The char and flag buffer local alias pointers, p and f, are
unnecessary; remove them.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In canonical mode, an EOF which is not the first character of the line
causes read() to complete and return the number of characters read so
far (commonly referred to as EOF push). However, if the previous read()
returned because the user buffer was full _and_ the next character
is an EOF not at the beginning of the line, read() must not return 0,
thus mistakenly indicating the end-of-file condition.
The TTY_PUSH flag is used to indicate an EOF was received which is not
at the beginning of the line. Because the EOF push condition is
evaluated by a thread other than the read(), multiple EOF pushes can
cause a premature end-of-file to be indicated.
Instead, discover the 'EOF push as first read character' condition
from the read() thread itself, and restart the i/o loop if detected.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Separate the head & commit indices from the tail index to avoid
cache-line contention (so called 'false-sharing') between concurrent
threads.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Since neither echo_commit nor echo_tail can change for the duration
of __process_echoes loop, substitute index comparison for the
snapshot counter.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Don't have the driver flush received echoes if no echoes were
actually output.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Byte-by-byte echo output is painfully slow, requiring a lock/unlock
cycle for every input byte.
Instead, perform the echo output in blocks of 256 characters, and
at least once per flip buffer receive. Enough space is reserved in
the echo buffer to guarantee a full block can be saved without
overrunning the echo output. Overrun is prevented by discarding
the oldest echoes until enough space exists in the echo buffer
to receive at least a full block of new echoes.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Use output_lock mutex as a memory barrier when storing echo_commit.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Adding data to echo_buf (via add_echo_byte()) is guaranteed to be
single-threaded, since all callers are from the n_tty_receive_buf()
path. Processing the echo_buf can be called from either the
n_tty_receive_buf() path or the n_tty_write() path; however, these
callers are already serialized by output_lock.
Publish cumulative echo_head changes to echo_commit; process echo_buf
from echo_tail to echo_commit; remove echo_lock.
On echo_buf overrun, claim output_lock to serialize changes to
echo_tail.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Prepare for lockless echo_buf handling; compute current byte count
of echo_buf from head and tail indices.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Instead of using a single index to track the current echo_buf position,
use a head index when adding to the buffer and a tail index when
consuming from the buffer. Allow these head and tail indices to wrap
at max representable value; perform modulo reduction via helper
functions when accessing the buffer.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The echo_overrun field is only assigned and never tested; remove it.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Scheduling buffer work on the same cpu as the read() thread
limits the parallelism now possible between the receive_buf path
and the n_tty_read() path.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The pty driver forces ldisc flow control on, regardless of available
receive buffer space, so the writer can be woken whenever unthrottle
is called. However, this 'forced throttle' has performance
consequences, as multiple atomic operations are necessary to
unthrottle and perform the write wakeup for every input line (in
canonical mode).
Instead, short-circuit the unthrottle if the tty is a pty and perform
the write wakeup directly.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Prepare to special case pty flow control; avoid forward declaration.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Prepare for special handling of pty throttle/unthrottle; factor
flow control into helper functions.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Prepare to factor throttle and unthrottle into helper functions;
relocate chars_in_buffer() to avoid forward declaration.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
No tty driver modifies termios during throttle() or unthrottle().
Therefore, only read safety is required.
However, tty_throttle_safe and tty_unthrottle_safe must still be
mutually exclusive; introduce throttle_mutex for that purpose.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If the read buffer indices are in the same cache-line, cpus will
contended over the cache-line (so called 'false sharing').
Separate the producer-published fields from the consumer-published
fields; document the locks relevant to each field.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
User-space read() can run concurrently with receiving from device;
waiting for receive_buf() to complete is not required.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
lnext escapes the next input character as a literal, and must
be reset when canonical mode changes (to avoid misinterpreting
a special character as a literal if canonical mode is changed
back again).
lnext is specifically not reset on a buffer flush so as to avoid
misinterpreting the next input character as a special character.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
n_tty has a single-producer/single-consumer input model;
use lockless publish instead.
Use termios_rwsem to exclude both consumer and producer while
changing or resetting buffer indices, eg., when flushing. Also,
claim exclusive termios_rwsem to safely retrieve the buffer
indices from a thread other than consumer or producer
(eg., TIOCINQ ioctl).
Note the read_tail is published _after_ clearing the newline
indicator in read_flags to avoid racing the producer.
Drop read_lock spinlock.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
canon_data represented the # of lines which had been copied
to the receive buffer but not yet copied to the user buffer.
The value was tested to determine if input was available in
canonical mode (and also to force input overrun if the
receive buffer was full but a newline had not been received).
However, the actual count was irrelevent; only whether it was
non-zero (meaning 'is there any input to transfer?'). This
shared count is unnecessary and unsafe with a lockless algorithm.
The same check is made by comparing canon_head with read_tail instead.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Use termios_rwsem to guarantee safe access to the termios values.
This is particularly important for N_TTY as changing certain termios
settings alters the mode of operation.
termios_rwsem must be dropped across throttle/unthrottle since
those functions claim the termios_rwsem exclusively (to guarantee
safe access to the termios and for mutual exclusion).
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Storing the read_cnt creates an unnecessary shared variable
between the single-producer (n_tty_receive_buf()) and the
single-consumer (n_tty_read()).
Compute read_cnt from head & tail instead of storing.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Wrap read_buf indices (read_head, read_tail, canon_head) at
max representable value, instead of at the N_TTY_BUF_SIZE. This step
is necessary to allow lockless reads of these shared variables
(by updating the variables atomically).
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Prepare for replacing read_cnt field with computed value.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
N_TTY .chars_in_buffer() method requires serialized access if
the current thread is not the single-consumer, n_tty_read().
Separate the internal interface; prepare for lockless read-side.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Instead of pushing one char per loop, pre-compute the data length
to copy and copy all at once.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Although line discipline receiving is single-producer/single-consumer,
using tty->receive_room to manage flow control creates unnecessary
critical regions requiring additional lock use.
Instead, introduce the optional .receive_buf2() ldisc method which
returns the # of bytes actually received. Serialization is guaranteed
by the caller.
In turn, the line discipline should schedule the buffer work item
whenever space becomes available; ie., when there is room to receive
data and receive_room() previously returned 0 (the buffer work
item stops processing if receive_buf2() returns 0). Note the
'no room' state need not be atomic despite concurrent use by two
threads because only the buffer work thread can set the state and
only the read() thread can clear the state.
Add n_tty_receive_buf2() as the receive_buf2() method for N_TTY.
Provide a public helper function, tty_ldisc_receive_buf(), to use
when directly accessing the receive_buf() methods.
Line disciplines not using input flow control can continue to set
tty->receive_room to a fixed value and only provide the receive_buf()
method.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Although the driver-side input path must update the available
buffer space, it should not reschedule itself. If space is still
available and the flip buffers are not empty, flush_to_ldisc()
will loop again.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
receive_room is used to control the amount of data the flip
buffer work can push to the read buffer. This update is unsafe:
CPU 0 | CPU 1
|
| n_tty_read()
| n_tty_set_room()
| left = <calc of space>
n_tty_receive_buf() |
<push data to buffer> |
n_tty_set_room() |
left = <calc of space> |
tty->receive_room = left |
| tty->receive_room = left
receive_room is now updated with a stale calculation of the
available buffer space, and the subsequent work loop will likely
overwrite unread data in the input buffer.
Update receive_room atomically with the calculation of the
available buffer space.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
minimum_to_wake is unique to N_TTY processing, and belongs in
per-ldisc data.
Add the ldisc method, ldisc_ops::fasync(), to notify line disciplines
when signal-driven I/O is enabled or disabled. When enabled for N_TTY
(by fcntl(F_SETFL, O_ASYNC)), blocking reader/polls will be woken
for any readable input. When disabled, blocking reader/polls are not
woken until the read buffer is full.
Canonical mode (L_ICANON(tty), n_tty_data::icanon) is not affected by
the minimum_to_wake setting.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
I meet emacs hang in start if I do the operation below:
1: echo 3 > /proc/sys/vm/drop_caches
2: emacs BigFile
3: Press CTRL-S follow 2 immediately
Then emacs hang on, CTRL-Q can't resume, the terminal
hang on, you can do nothing with this terminal except
close it.
The reason is before emacs takeover control the tty,
we use CTRL-S to XOFF it. Then when emacs takeover the
control, it may don't use the flow-control, so emacs hang.
This patch fix it.
This patch will fix a kind of strange tty relation hang problem,
I believe I meet it with vim in ssh, and also see below bug report:
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=465823
Signed-off-by: Wang YanQing <udknight@gmail.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The driver is no longer unthrottled on buffer reset, so remove
comments that claim it is.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Factor the packet mode status change from n_tty_flush_buffer
for use by follow-on patch.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Flip buffer work must not be scheduled by the line discipline
after the line discipline has been halted; issue warning.
Note: drivers can still schedule flip buffer work.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Concurrent access to tty->pgrp must be protected with tty->ctrl_lock.
Also, as noted in the comments, reading current->signal->tty is
safe because either,
1) current->signal->tty is assigned by current, or
2) current->signal->tty is set to NULL.
NB: for reference, tty_check_change() implements a similar POSIX
check for the ioctls corresponding to tcflush(), tcdrain(),
tcsetattr(), tcsetpgrp(), tcflow() and tcsendbreak().
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
An ldisc reference is insufficient guarantee the foreground process
group is not in the process of being signalled from a hangup.
1) Reads of tty->pgrp must be locked with ctrl_lock
2) The group pid must be referenced for the duration of signalling.
Because the driver-side is not process-context, a pid reference
must be acquired.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>