4y100xcdCW1bLbyVcq0lbwdLSg4SL+2wC2bvgEDRR0MUezQyNxD6Oqrmusn
sASZYgNK92R9ekLBqTX/QwV/XIT+17hclTk4u0eV8GnemnibqOq7DhDqtKyeAzbD
mfU6Z5Ku6LuXA1U+2w1jxnd4cJTacA+dCRKcQD91ReguBbCd6zOweB996iBNLucK
Kf+r6qWWLxt+JmhSexb/T+oQHsdgvIPSQXNHUH2W8w+2DdTB/EPcSL76DlbZUxrP
up4EC3Nr3oxJjHbv7Iq4d9mHuRlwoOOpNJ3mARlfRDL6iuL0zECTweST3qT9YyIH
Cz4FGj7kwEDTxGtufoTVia+/JmS39f2lBrMKuhbTVo+qcYhs3zJM4Ki9bAgOKXqI
Qf+I73x9yQZ182afq4DsRXLnq/BajmRMyX2/kebY8KsARzRsPAktBhsT17SI6tUG
3MiLiHiIb0qM
=thBq
-----END PGP SIGNATURE-----
Merge tag 'net-5.18-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Paolo Abeni:
"Including fixes from xfrm and can.
Current release - regressions:
- rxrpc: restore removed timer deletion
Current release - new code bugs:
- gre: fix device lookup for l3mdev use-case
- xfrm: fix egress device lookup for l3mdev use-case
Previous releases - regressions:
- sched: cls_u32: fix netns refcount changes in u32_change()
- smc: fix sock leak when release after smc_shutdown()
- xfrm: limit skb_page_frag_refill use to a single page
- eth: atlantic: invert deep par in pm functions, preventing null
derefs
- eth: stmmac: use readl_poll_timeout_atomic() in atomic state
Previous releases - always broken:
- gre: fix skb_under_panic on xmit
- openvswitch: fix OOB access in reserve_sfa_size()
- dsa: hellcreek: calculate checksums in tagger
- eth: ice: fix crash in switchdev mode
- eth: igc:
- fix infinite loop in release_swfw_sync
- fix scheduling while atomic"
* tag 'net-5.18-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (37 commits)
drivers: net: hippi: Fix deadlock in rr_close()
selftests: mlxsw: vxlan_flooding_ipv6: Prevent flooding of unwanted packets
selftests: mlxsw: vxlan_flooding: Prevent flooding of unwanted packets
nfc: MAINTAINERS: add Bug entry
net: stmmac: Use readl_poll_timeout_atomic() in atomic state
doc/ip-sysctl: add bc_forwarding
netlink: reset network and mac headers in netlink_dump()
net: mscc: ocelot: fix broken IP multicast flooding
net: dsa: hellcreek: Calculate checksums in tagger
net: atlantic: invert deep par in pm functions, preventing null derefs
can: isotp: stop timeout monitoring when no first frame was sent
bonding: do not discard lowest hash bit for non layer3+4 hashing
net: lan966x: Make sure to release ptp interrupt
ipv6: make ip6_rt_gc_expire an atomic_t
net: Handle l3mdev in ip_tunnel_init_flow
l3mdev: l3mdev_master_upper_ifindex_by_index_rcu should be using netdev_master_upper_dev_get_rcu
net/sched: cls_u32: fix possible leak in u32_init_knode()
net/sched: cls_u32: fix netns refcount changes in u32_change()
powerpc: Update MAINTAINERS for ibmvnic and VAS
net: restore alpha order to Ethernet devices in config
...
Control Flow Integrity (CFI) instrumentation of the kernel noticed that
the caller, dev_attr_show(), and the callback, odvp_show(), did not have
matching function prototypes, which would cause a CFI exception to be
raised. Correct the prototype by using struct device_attribute instead
of struct kobj_attribute.
Reported-and-tested-by: Joao Moreira <joao@overdrivepizza.com>
Link: https://lore.kernel.org/lkml/067ce8bd4c3968054509831fa2347f4f@overdrivepizza.com/
Fixes: 006f006f1e5c ("thermal/int340x_thermal: Export OEM vendor variables")
Cc: 5.8+ <stable@vger.kernel.org> # 5.8+
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This reverts commit bfe55a1f7fd6bfede16078bf04c6250fbca11588.
This was presumably misdiagnosed as an inability to use C3 at
all when I suspect the real problem is just misconfiguration of
C3 vs. ARB_DIS.
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: 5.16+ <stable@vger.kernel.org> # 5.16+
Tested-by: Woody Suwalski <wsuwalski@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The "safe state" index is used by acpi_idle_enter_bm() to avoid
entering a C-state that may require bus mastering to be disabled
on entry in the cases when this is not going to happen. For this
reason, it should not be set to point to C3 type of C-states, because
they may require bus mastering to be disabled on entry in principle.
This was broken by commit d6b88ce2eb9d ("ACPI: processor idle: Allow
playing dead in C3 state") which inadvertently allowed the "safe
state" index to point to C3 type of C-states.
This results in a machine that won't boot past the point when it first
enters C3. Restore the correct behaviour (either demote to C1/C2, or
use C3 but also set ARB_DIS=1).
I hit this on a Fujitsu Siemens Lifebook S6010 (P3) machine.
Fixes: d6b88ce2eb9d ("ACPI: processor idle: Allow playing dead in C3 state")
Cc: 5.16+ <stable@vger.kernel.org> # 5.16+
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Tested-by: Woody Suwalski <wsuwalski@gmail.com>
[ rjw: Subject and changelog adjustments ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Use clflush_cache_range() to flush the confidential memory when
SME_COHERENT is supported in AMD CPU. Cache flush is still needed since
SME_COHERENT only support cache invalidation at CPU side. All confidential
cache lines are still incoherent with DMA devices.
Cc: stable@vger.kerel.org
Fixes: add5e2f04541 ("KVM: SVM: Add support for the SEV-ES VMSA")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-3-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rework sev_flush_guest_memory() to explicitly handle only a single page,
and harden it to fall back to WBINVD if VM_PAGE_FLUSH fails. Per-page
flushing is currently used only to flush the VMSA, and in its current
form, the helper is completely broken with respect to flushing actual
guest memory, i.e. won't work correctly for an arbitrary memory range.
VM_PAGE_FLUSH takes a host virtual address, and is subject to normal page
walks, i.e. will fault if the address is not present in the host page
tables or does not have the correct permissions. Current AMD CPUs also
do not honor SMAP overrides (undocumented in kernel versions of the APM),
so passing in a userspace address is completely out of the question. In
other words, KVM would need to manually walk the host page tables to get
the pfn, ensure the pfn is stable, and then use the direct map to invoke
VM_PAGE_FLUSH. And the latter might not even work, e.g. if userspace is
particularly evil/clever and backs the guest with Secret Memory (which
unmaps memory from the direct map).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fixes: add5e2f04541 ("KVM: SVM: Add support for the SEV-ES VMSA")
Reported-by: Mingwei Zhang <mizhang@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-2-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When compiling kvm_page_table_test.c, I get this compiler warning
with gcc 11.2:
kvm_page_table_test.c: In function 'pre_init_before_test':
../../../../tools/include/linux/kernel.h:44:24: warning: comparison of
distinct pointer types lacks a cast
44 | (void) (&_max1 == &_max2); \
| ^~
kvm_page_table_test.c:281:21: note: in expansion of macro 'max'
281 | alignment = max(0x100000, alignment);
| ^~~
Fix it by adjusting the type of the absolute value.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Message-Id: <20220414103031.565037-1-thuth@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
NMI-watchdog is one of the favorite features of kernel developers,
but it does not work in AMD guest even with vPMU enabled and worse,
the system misrepresents this capability via /proc.
This is a PMC emulation error. KVM does not pass the latest valid
value to perf_event in time when guest NMI-watchdog is running, thus
the perf_event corresponding to the watchdog counter will enter the
old state at some point after the first guest NMI injection, forcing
the hardware register PMC0 to be constantly written to 0x800000000001.
Meanwhile, the running counter should accurately reflect its new value
based on the latest coordinated pmc->counter (from vPMC's point of view)
rather than the value written directly by the guest.
Fixes: 168d918f2643 ("KVM: x86: Adjust counter sample period after a wrmsr")
Reported-by: Dongli Cao <caodongli@kingsoft.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Yanan Wang <wangyanan55@huawei.com>
Tested-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220409015226.38619-1-likexu@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_KVM_POLL_CONTROL is cleared on reset, thus reverting guests to
host-side polling after suspend/resume. Non-bootstrap CPUs are
restored correctly by the haltpoll driver because they are hot-unplugged
during suspend and hot-plugged during resume; however, the BSP
is not hotpluggable and remains in host-sde polling mode after
the guest resume. The makes the guest pay for the cost of vmexits
every time the guest enters idle.
Fix it by recording BSP's haltpoll state and resuming it during guest
resume.
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1650267752-46796-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SPDX comments use use /* */ style comments in headers anad
// style comments in .c files. Also fix two spelling mistakes.
Signed-off-by: Tom Rix <trix@redhat.com>
Message-Id: <20220410153840.55506-1-trix@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the APICv inhibit update for KVM_GUESTDBG_BLOCKIRQ if APICv is
disabled at the module level to avoid having to acquire the mutex and
potentially process all vCPUs. The DISABLE inhibit will (barring bugs)
never be lifted, so piling on more inhibits is unnecessary.
Fixes: cae72dcc3b21 ("KVM: x86: inhibit APICv when KVM_GUESTDBG_BLOCKIRQ active")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make a KVM_REQ_APICV_UPDATE request when creating a vCPU with an
in-kernel local APIC and APICv enabled at the module level. Consuming
kvm_apicv_activated() and stuffing vcpu->arch.apicv_active directly can
race with __kvm_set_or_clear_apicv_inhibit(), as vCPU creation happens
before the vCPU is fully onlined, i.e. it won't get the request made to
"all" vCPUs. If APICv is globally inhibited between setting apicv_active
and onlining the vCPU, the vCPU will end up running with APICv enabled
and trigger KVM's sanity check.
Mark APICv as active during vCPU creation if APICv is enabled at the
module level, both to be optimistic about it's final state, e.g. to avoid
additional VMWRITEs on VMX, and because there are likely bugs lurking
since KVM checks apicv_active in multiple vCPU creation paths. While
keeping the current behavior of consuming kvm_apicv_activated() is
arguably safer from a regression perspective, force apicv_active so that
vCPU creation runs with deterministic state and so that if there are bugs,
they are found sooner than later, i.e. not when some crazy race condition
is hit.
WARNING: CPU: 0 PID: 484 at arch/x86/kvm/x86.c:9877 vcpu_enter_guest+0x2ae3/0x3ee0 arch/x86/kvm/x86.c:9877
Modules linked in:
CPU: 0 PID: 484 Comm: syz-executor361 Not tainted 5.16.13 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1~cloud0 04/01/2014
RIP: 0010:vcpu_enter_guest+0x2ae3/0x3ee0 arch/x86/kvm/x86.c:9877
Call Trace:
<TASK>
vcpu_run arch/x86/kvm/x86.c:10039 [inline]
kvm_arch_vcpu_ioctl_run+0x337/0x15e0 arch/x86/kvm/x86.c:10234
kvm_vcpu_ioctl+0x4d2/0xc80 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3727
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x16d/0x1d0 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The bug was hit by a syzkaller spamming VM creation with 2 vCPUs and a
call to KVM_SET_GUEST_DEBUG.
r0 = openat$kvm(0xffffffffffffff9c, &(0x7f0000000000), 0x0, 0x0)
r1 = ioctl$KVM_CREATE_VM(r0, 0xae01, 0x0)
ioctl$KVM_CAP_SPLIT_IRQCHIP(r1, 0x4068aea3, &(0x7f0000000000)) (async)
r2 = ioctl$KVM_CREATE_VCPU(r1, 0xae41, 0x0) (async)
r3 = ioctl$KVM_CREATE_VCPU(r1, 0xae41, 0x400000000000002)
ioctl$KVM_SET_GUEST_DEBUG(r3, 0x4048ae9b, &(0x7f00000000c0)={0x5dda9c14aa95f5c5})
ioctl$KVM_RUN(r2, 0xae80, 0x0)
Reported-by: Gaoning Pan <pgn@zju.edu.cn>
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Fixes: 8df14af42f00 ("kvm: x86: Add support for dynamic APICv activation")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Defer APICv updates that occur while L2 is active until nested VM-Exit,
i.e. until L1 regains control. vmx_refresh_apicv_exec_ctrl() assumes L1
is active and (a) stomps all over vmcs02 and (b) neglects to ever updated
vmcs01. E.g. if vmcs12 doesn't enable the TPR shadow for L2 (and thus no
APICv controls), L1 performs nested VM-Enter APICv inhibited, and APICv
becomes unhibited while L2 is active, KVM will set various APICv controls
in vmcs02 and trigger a failed VM-Entry. The kicker is that, unless
running with nested_early_check=1, KVM blames L1 and chaos ensues.
In all cases, ignoring vmcs02 and always deferring the inhibition change
to vmcs01 is correct (or at least acceptable). The ABSENT and DISABLE
inhibitions cannot truly change while L2 is active (see below).
IRQ_BLOCKING can change, but it is firmly a best effort debug feature.
Furthermore, only L2's APIC is accelerated/virtualized to the full extent
possible, e.g. even if L1 passes through its APIC to L2, normal MMIO/MSR
interception will apply to the virtual APIC managed by KVM.
The exception is the SELF_IPI register when x2APIC is enabled, but that's
an acceptable hole.
Lastly, Hyper-V's Auto EOI can technically be toggled if L1 exposes the
MSRs to L2, but for that to work in any sane capacity, L1 would need to
pass through IRQs to L2 as well, and IRQs must be intercepted to enable
virtual interrupt delivery. I.e. exposing Auto EOI to L2 and enabling
VID for L2 are, for all intents and purposes, mutually exclusive.
Lack of dynamic toggling is also why this scenario is all but impossible
to encounter in KVM's current form. But a future patch will pend an
APICv update request _during_ vCPU creation to plug a race where a vCPU
that's being created doesn't get included in the "all vCPUs request"
because it's not yet visible to other vCPUs. If userspaces restores L2
after VM creation (hello, KVM selftests), the first KVM_RUN will occur
while L2 is active and thus service the APICv update request made during
VM creation.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220420013732.3308816-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set the DISABLE inhibit, not the ABSENT inhibit, if APICv is disabled via
module param. A recent refactoring to add a wrapper for setting/clearing
inhibits unintentionally changed the flag, probably due to a copy+paste
goof.
Fixes: 4f4c4a3ee53c ("KVM: x86: Trace all APICv inhibit changes and capture overall status")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Initialize debugfs_entry to its semi-magical -ENOENT value when the VM
is created. KVM's teardown when VM creation fails is kludgy and calls
kvm_uevent_notify_change() and kvm_destroy_vm_debugfs() even if KVM never
attempted kvm_create_vm_debugfs(). Because debugfs_entry is zero
initialized, the IS_ERR() checks pass and KVM derefs a NULL pointer.
BUG: kernel NULL pointer dereference, address: 0000000000000018
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 1068b1067 P4D 1068b1067 PUD 1068b0067 PMD 0
Oops: 0000 [#1] SMP
CPU: 0 PID: 871 Comm: repro Not tainted 5.18.0-rc1+ #825
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:__dentry_path+0x7b/0x130
Call Trace:
<TASK>
dentry_path_raw+0x42/0x70
kvm_uevent_notify_change.part.0+0x10c/0x200 [kvm]
kvm_put_kvm+0x63/0x2b0 [kvm]
kvm_dev_ioctl+0x43a/0x920 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x31/0x50
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
Modules linked in: kvm_intel kvm irqbypass
Fixes: a44a4cc1c969 ("KVM: Don't create VM debugfs files outside of the VM directory")
Cc: stable@vger.kernel.org
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oupton@google.com>
Reported-by: syzbot+df6fbbd2ee39f21289ef@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20220415004622.2207751-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add wrappers to acquire/release KVM's SRCU lock when stashing the index
in vcpu->src_idx, along with rudimentary detection of illegal usage,
e.g. re-acquiring SRCU and thus overwriting vcpu->src_idx. Because the
SRCU index is (currently) either 0 or 1, illegal nesting bugs can go
unnoticed for quite some time and only cause problems when the nested
lock happens to get a different index.
Wrap the WARNs in PROVE_RCU=y, and make them ONCE, otherwise KVM will
likely yell so loudly that it will bring the kernel to its knees.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20220415004343.2203171-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the generic kvm_vcpu's srcu_idx instead of using an indentical field
in RISC-V's version of kvm_vcpu_arch. Generic KVM very intentionally
does not touch vcpu->srcu_idx, i.e. there's zero chance of running afoul
of common code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220415004343.2203171-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't re-acquire SRCU in complete_emulated_io() now that KVM acquires the
lock in kvm_arch_vcpu_ioctl_run(). More importantly, don't overwrite
vcpu->srcu_idx. If the index acquired by complete_emulated_io() differs
from the one acquired by kvm_arch_vcpu_ioctl_run(), KVM will effectively
leak a lock and hang if/when synchronize_srcu() is invoked for the
relevant grace period.
Fixes: 8d25b7beca7e ("KVM: x86: pull kvm->srcu read-side to kvm_arch_vcpu_ioctl_run")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220415004343.2203171-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Remove 's' & 'u' as valid ISA extension
- Restrict the extensions that can be disabled
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEZdn75s5e6LHDQ+f/rUjsVaLHLAcFAmJhdVEACgkQrUjsVaLH
LAdpZQ/+JKICZ9bimd25lNZSDecvVpMApg6FYmNyYFoMT917+VaNIQIQJt54NZk5
9yeP8eBdoTLEzj48Ib0EYHmBCXEve2Tzj8pQ9FiP34YWCHK+zxytagGoRcSaqsXH
VObLiezwzNknBg6on8gzTh7woxW6EE+KQ7N+gxarVizFBUG4dicSGfDL8fXr7W2g
/mJjs1zJOGD02rz9X/02PHMWXFTL1QEQH5HZHCi5NV2Xh8nFiJUcgEjx9eaweY0V
56cDRGEj7/P+QI3Ulr6f5Vy897aGNr1JR9XHEMCQ2qkgeOtinRYSp7w008x5FcCE
1PbfZAr51J4B4VbN+sbgQiX64hRyZJ46SPZIrvYp9mJWfY5FALweI51ikzVzkLbW
TWLNXTM8QofzUjtNmGr7by4Fr0/5XYwS2TTZ6ScQEREg/rMLg0blG3F5AnlVFVF9
TUFeNjaAnenjMRE+tfNSF2BF/K4u43gFkVx/FTL2cFPIXrUwuRvveZ1YCls9zVFt
4xM0EpVAsaYVsnzW9qxDyU7Fs0RInTvSmt+2lu0ZxhWdF4P/NzuRogIJ0M8j58d6
BDcHH77yb+tSDjMTo68112WvEWVLYK1upDYh8RBdRitccrcgflibQDjwgLjf97iP
gRXkt5klHSElAnFZ7yFNKKzXd1tF2TPU8QNvu+2z2T4OMefifY4=
=RKx8
-----END PGP SIGNATURE-----
Merge tag 'kvm-riscv-fixes-5.18-2' of https://github.com/kvm-riscv/linux into HEAD
KVM/riscv fixes for 5.18, take #2
- Remove 's' & 'u' as valid ISA extension
- Do not allow disabling the base extensions 'i'/'m'/'a'/'c'
The stm32_gpio_get() should only be called for LEVEL triggered interrupts,
skip calling it for EDGE triggered interrupts altogether to avoid wasting
CPU cycles in EOI handler. On this platform, EDGE triggered interrupts are
the majority and LEVEL triggered interrupts are the exception no less, and
the CPU cycles are not abundant.
Fixes: 47beed513a85b ("pinctrl: stm32: Add level interrupt support to gpio irq chip")
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Alexandre Torgue <alexandre.torgue@foss.st.com>
Cc: Fabien Dessenne <fabien.dessenne@foss.st.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: linux-stm32@st-md-mailman.stormreply.com
Cc: linux-arm-kernel@lists.infradead.org
To: linux-gpio@vger.kernel.org
Link: https://lore.kernel.org/r/20220415215410.498349-1-marex@denx.de
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
The first valid item of pin-function table should
start from the third item. The first two items,
due to historical and compatible reasons, should
be dummy items.
The two dummy items were removed accidentally in
initial submission. This fix adds them back.
Signed-off-by: Wells Lu <wellslutw@gmail.com>
Link: https://lore.kernel.org/r/1650015688-19774-1-git-send-email-wellslutw@gmail.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Currently, we use btrfs_inode_{lock,unlock}() to grant an exclusive
writeback of the relocation data inode in
btrfs_zoned_data_reloc_{lock,unlock}(). However, that can cause a deadlock
in the following path.
Thread A takes btrfs_inode_lock() and waits for metadata reservation by
e.g, waiting for writeback:
prealloc_file_extent_cluster()
- btrfs_inode_lock(&inode->vfs_inode, 0);
- btrfs_prealloc_file_range()
...
- btrfs_replace_file_extents()
- btrfs_start_transaction
...
- btrfs_reserve_metadata_bytes()
Thread B (e.g, doing a writeback work) needs to wait for the inode lock to
continue writeback process:
do_writepages
- btrfs_writepages
- extent_writpages
- btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
- btrfs_inode_lock()
The deadlock is caused by relying on the vfs_inode's lock. By using it, we
introduced unnecessary exclusion of writeback and
btrfs_prealloc_file_range(). Also, the lock at this point is useless as we
don't have any dirty pages in the inode yet.
Introduce fs_info->zoned_data_reloc_io_lock and use it for the exclusive
writeback.
Fixes: 35156d852762 ("btrfs: zoned: only allow one process to add pages to a relocation inode")
CC: stable@vger.kernel.org # 5.16.x: 869f4cdc73f9: btrfs: zoned: encapsulate inode locking for zoned relocation
CC: stable@vger.kernel.org # 5.16.x
CC: stable@vger.kernel.org # 5.17
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During a scrub, or device replace, we can race with block group removal
and allocation and trigger the following assertion failure:
[7526.385524] assertion failed: cache->start == chunk_offset, in fs/btrfs/scrub.c:3817
[7526.387351] ------------[ cut here ]------------
[7526.387373] kernel BUG at fs/btrfs/ctree.h:3599!
[7526.388001] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[7526.388970] CPU: 2 PID: 1158150 Comm: btrfs Not tainted 5.17.0-rc8-btrfs-next-114 #4
[7526.390279] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[7526.392430] RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs]
[7526.393520] Code: f3 48 c7 c7 20 (...)
[7526.396926] RSP: 0018:ffffb9154176bc40 EFLAGS: 00010246
[7526.397690] RAX: 0000000000000048 RBX: ffffa0db8a910000 RCX: 0000000000000000
[7526.398732] RDX: 0000000000000000 RSI: ffffffff9d7239a2 RDI: 00000000ffffffff
[7526.399766] RBP: ffffa0db8a911e10 R08: ffffffffa71a3ca0 R09: 0000000000000001
[7526.400793] R10: 0000000000000001 R11: 0000000000000000 R12: ffffa0db4b170800
[7526.401839] R13: 00000003494b0000 R14: ffffa0db7c55b488 R15: ffffa0db8b19a000
[7526.402874] FS: 00007f6c99c40640(0000) GS:ffffa0de6d200000(0000) knlGS:0000000000000000
[7526.404038] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[7526.405040] CR2: 00007f31b0882160 CR3: 000000014b38c004 CR4: 0000000000370ee0
[7526.406112] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[7526.407148] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[7526.408169] Call Trace:
[7526.408529] <TASK>
[7526.408839] scrub_enumerate_chunks.cold+0x11/0x79 [btrfs]
[7526.409690] ? do_wait_intr_irq+0xb0/0xb0
[7526.410276] btrfs_scrub_dev+0x226/0x620 [btrfs]
[7526.410995] ? preempt_count_add+0x49/0xa0
[7526.411592] btrfs_ioctl+0x1ab5/0x36d0 [btrfs]
[7526.412278] ? __fget_files+0xc9/0x1b0
[7526.412825] ? kvm_sched_clock_read+0x14/0x40
[7526.413459] ? lock_release+0x155/0x4a0
[7526.414022] ? __x64_sys_ioctl+0x83/0xb0
[7526.414601] __x64_sys_ioctl+0x83/0xb0
[7526.415150] do_syscall_64+0x3b/0xc0
[7526.415675] entry_SYSCALL_64_after_hwframe+0x44/0xae
[7526.416408] RIP: 0033:0x7f6c99d34397
[7526.416931] Code: 3c 1c e8 1c ff (...)
[7526.419641] RSP: 002b:00007f6c99c3fca8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[7526.420735] RAX: ffffffffffffffda RBX: 00005624e1e007b0 RCX: 00007f6c99d34397
[7526.421779] RDX: 00005624e1e007b0 RSI: 00000000c400941b RDI: 0000000000000003
[7526.422820] RBP: 0000000000000000 R08: 00007f6c99c40640 R09: 0000000000000000
[7526.423906] R10: 00007f6c99c40640 R11: 0000000000000246 R12: 00007fff746755de
[7526.424924] R13: 00007fff746755df R14: 0000000000000000 R15: 00007f6c99c40640
[7526.425950] </TASK>
That assertion is relatively new, introduced with commit d04fbe19aefd2
("btrfs: scrub: cleanup the argument list of scrub_chunk()").
The block group we get at scrub_enumerate_chunks() can actually have a
start address that is smaller then the chunk offset we extracted from a
device extent item we got from the commit root of the device tree.
This is very rare, but it can happen due to a race with block group
removal and allocation. For example, the following steps show how this
can happen:
1) We are at transaction T, and we have the following blocks groups,
sorted by their logical start address:
[ bg A, start address A, length 1G (data) ]
[ bg B, start address B, length 1G (data) ]
(...)
[ bg W, start address W, length 1G (data) ]
--> logical address space hole of 256M,
there used to be a 256M metadata block group here
[ bg Y, start address Y, length 256M (metadata) ]
--> Y matches W's end offset + 256M
Block group Y is the block group with the highest logical address in
the whole filesystem;
2) Block group Y is deleted and its extent mapping is removed by the call
to remove_extent_mapping() made from btrfs_remove_block_group().
So after this point, the last element of the mapping red black tree,
its rightmost node, is the mapping for block group W;
3) While still at transaction T, a new data block group is allocated,
with a length of 1G. When creating the block group we do a call to
find_next_chunk(), which returns the logical start address for the
new block group. This calls returns X, which corresponds to the
end offset of the last block group, the rightmost node in the mapping
red black tree (fs_info->mapping_tree), plus one.
So we get a new block group that starts at logical address X and with
a length of 1G. It spans over the whole logical range of the old block
group Y, that was previously removed in the same transaction.
However the device extent allocated to block group X is not the same
device extent that was used by block group Y, and it also does not
overlap that extent, which must be always the case because we allocate
extents by searching through the commit root of the device tree
(otherwise it could corrupt a filesystem after a power failure or
an unclean shutdown in general), so the extent allocator is behaving
as expected;
4) We have a task running scrub, currently at scrub_enumerate_chunks().
There it searches for device extent items in the device tree, using
its commit root. It finds a device extent item that was used by
block group Y, and it extracts the value Y from that item into the
local variable 'chunk_offset', using btrfs_dev_extent_chunk_offset();
It then calls btrfs_lookup_block_group() to find block group for
the logical address Y - since there's currently no block group that
starts at that logical address, it returns block group X, because
its range contains Y.
This results in triggering the assertion:
ASSERT(cache->start == chunk_offset);
right before calling scrub_chunk(), as cache->start is X and
chunk_offset is Y.
This is more likely to happen of filesystems not larger than 50G, because
for these filesystems we use a 256M size for metadata block groups and
a 1G size for data block groups, while for filesystems larger than 50G,
we use a 1G size for both data and metadata block groups (except for
zoned filesystems). It could also happen on any filesystem size due to
the fact that system block groups are always smaller (32M) than both
data and metadata block groups, but these are not frequently deleted, so
much less likely to trigger the race.
So make scrub skip any block group with a start offset that is less than
the value we expect, as that means it's a new block group that was created
in the current transaction. It's pointless to continue and try to scrub
its extents, because scrub searches for extents using the commit root, so
it won't find any. For a device replace, skip it as well for the same
reasons, and we don't need to worry about the possibility of extents of
the new block group not being to the new device, because we have the write
duplication setup done through btrfs_map_block().
Fixes: d04fbe19aefd ("btrfs: scrub: cleanup the argument list of scrub_chunk()")
CC: stable@vger.kernel.org # 5.17
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The "read_bhrb" global symbol is only called under CONFIG_PPC64 of
arch/powerpc/perf/core-book3s.c but it is compiled for both 32 and 64 bit
anyway (and LLVM fails to link this on 32bit).
This fixes it by moving bhrb.o to obj64 targets.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220421025756.571995-1-aik@ozlabs.ru
When scheduling a group of events, there are constraint checks done to
make sure all events can go in a group. Example, one of the criteria is
that events in a group cannot use the same PMC. But platform specific
PMU supports alternative event for some of the event codes. During
perf_event_open(), if any event group doesn't match constraint check
criteria, further lookup is done to find alternative event.
By current design, the array of alternatives events in PMU code is
expected to be sorted by column 0. This is because in
find_alternative() the return criteria is based on event code
comparison. ie. "event < ev_alt[i][0])". This optimisation is there
since find_alternative() can be called multiple times. In power10 PMU
code, the alternative event array is not sorted properly and hence there
is breakage in finding alternative event.
To work with existing logic, fix the alternative event array to be
sorted by column 0 for power10-pmu.c
Results:
In case where an alternative event is not chosen when we could, events
will be multiplexed. ie, time sliced where it could actually run
concurrently.
Example, in power10 PM_INST_CMPL_ALT(0x00002) has alternative event,
PM_INST_CMPL(0x500fa). Without the fix, if a group of events with PMC1
to PMC4 is used along with PM_INST_CMPL_ALT, it will be time sliced
since all programmable PMC's are consumed already. But with the fix,
when it picks alternative event on PMC5, all events will run
concurrently.
Before:
# perf stat -e r00002,r100fc,r200fa,r300fc,r400fc
Performance counter stats for 'system wide':
328668935 r00002 (79.94%)
56501024 r100fc (79.95%)
49564238 r200fa (79.95%)
376 r300fc (80.19%)
660 r400fc (79.97%)
4.039150522 seconds time elapsed
With the fix, since alternative event is chosen to run on PMC6, events
will be run concurrently.
After:
# perf stat -e r00002,r100fc,r200fa,r300fc,r400fc
Performance counter stats for 'system wide':
23596607 r00002
4907738 r100fc
2283608 r200fa
135 r300fc
248 r400fc
1.664671390 seconds time elapsed
Fixes: a64e697cef23 ("powerpc/perf: power10 Performance Monitoring support")
Signed-off-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220419114828.89843-2-atrajeev@linux.vnet.ibm.com
When scheduling a group of events, there are constraint checks done to
make sure all events can go in a group. Example, one of the criteria is
that events in a group cannot use the same PMC. But platform specific
PMU supports alternative event for some of the event codes. During
perf_event_open(), if any event group doesn't match constraint check
criteria, further lookup is done to find alternative event.
By current design, the array of alternatives events in PMU code is
expected to be sorted by column 0. This is because in
find_alternative() the return criteria is based on event code
comparison. ie. "event < ev_alt[i][0])". This optimisation is there
since find_alternative() can be called multiple times. In power9 PMU
code, the alternative event array is not sorted properly and hence there
is breakage in finding alternative events.
To work with existing logic, fix the alternative event array to be
sorted by column 0 for power9-pmu.c
Results:
With alternative events, multiplexing can be avoided. That is, for
example, in power9 PM_LD_MISS_L1 (0x3e054) has alternative event,
PM_LD_MISS_L1_ALT (0x400f0). This is an identical event which can be
programmed in a different PMC.
Before:
# perf stat -e r3e054,r300fc
Performance counter stats for 'system wide':
1057860 r3e054 (50.21%)
379 r300fc (49.79%)
0.944329741 seconds time elapsed
Since both the events are using PMC3 in this case, they are
multiplexed here.
After:
# perf stat -e r3e054,r300fc
Performance counter stats for 'system wide':
1006948 r3e054
182 r300fc
Fixes: 91e0bd1e6251 ("powerpc/perf: Add PM_LD_MISS_L1 and PM_BR_2PATH to power9 event list")
Signed-off-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220419114828.89843-1-atrajeev@linux.vnet.ibm.com
This reverts commit 461fa7b0ac565ef25c1da0ced31005dd437883a7.
We are missing some inter dependencies here so re-introduce the lock
until we have figured out what's missing. Just drop/retake it while
adding dependencies.
v2: still drop the lock while adding dependencies
Signed-off-by: Christian König <christian.koenig@amd.com>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com> (v1)
Fixes: 461fa7b0ac56 ("drm/amdgpu: remove ctx->lock")
Acked-by: Alex Deucher <alexander.deucher@amd.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20220419110633.166236-1-christian.koenig@amd.com