In sched_ext API, a repeatedly reported pain point is the overuse of the
verb "dispatch" and confusion around "consume":
- ops.dispatch()
- scx_bpf_dispatch[_vtime]()
- scx_bpf_consume()
- scx_bpf_dispatch[_vtime]_from_dsq*()
This overloading of the term is historical. Originally, there were only
built-in DSQs and moving a task into a DSQ always dispatched it for
execution. Using the verb "dispatch" for the kfuncs to move tasks into these
DSQs made sense.
Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be
able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was
from a non-local DSQ to a local DSQ and this operation was named "consume".
This was already confusing as a task could be dispatched to a user DSQ from
ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch().
Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse
as "dispatch" in this context meant moving a task to an arbitrary DSQ from a
user DSQ.
Clean up the API with the following renames:
1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]()
2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local()
3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*()
This patch performs the second rename. Compatibility is maintained by:
- The previous kfunc names are still provided by the kernel so that old
binaries can run. Kernel generates a warning when the old names are used.
- compat.bpf.h provides wrappers for the new names which automatically fall
back to the old names when running on older kernels. They also trigger
build error if old names are used for new builds.
The compat features will be dropped after v6.15.
v2: Comment and documentation updates.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Andrea Righi <arighi@nvidia.com>
Acked-by: Changwoo Min <changwoo@igalia.com>
Acked-by: Johannes Bechberger <me@mostlynerdless.de>
Acked-by: Giovanni Gherdovich <ggherdovich@suse.com>
Cc: Dan Schatzberg <dschatzberg@meta.com>
Cc: Ming Yang <yougmark94@gmail.com>
In sched_ext API, a repeatedly reported pain point is the overuse of the
verb "dispatch" and confusion around "consume":
- ops.dispatch()
- scx_bpf_dispatch[_vtime]()
- scx_bpf_consume()
- scx_bpf_dispatch[_vtime]_from_dsq*()
This overloading of the term is historical. Originally, there were only
built-in DSQs and moving a task into a DSQ always dispatched it for
execution. Using the verb "dispatch" for the kfuncs to move tasks into these
DSQs made sense.
Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be
able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was
from a non-local DSQ to a local DSQ and this operation was named "consume".
This was already confusing as a task could be dispatched to a user DSQ from
ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch().
Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse
as "dispatch" in this context meant moving a task to an arbitrary DSQ from a
user DSQ.
Clean up the API with the following renames:
1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]()
2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local()
3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*()
This patch performs the first set of renames. Compatibility is maintained
by:
- The previous kfunc names are still provided by the kernel so that old
binaries can run. Kernel generates a warning when the old names are used.
- compat.bpf.h provides wrappers for the new names which automatically fall
back to the old names when running on older kernels. They also trigger
build error if old names are used for new builds.
The compat features will be dropped after v6.15.
v2: Documentation updates.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Andrea Righi <arighi@nvidia.com>
Acked-by: Changwoo Min <changwoo@igalia.com>
Acked-by: Johannes Bechberger <me@mostlynerdless.de>
Acked-by: Giovanni Gherdovich <ggherdovich@suse.com>
Cc: Dan Schatzberg <dschatzberg@meta.com>
Cc: Ming Yang <yougmark94@gmail.com>
scx_flatcg was using SCX_DSQ_GLOBAL for fallback handling. However, it is
assuming that SCX_DSQ_GLOBAL isn't automatically consumed, which was true a
while ago but is no longer the case. Also, there are further changes planned
for SCX_DSQ_GLOBAL which will disallow explicit consumption from it. Switch
to a user DSQ for fallback.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Receive misc tools/sched_ext updates from https://github.com/sched-ext/scx
to sync userspace bits.
- LSP macros to help language servers.
- bpf_cpumask_weight() declaration and cast_mask() helper.
- Cosmetic updates to scx_flatcg.bpf.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup support and scx_bpf_dispatch[_vtime]_from_dsq() are newly added since
8bb30798fd ("sched_ext: Fixes incorrect type in bpf_scx_init()") which is
the current earliest commit targeted by BPF schedulers. Add compat helpers
for them and apply them in the example schedulers.
These will be dropped after a few kernel releases. The exact backward
compatibility window hasn't been decided yet.
Signed-off-by: Tejun Heo <tj@kernel.org>
This patch adds scx_flatcg example scheduler which implements hierarchical
weight-based cgroup CPU control by flattening the cgroup hierarchy into a
single layer by compounding the active weight share at each level.
This flattening of hierarchy can bring a substantial performance gain when
the cgroup hierarchy is nested multiple levels. in a simple benchmark using
wrk[8] on apache serving a CGI script calculating sha1sum of a small file,
it outperforms CFS by ~3% with CPU controller disabled and by ~10% with two
apache instances competing with 2:1 weight ratio nested four level deep.
However, the gain comes at the cost of not being able to properly handle
thundering herd of cgroups. For example, if many cgroups which are nested
behind a low priority parent cgroup wake up around the same time, they may
be able to consume more CPU cycles than they are entitled to. In many use
cases, this isn't a real concern especially given the performance gain.
Also, there are ways to mitigate the problem further by e.g. introducing an
extra scheduling layer on cgroup delegation boundaries.
v5: - Updated to specify SCX_OPS_HAS_CGROUP_WEIGHT instead of
SCX_OPS_KNOB_CGROUP_WEIGHT.
v4: - Revert reference counted kptr for cgv_node as the change caused easily
reproducible stalls.
v3: - Updated to reflect the core API changes including ops.init/exit_task()
and direct dispatch from ops.select_cpu(). Fixes and improvements
including additional statistics.
- Use reference counted kptr for cgv_node instead of xchg'ing against
stash location.
- Dropped '-p' option.
v2: - Use SCX_BUG[_ON]() to simplify error handling.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>