mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-16 05:26:07 +00:00
281 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Josef Bacik
|
61085a4945 |
btrfs: remove detached list from struct btrfs_backref_cache
We don't ever look at this list, remove it. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
8884eed0d6 |
btrfs: remove the ->lowest and ->leaves members from struct btrfs_backref_node
Before we were keeping all of our nodes on various lists in order to make sure everything got cleaned up correctly. We used node->lowest to indicate that node->lower was linked into the cache->leaves list. Now that we do cleanup based on the rb-tree both the list and the flag are useless, so delete them both. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
fcd5ae9c8d |
btrfs: simplify btrfs_backref_release_cache()
We rely on finding all our nodes on the various lists in the backref cache, when they are all also in the rbtree. Instead just search through the rbtree and free everything. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
fb5842acc2 |
btrfs: do not handle non-shareable roots in backref cache
Now that we handle relocation for non-shareable roots without using the backref cache, remove the ->cowonly field from the backref nodes and update the handling to throw an error. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
c5c3f18458 |
btrfs: remove the changed list for backref cache
Now that we're not updating the backref cache when we switch transids we can remove the changed list. We're going to keep the new_bytenr field because it serves as a good sanity check for the backref cache and relocation, and can prevent us from making extent tree corruption worse. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
765f828902 |
btrfs: pass fs_info to functions that search for delayed ref heads
One of the following patches in the series will need to access fs_info in the function find_ref_head(), so pass a fs_info argument to it as well as to the functions btrfs_select_ref_head() and btrfs_find_delayed_ref_head() which call find_ref_head(). Reviewed-by: Boris Burkov <boris@bur.io> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
db7e68b522 |
btrfs: drop the backref cache during relocation if we commit
Since the inception of relocation we have maintained the backref cache across transaction commits, updating the backref cache with the new bytenr whenever we COWed blocks that were in the cache, and then updating their bytenr once we detected a transaction id change. This works as long as we're only ever modifying blocks, not changing the structure of the tree. However relocation does in fact change the structure of the tree. For example, if we are relocating a data extent, we will look up all the leaves that point to this data extent. We will then call do_relocation() on each of these leaves, which will COW down to the leaf and then update the file extent location. But, a key feature of do_relocation() is the pending list. This is all the pending nodes that we modified when we updated the file extent item. We will then process all of these blocks via finish_pending_nodes, which calls do_relocation() on all of the nodes that led up to that leaf. The purpose of this is to make sure we don't break sharing unless we absolutely have to. Consider the case that we have 3 snapshots that all point to this leaf through the same nodes, the initial COW would have created a whole new path. If we did this for all 3 snapshots we would end up with 3x the number of nodes we had originally. To avoid this we will cycle through each of the snapshots that point to each of these nodes and update their pointers to point at the new nodes. Once we update the pointer to the new node we will drop the node we removed the link for and all of its children via btrfs_drop_subtree(). This is essentially just btrfs_drop_snapshot(), but for an arbitrary point in the snapshot. The problem with this is that we will never reflect this in the backref cache. If we do this btrfs_drop_snapshot() for a node that is in the backref tree, we will leave the node in the backref tree. This becomes a problem when we change the transid, as now the backref cache has entire subtrees that no longer exist, but exist as if they still are pointed to by the same roots. In the best case scenario you end up with "adding refs to an existing tree ref" errors from insert_inline_extent_backref(), where we attempt to link in nodes on roots that are no longer valid. Worst case you will double free some random block and re-use it when there's still references to the block. This is extremely subtle, and the consequences are quite bad. There isn't a way to make sure our backref cache is consistent between transid's. In order to fix this we need to simply evict the entire backref cache anytime we cross transid's. This reduces performance in that we have to rebuild this backref cache every time we change transid's, but fixes the bug. This has existed since relocation was added, and is a pretty critical bug. There's a lot more cleanup that can be done now that this functionality is going away, but this patch is as small as possible in order to fix the problem and make it easy for us to backport it to all the kernels it needs to be backported to. Followup series will dismantle more of this code and simplify relocation drastically to remove this functionality. We have a reproducer that reproduced the corruption within a few minutes of running. With this patch it survives several iterations/hours of running the reproducer. Fixes: 3fd0a5585eb9 ("Btrfs: Metadata ENOSPC handling for balance") CC: stable@vger.kernel.org Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
ca283ea992 |
btrfs: constify more pointer parameters
Continue adding const to parameters. This is for clarity and minor addition to safety. There are some minor effects, in the assembly code and .ko measured on release config. Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
e094f48040 |
btrfs: change root->root_key.objectid to btrfs_root_id()
A comment from Filipe on one of my previous cleanups brought my attention to a new helper we have for getting the root id of a root, which makes it easier to read in the code. The changes where made with the following Coccinelle semantic patch: // <smpl> @@ expression E,E1; @@ ( E->root_key.objectid = E1 | - E->root_key.objectid + btrfs_root_id(E) ) // </smpl> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor style fixups ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
efc7d5dbf8 |
btrfs: stop referencing btrfs_delayed_tree_ref directly
We only ever need to use this to get the level of the tree block ref, so use the btrfs_delayed_ref_owner() helper, which returns the level for the given reference. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
44cc2e38e6 |
btrfs: stop referencing btrfs_delayed_data_ref directly
Now that most of our elements are inside of btrfs_delayed_ref_node directly and we have helpers for the delayed_data_ref bits, go ahead and remove all direct usage of btrfs_delayed_data_ref and use the helpers where needed. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
cf4f04325b |
btrfs: move ->parent and ->ref_root into btrfs_delayed_ref_node
These two members are shared by both the tree refs and data refs, so move them into btrfs_delayed_ref_node proper. This allows us to greatly simplify the comparison code, as the shared refs always only sort on parent, and the non shared refs always sort first on ref_root, and then only data refs sort on their specific fields. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Johannes Thumshirn
|
2f7ef5bb4a |
btrfs: fix information leak in btrfs_ioctl_logical_to_ino()
Syzbot reported the following information leak for in btrfs_ioctl_logical_to_ino(): BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline] BUG: KMSAN: kernel-infoleak in _copy_to_user+0xbc/0x110 lib/usercopy.c:40 instrument_copy_to_user include/linux/instrumented.h:114 [inline] _copy_to_user+0xbc/0x110 lib/usercopy.c:40 copy_to_user include/linux/uaccess.h:191 [inline] btrfs_ioctl_logical_to_ino+0x440/0x750 fs/btrfs/ioctl.c:3499 btrfs_ioctl+0x714/0x1260 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:904 [inline] __se_sys_ioctl+0x261/0x450 fs/ioctl.c:890 __x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890 x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: __kmalloc_large_node+0x231/0x370 mm/slub.c:3921 __do_kmalloc_node mm/slub.c:3954 [inline] __kmalloc_node+0xb07/0x1060 mm/slub.c:3973 kmalloc_node include/linux/slab.h:648 [inline] kvmalloc_node+0xc0/0x2d0 mm/util.c:634 kvmalloc include/linux/slab.h:766 [inline] init_data_container+0x49/0x1e0 fs/btrfs/backref.c:2779 btrfs_ioctl_logical_to_ino+0x17c/0x750 fs/btrfs/ioctl.c:3480 btrfs_ioctl+0x714/0x1260 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:904 [inline] __se_sys_ioctl+0x261/0x450 fs/ioctl.c:890 __x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890 x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Bytes 40-65535 of 65536 are uninitialized Memory access of size 65536 starts at ffff888045a40000 This happens, because we're copying a 'struct btrfs_data_container' back to user-space. This btrfs_data_container is allocated in 'init_data_container()' via kvmalloc(), which does not zero-fill the memory. Fix this by using kvzalloc() which zeroes out the memory on allocation. CC: stable@vger.kernel.org # 4.14+ Reported-by: <syzbot+510a1abbb8116eeb341d@syzkaller.appspotmail.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Johannes Thumshirn <Johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Chengming Zhou
|
ef5a05c557 |
btrfs: remove SLAB_MEM_SPREAD flag use
The SLAB_MEM_SPREAD flag used to be implemented in SLAB, which was removed as of v6.8-rc1, so it became a dead flag since the commit 16a1d968358a ("mm/slab: remove mm/slab.c and slab_def.h"). And the series[1] went on to mark it obsolete to avoid confusion for users. Here we can just remove all its users, which has no functional change. [1] https://lore.kernel.org/all/20240223-slab-cleanup-flags-v2-1-02f1753e8303@suse.cz/ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
2aa756ec49 |
btrfs: uninline some static inline helpers from backref.h
There are many helpers doing simple things but not simple enough to justify the static inline. None of them seems to be on a hot path so move them to .c. Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
ef923440e2 |
btrfs: open code btrfs_backref_get_eb()
The helper is trivial, we can inline it. It's safe to remove the 'if' as the iterator is always valid when used, the potential NULL was never checked anyway. Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
bfe8a0ccbb |
btrfs: delete pointless BUG_ONs on extent item size
Checking extent item size in add_inline_refs() is redundant, we do that already in tree-checker after reading the extent buffer and it won't change under normal circumstances. It was added long ago in 8da6d5815c592b ("Btrfs: added btrfs_find_all_roots()") and does not seem to have a clear purpose. Similar case in extent_from_logical(), added in a542ad1bafc7df ("btrfs: added helper functions to iterate backrefs"). Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
11dcc86eba |
btrfs: handle invalid extent item reference found in extent_from_logical()
The extent_from_logical() helper looks up an extent item by a key, allowing to do an inexact search when key->offset is -1. It's never expected to find such item, as it would break the allowed range of a extent item offset. The same error is already handled in btrfs_backref_iter_start() so add a comment for consistency. Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
5b9579893a |
btrfs: update comment and drop assertion in extent item lookup in find_parent_nodes()
Same comment was added to this type of error, unify that and drop the assertion as we'd find out quickly that something is wrong after returning -EUCLEAN. Signed-off-by: David Sterba <dsterba@suse.com> |
||
Linus Torvalds
|
d5acbc60fa |
for-6.7-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmU/xAEACgkQxWXV+ddt WDvYKg//SjTimA5Nins9mb4jdz8n+dDeZnQhKzy3FqInU41EzDRc4WwnEODmDlTa AyU9rGB3k0JNSUc075jZFCyLqq/ARiOqRi4x33Gk0ckIlc4X5OgBoqP2XkPh0VlP txskLCrmhc3pwyR4ErlFDX2jebIUXfkv39bJuE40grGvUatRe+WNq0ERIrgO8RAr Rc3hBotMH8AIqfD1L6j1ZiZIAyrOkT1BJMuqeoq27/gJZn/MRhM9TCrMTzfWGaoW SxPrQiCDEN3KECsOY/caroMn3AekDijg/ley1Nf7Z0N6oEV+n4VWWPBFE9HhRz83 9fIdvSbGjSJF6ekzTjcVXPAbcuKZFzeqOdBRMIW3TIUo7mZQyJTVkMsc1y/NL2Z3 9DhlRLIzvWJJjt1CEK0u18n5IU+dGngdktbhWWIuIlo8r+G/iKR/7zqU92VfWLHL Z7/eh6HgH5zr2bm+yKORbrUjkv4IVhGVarW8D4aM+MCG0lFN2GaPcJCCUrp4n7rZ PzpQbxXa38ANBk6hsp4ndS8TJSBL9moY8tumzLcKg97nzNMV6KpBdV/G6/QfRLCN 3kM6UbwTAkMwGcQS86Mqx6s04ORLnQeD6f7N6X4Ppx0Mi/zkjI2HkRuvQGp12B0v iZjCCZAYY2Iu+/TU0GrCXSss/grzIAUPzM9msyV3XGO/VBpwdec= =9TVx -----END PGP SIGNATURE----- Merge tag 'for-6.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "New features: - raid-stripe-tree New tree for logical file extent mapping where the physical mapping may not match on multiple devices. This is now used in zoned mode to implement RAID0/RAID1* profiles, but can be used in non-zoned mode as well. The support for RAID56 is in development and will eventually fix the problems with the current implementation. This is a backward incompatible feature and has to be enabled at mkfs time. - simple quota accounting (squota) A simplified mode of qgroup that accounts all space on the initial extent owners (a subvolume), the snapshots are then cheap to create and delete. The deletion of snapshots in fully accounting qgroups is a known CPU/IO performance bottleneck. The squota is not suitable for the general use case but works well for containers where the original subvolume exists for the whole time. This is a backward incompatible feature as it needs extending some structures, but can be enabled on an existing filesystem. - temporary filesystem fsid (temp_fsid) The fsid identifies a filesystem and is hard coded in the structures, which disallows mounting the same fsid found on different devices. For a single device filesystem this is not strictly necessary, a new temporary fsid can be generated on mount e.g. after a device is cloned. This will be used by Steam Deck for root partition A/B testing, or can be used for VM root images. Other user visible changes: - filesystems with partially finished metadata_uuid conversion cannot be mounted anymore and the uuid fixup has to be done by btrfs-progs (btrfstune). Performance improvements: - reduce reservations for checksum deletions (with enabled free space tree by factor of 4), on a sample workload on file with many extents the deletion time decreased by 12% - make extent state merges more efficient during insertions, reduce rb-tree iterations (run time of critical functions reduced by 5%) Core changes: - the integrity check functionality has been removed, this was a debugging feature and removal does not affect other integrity checks like checksums or tree-checker - space reservation changes: - more efficient delayed ref reservations, this avoids building up too much work or overusing or exhausting the global block reserve in some situations - move delayed refs reservation to the transaction start time, this prevents some ENOSPC corner cases related to exhaustion of global reserve - improvements in reducing excessive reservations for block group items - adjust overcommit logic in near full situations, account for one more chunk to eventually allocate metadata chunk, this is mostly relevant for small filesystems (<10GiB) - single device filesystems are scanned but not registered (except seed devices), this allows temp_fsid to work - qgroup iterations do not need GFP_ATOMIC allocations anymore - cleanups, refactoring, reduced data structure size, function parameter simplifications, error handling fixes" * tag 'for-6.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (156 commits) btrfs: open code timespec64 in struct btrfs_inode btrfs: remove redundant log root tree index assignment during log sync btrfs: remove redundant initialization of variable dirty in btrfs_update_time() btrfs: sysfs: show temp_fsid feature btrfs: disable the device add feature for temp-fsid btrfs: disable the seed feature for temp-fsid btrfs: update comment for temp-fsid, fsid, and metadata_uuid btrfs: remove pointless empty log context list check when syncing log btrfs: update comment for struct btrfs_inode::lock btrfs: remove pointless barrier from btrfs_sync_file() btrfs: add and use helpers for reading and writing last_trans_committed btrfs: add and use helpers for reading and writing fs_info->generation btrfs: add and use helpers for reading and writing log_transid btrfs: add and use helpers for reading and writing last_log_commit btrfs: support cloned-device mount capability btrfs: add helper function find_fsid_by_disk btrfs: stop reserving excessive space for block group item insertions btrfs: stop reserving excessive space for block group item updates btrfs: reorder btrfs_inode to fill gaps btrfs: open code btrfs_ordered_inode_tree in btrfs_inode ... |
||
Filipe Manana
|
eb96e22193 |
btrfs: fix unwritten extent buffer after snapshotting a new subvolume
When creating a snapshot of a subvolume that was created in the current transaction, we can end up not persisting a dirty extent buffer that is referenced by the snapshot, resulting in IO errors due to checksum failures when trying to read the extent buffer later from disk. A sequence of steps that leads to this is the following: 1) At ioctl.c:create_subvol() we allocate an extent buffer, with logical address 36007936, for the leaf/root of a new subvolume that has an ID of 291. We mark the extent buffer as dirty, and at this point the subvolume tree has a single node/leaf which is also its root (level 0); 2) We no longer commit the transaction used to create the subvolume at create_subvol(). We used to, but that was recently removed in commit 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create"); 3) The transaction used to create the subvolume has an ID of 33, so the extent buffer 36007936 has a generation of 33; 4) Several updates happen to subvolume 291 during transaction 33, several files created and its tree height changes from 0 to 1, so we end up with a new root at level 1 and the extent buffer 36007936 is now a leaf of that new root node, which is extent buffer 36048896. The commit root remains as 36007936, since we are still at transaction 33; 5) Creation of a snapshot of subvolume 291, with an ID of 292, starts at ioctl.c:create_snapshot(). This triggers a commit of transaction 33 and we end up at transaction.c:create_pending_snapshot(), in the critical section of a transaction commit. There we COW the root of subvolume 291, which is extent buffer 36048896. The COW operation returns extent buffer 36048896, since there's no need to COW because the extent buffer was created in this transaction and it was not written yet. The we call btrfs_copy_root() against the root node 36048896. During this operation we allocate a new extent buffer to turn into the root node of the snapshot, copy the contents of the root node 36048896 into this snapshot root extent buffer, set the owner to 292 (the ID of the snapshot), etc, and then we call btrfs_inc_ref(). This will create a delayed reference for each leaf pointed by the root node with a reference root of 292 - this includes a reference for the leaf 36007936. After that we set the bit BTRFS_ROOT_FORCE_COW in the root's state. Then we call btrfs_insert_dir_item(), to create the directory entry in in the tree of subvolume 291 that points to the snapshot. This ends up needing to modify leaf 36007936 to insert the respective directory items. Because the bit BTRFS_ROOT_FORCE_COW is set for the root's state, we need to COW the leaf. We end up at btrfs_force_cow_block() and then at update_ref_for_cow(). At update_ref_for_cow() we call btrfs_block_can_be_shared() which returns false, despite the fact the leaf 36007936 is shared - the subvolume's root and the snapshot's root point to that leaf. The reason that it incorrectly returns false is because the commit root of the subvolume is extent buffer 36007936 - it was the initial root of the subvolume when we created it. So btrfs_block_can_be_shared() which has the following logic: int btrfs_block_can_be_shared(struct btrfs_root *root, struct extent_buffer *buf) { if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && buf != root->node && buf != root->commit_root && (btrfs_header_generation(buf) <= btrfs_root_last_snapshot(&root->root_item) || btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) return 1; return 0; } Returns false (0) since 'buf' (extent buffer 36007936) matches the root's commit root. As a result, at update_ref_for_cow(), we don't check for the number of references for extent buffer 36007936, we just assume it's not shared and therefore that it has only 1 reference, so we set the local variable 'refs' to 1. Later on, in the final if-else statement at update_ref_for_cow(): static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *cow, int *last_ref) { (...) if (refs > 1) { (...) } else { (...) btrfs_clear_buffer_dirty(trans, buf); *last_ref = 1; } } So we mark the extent buffer 36007936 as not dirty, and as a result we don't write it to disk later in the transaction commit, despite the fact that the snapshot's root points to it. Attempting to access the leaf or dumping the tree for example shows that the extent buffer was not written: $ btrfs inspect-internal dump-tree -t 292 /dev/sdb btrfs-progs v6.2.2 file tree key (292 ROOT_ITEM 33) node 36110336 level 1 items 2 free space 119 generation 33 owner 292 node 36110336 flags 0x1(WRITTEN) backref revision 1 checksum stored a8103e3e checksum calced a8103e3e fs uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 chunk uuid e8c9c885-78f4-4d31-85fe-89e5f5fd4a07 key (256 INODE_ITEM 0) block 36007936 gen 33 key (257 EXTENT_DATA 0) block 36052992 gen 33 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 total bytes 107374182400 bytes used 38572032 uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 The respective on disk region is full of zeroes as the device was trimmed at mkfs time. Obviously 'btrfs check' also detects and complains about this: $ btrfs check /dev/sdb Opening filesystem to check... Checking filesystem on /dev/sdb UUID: 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 generation: 33 (33) [1/7] checking root items [2/7] checking extents checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 bad tree block 36007936, bytenr mismatch, want=36007936, have=0 owner ref check failed [36007936 4096] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space tree [4/7] checking fs roots checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 bad tree block 36007936, bytenr mismatch, want=36007936, have=0 The following tree block(s) is corrupted in tree 292: tree block bytenr: 36110336, level: 1, node key: (256, 1, 0) root 292 root dir 256 not found ERROR: errors found in fs roots found 38572032 bytes used, error(s) found total csum bytes: 16048 total tree bytes: 1265664 total fs tree bytes: 1118208 total extent tree bytes: 65536 btree space waste bytes: 562598 file data blocks allocated: 65978368 referenced 36569088 Fix this by updating btrfs_block_can_be_shared() to consider that an extent buffer may be shared if it matches the commit root and if its generation matches the current transaction's generation. This can be reproduced with the following script: $ cat test.sh #!/bin/bash MNT=/mnt/sdi DEV=/dev/sdi # Use a filesystem with a 64K node size so that we have the same node # size on every machine regardless of its page size (on x86_64 default # node size is 16K due to the 4K page size, while on PPC it's 64K by # default). This way we can make sure we are able to create a btree for # the subvolume with a height of 2. mkfs.btrfs -f -n 64K $DEV mount $DEV $MNT btrfs subvolume create $MNT/subvol # Create a few empty files on the subvolume, this bumps its btree # height to 2 (root node at level 1 and 2 leaves). for ((i = 1; i <= 300; i++)); do echo -n > $MNT/subvol/file_$i done btrfs subvolume snapshot -r $MNT/subvol $MNT/subvol/snap umount $DEV btrfs check $DEV Running it on a 6.5 kernel (or any 6.6-rc kernel at the moment): $ ./test.sh Create subvolume '/mnt/sdi/subvol' Create a readonly snapshot of '/mnt/sdi/subvol' in '/mnt/sdi/subvol/snap' Opening filesystem to check... Checking filesystem on /dev/sdi UUID: bbdde2ff-7d02-45ca-8a73-3c36f23755a1 [1/7] checking root items [2/7] checking extents parent transid verify failed on 30539776 wanted 7 found 5 parent transid verify failed on 30539776 wanted 7 found 5 parent transid verify failed on 30539776 wanted 7 found 5 Ignoring transid failure owner ref check failed [30539776 65536] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space tree [4/7] checking fs roots parent transid verify failed on 30539776 wanted 7 found 5 Ignoring transid failure Wrong key of child node/leaf, wanted: (256, 1, 0), have: (2, 132, 0) Wrong generation of child node/leaf, wanted: 5, have: 7 root 257 root dir 256 not found ERROR: errors found in fs roots found 917504 bytes used, error(s) found total csum bytes: 0 total tree bytes: 851968 total fs tree bytes: 393216 total extent tree bytes: 65536 btree space waste bytes: 736550 file data blocks allocated: 0 referenced 0 A test case for fstests will follow soon. Fixes: 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create") CC: stable@vger.kernel.org # 6.5+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
c71d3c698c |
btrfs: switch btrfs_backref_cache::is_reloc to bool
The btrfs_backref_cache::is_reloc is an indicator variable and should use a bool type. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Boris Burkov
|
d9a620f77e |
btrfs: new inline ref storing owning subvol of data extents
In order to implement simple quota groups, we need to be able to associate a data extent with the subvolume that created it. Once you account for reflink, this information cannot be recovered without explicitly storing it. Options for storing it are: - a new key/item - a new extent inline ref item The former is backwards compatible, but wastes space, the latter is incompat, but is efficient in space and reuses the existing inline ref machinery, while only abusing it a tiny amount -- specifically, the new item is not a ref, per-se. Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
182741d287 |
btrfs: remove v0 extent handling
The v0 extent item has been deprecated for a long time, and we don't have any report from the community either. So it's time to remove the v0 extent specific error handling, and just treat them as regular extent tree corruption. This patch would remove the btrfs_print_v0_err() helper, and enhance the involved error handling to treat them just as any extent tree corruption. No reports regarding v0 extents have been seen since the graceful handling was added in 2018. This involves: - btrfs_backref_add_tree_node() This change is a little tricky, the new code is changed to only handle BTRFS_TREE_BLOCK_REF_KEY and BTRFS_SHARED_BLOCK_REF_KEY. But this is safe, as we have rejected any unknown inline refs through btrfs_get_extent_inline_ref_type(). For keyed backrefs, we're safe to skip anything we don't know (that's if it can pass tree-checker in the first place). - btrfs_lookup_extent_info() - lookup_inline_extent_backref() - run_delayed_extent_op() - __btrfs_free_extent() - add_tree_block() Regular error handling of unexpected extent tree item, and abort transaction (if we have a trans handle). - remove_extent_data_ref() It's pretty much the same as the regular rejection of unknown backref key. But for this particular case, we can also remove a BUG_ON(). - extent_data_ref_count() We can remove the BTRFS_EXTENT_REF_V0_KEY BUG_ON(), as it would be rejected by the only caller. - btrfs_print_leaf() Remove the handling for BTRFS_EXTENT_REF_V0_KEY. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
0cad8f14d7 |
btrfs: fix backref walking not returning all inode refs
When using the logical to ino ioctl v2, if the flag to ignore offsets of file extent items (BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET) is given, the backref walking code ends up not returning references for all file offsets of an inode that point to the given logical bytenr. This happens since kernel 6.2, commit 6ce6ba534418 ("btrfs: use a single argument for extent offset in backref walking functions") because: 1) It mistakenly skipped the search for file extent items in a leaf that point to the target extent if that flag is given. Instead it should only skip the filtering done by check_extent_in_eb() - that is, it should not avoid the calls to that function (or find_extent_in_eb(), which uses it). 2) It was also not building a list of inode extent elements (struct extent_inode_elem) if we have multiple inode references for an extent when the ignore offset flag is given to the logical to ino ioctl - it would leave a single element, only the last one that was found. These stem from the confusing old interface for backref walking functions where we had an extent item offset argument that was a pointer to a u64 and another boolean argument that indicated if the offset should be ignored, but the pointer could be NULL. That NULL case is used by relocation, qgroup extent accounting and fiemap, simply to avoid building the inode extent list for each reference, as it's not necessary for those use cases and therefore avoids memory allocations and some computations. Fix this by adding a boolean argument to the backref walk context structure to indicate that the inode extent list should not be built, make relocation set that argument to true and fix the backref walking logic to skip the calls to check_extent_in_eb() and find_extent_in_eb() only if this new argument is true, instead of 'ignore_extent_item_pos' being true. A test case for fstests will be added soon, to provide cover not only for these cases but to the logical to ino ioctl in general as well, as currently we do not have a test case for it. Reported-by: Vladimir Panteleev <git@vladimir.panteleev.md> Link: https://lore.kernel.org/linux-btrfs/CAHhfkvwo=nmzrJSqZ2qMfF-rZB-ab6ahHnCD_sq9h4o8v+M7QQ@mail.gmail.com/ Fixes: 6ce6ba534418 ("btrfs: use a single argument for extent offset in backref walking functions") CC: stable@vger.kernel.org # 6.2+ Tested-by: Vladimir Panteleev <git@vladimir.panteleev.md> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
2280d425ba |
btrfs: ignore fiemap path cache when there are multiple paths for a node
During fiemap, when walking backreferences to determine if a b+tree node/leaf is shared, we may find a tree block (leaf or node) for which two parents were added to the references ulist. This happens if we get for example one direct ref (shared tree block ref) and one indirect ref (non-shared tree block ref) for the tree block at the current level, which can happen during relocation. In that case the fiemap path cache can not be used since it's meant for a single path, with one tree block at each possible level, so having multiple references for a tree block at any level may result in getting the level counter exceed BTRFS_MAX_LEVEL and eventually trigger the warning: WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL) at lookup_backref_shared_cache() and at store_backref_shared_cache(). This is harmless since the code ignores any level >= BTRFS_MAX_LEVEL, the warning is there just to catch any unexpected case like the one described above. However if a user finds this it may be scary and get reported. So just ignore the path cache once we find a tree block for which there are more than one reference, which is the less common case, and update the cache with the sharedness check result for all levels below the level for which we found multiple references. Reported-by: Jarno Pelkonen <jarno.pelkonen@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CAKv8qLmDNAGJGCtsevxx_VZ_YOvvs1L83iEJkTgyA4joJertng@mail.gmail.com/ Fixes: 12a824dc67a6 ("btrfs: speedup checking for extent sharedness during fiemap") CC: stable@vger.kernel.org # 6.1+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
e2fd83064a |
btrfs: skip backref walking during fiemap if we know the leaf is shared
During fiemap, when checking if a data extent is shared we are doing the backref walking even if we already know the leaf is shared, which is a waste of time since if the leaf shared then the data extent is also shared. So skip the backref walking when we know we are in a shared leaf. The following test was measures the gains for a case where all leaves are shared due to a snapshot: $ cat test.sh #!/bin/bash DEV=/dev/sdj MNT=/mnt/sdj umount $DEV &> /dev/null mkfs.btrfs -f $DEV # Use compression to quickly create files with a lot of extents # (each with a size of 128K). mount -o compress=lzo $DEV $MNT # 40G gives 327680 extents, each with a size of 128K. xfs_io -f -c "pwrite -S 0xab -b 1M 0 40G" $MNT/foobar # Add some more files to increase the size of the fs and extent # trees (in the real world there's a lot of files and extents # from other files). xfs_io -f -c "pwrite -S 0xcd -b 1M 0 20G" $MNT/file1 xfs_io -f -c "pwrite -S 0xef -b 1M 0 20G" $MNT/file2 xfs_io -f -c "pwrite -S 0x73 -b 1M 0 20G" $MNT/file3 # Create a snapshot so all the extents become indirectly shared # through subtrees, with a generation less than or equals to the # generation used to create the snapshot. btrfs subvolume snapshot -r $MNT $MNT/snap1 # Unmount and mount again to clear cached metadata. umount $MNT mount -o compress=lzo $DEV $MNT start=$(date +%s%N) # The filefrag tool uses the fiemap ioctl. filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata not cached)" echo start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata cached)" umount $MNT The results were the following on a non-debug kernel (Debian's default kernel config). Before this patch: (...) /mnt/sdi/foobar: 327680 extents found fiemap took 1821 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 399 milliseconds (metadata cached) After this patch: (...) /mnt/sdi/foobar: 327680 extents found fiemap took 591 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 123 milliseconds (metadata cached) That's a speedup of 3.1x and 3.2x. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
4e4488d4ef |
btrfs: assert commit root semaphore is held when accessing backref cache
During fiemap, when accessing the cache that stores the sharedness of an extent, we need to either be holding a transaction handle or the commit root semaphore. I left comments about this in the comment that precedes store_backref_shared_cache() and lookup_backref_shared_cache(), but have actually not enforced it through assertions. So assert that the commit root semaphore is held if we are not holding a transaction handle. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Boris Burkov
|
560840afc3 |
btrfs: fix resolving backrefs for inline extent followed by prealloc
If a file consists of an inline extent followed by a regular or prealloc extent, then a legitimate attempt to resolve a logical address in the non-inline region will result in add_all_parents reading the invalid offset field of the inline extent. If the inline extent item is placed in the leaf eb s.t. it is the first item, attempting to access the offset field will not only be meaningless, it will go past the end of the eb and cause this panic: [17.626048] BTRFS warning (device dm-2): bad eb member end: ptr 0x3fd4 start 30834688 member offset 16377 size 8 [17.631693] general protection fault, probably for non-canonical address 0x5088000000000: 0000 [#1] SMP PTI [17.635041] CPU: 2 PID: 1267 Comm: btrfs Not tainted 5.12.0-07246-g75175d5adc74-dirty #199 [17.637969] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [17.641995] RIP: 0010:btrfs_get_64+0xe7/0x110 [17.649890] RSP: 0018:ffffc90001f73a08 EFLAGS: 00010202 [17.651652] RAX: 0000000000000001 RBX: ffff88810c42d000 RCX: 0000000000000000 [17.653921] RDX: 0005088000000000 RSI: ffffc90001f73a0f RDI: 0000000000000001 [17.656174] RBP: 0000000000000ff9 R08: 0000000000000007 R09: c0000000fffeffff [17.658441] R10: ffffc90001f73790 R11: ffffc90001f73788 R12: ffff888106afe918 [17.661070] R13: 0000000000003fd4 R14: 0000000000003f6f R15: cdcdcdcdcdcdcdcd [17.663617] FS: 00007f64e7627d80(0000) GS:ffff888237c80000(0000) knlGS:0000000000000000 [17.666525] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [17.668664] CR2: 000055d4a39152e8 CR3: 000000010c596002 CR4: 0000000000770ee0 [17.671253] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [17.673634] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [17.676034] PKRU: 55555554 [17.677004] Call Trace: [17.677877] add_all_parents+0x276/0x480 [17.679325] find_parent_nodes+0xfae/0x1590 [17.680771] btrfs_find_all_leafs+0x5e/0xa0 [17.682217] iterate_extent_inodes+0xce/0x260 [17.683809] ? btrfs_inode_flags_to_xflags+0x50/0x50 [17.685597] ? iterate_inodes_from_logical+0xa1/0xd0 [17.687404] iterate_inodes_from_logical+0xa1/0xd0 [17.689121] ? btrfs_inode_flags_to_xflags+0x50/0x50 [17.691010] btrfs_ioctl_logical_to_ino+0x131/0x190 [17.692946] btrfs_ioctl+0x104a/0x2f60 [17.694384] ? selinux_file_ioctl+0x182/0x220 [17.695995] ? __x64_sys_ioctl+0x84/0xc0 [17.697394] __x64_sys_ioctl+0x84/0xc0 [17.698697] do_syscall_64+0x33/0x40 [17.700017] entry_SYSCALL_64_after_hwframe+0x44/0xae [17.701753] RIP: 0033:0x7f64e72761b7 [17.709355] RSP: 002b:00007ffefb067f58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [17.712088] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f64e72761b7 [17.714667] RDX: 00007ffefb067fb0 RSI: 00000000c0389424 RDI: 0000000000000003 [17.717386] RBP: 00007ffefb06d188 R08: 000055d4a390d2b0 R09: 00007f64e7340a60 [17.719938] R10: 0000000000000231 R11: 0000000000000246 R12: 0000000000000001 [17.722383] R13: 0000000000000000 R14: 00000000c0389424 R15: 000055d4a38fd2a0 [17.724839] Modules linked in: Fix the bug by detecting the inline extent item in add_all_parents and skipping to the next extent item. CC: stable@vger.kernel.org # 4.9+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Christoph Hellwig
|
27137fac4c |
btrfs: move struct btrfs_tree_parent_check out of disk-io.h
Move struct btrfs_tree_parent_check out of disk-io.h so that volumes.h an various .c files don't have to include disk-io.h just for it. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> [ use tree-checker.h for the structure ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
789d6a3a87 |
btrfs: concentrate all tree block parentness check parameters into one structure
There are several different tree block parentness check parameters used across several helpers: - level Mandatory - transid Under most cases it's mandatory, but there are several backref cases which skips this check. - owner_root - first_key Utilized by most top-down tree search routine. Otherwise can be skipped. Those four members are not always mandatory checks, and some of them are the same u64, which means if some arguments got swapped compiler will not catch it. Furthermore if we're going to further expand the parentness check, we need to modify quite some helpers just to add one more parameter. This patch will concentrate all these members into a structure called btrfs_tree_parent_check, and pass that structure for the following helpers: - btrfs_read_extent_buffer() - read_tree_block() Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
adf0241868 |
btrfs: send: skip resolution of our own backref when finding clone source
When doing backref walking to determine a source range to clone from, it is worthless to collect and resolve our own data backref, as we can't obviously use it as a clone source and it represents the range we want to clone into. Collecting the backref implies doing the extra work to resolve it, doing the search for a file extent item in a subvolume tree, etc. Skipping the data backref is valid as long as we only have the send root as the single clone root, otherwise the leaf with the file extent item may be accessible from another clone root due to shared subtrees created by snapshots, and therefore we have to collect the backref and resolve it. So add a callback to the backref walking code to guide it to skip data backrefs. This change is part of a patchset comprised of the following patches: 01/17 btrfs: fix inode list leak during backref walking at resolve_indirect_refs() 02/17 btrfs: fix inode list leak during backref walking at find_parent_nodes() 03/17 btrfs: fix ulist leaks in error paths of qgroup self tests 04/17 btrfs: remove pointless and double ulist frees in error paths of qgroup tests 05/17 btrfs: send: avoid unnecessary path allocations when finding extent clone 06/17 btrfs: send: update comment at find_extent_clone() 07/17 btrfs: send: drop unnecessary backref context field initializations 08/17 btrfs: send: avoid unnecessary backref lookups when finding clone source 09/17 btrfs: send: optimize clone detection to increase extent sharing 10/17 btrfs: use a single argument for extent offset in backref walking functions 11/17 btrfs: use a structure to pass arguments to backref walking functions 12/17 btrfs: reuse roots ulist on each leaf iteration for iterate_extent_inodes() 13/17 btrfs: constify ulist parameter of ulist_next() 14/17 btrfs: send: cache leaf to roots mapping during backref walking 15/17 btrfs: send: skip unnecessary backref iterations 16/17 btrfs: send: avoid double extent tree search when finding clone source 17/17 btrfs: send: skip resolution of our own backref when finding clone source The following test was run on non-debug kernel (Debian's default kernel config) before and after applying the patchset: $ cat test-send-many-shared-extents.sh #!/bin/bash DEV=/dev/sdh MNT=/mnt/sdh umount $DEV &> /dev/null mkfs.btrfs -f $DEV mount $DEV $MNT num_files=50000 num_clones_per_file=50 for ((i = 1; i <= $num_files; i++)); do xfs_io -f -c "pwrite 0 64K" $MNT/file_$i > /dev/null echo -ne "\r$i files created..." done echo btrfs subvolume snapshot -r $MNT $MNT/snap1 cloned=0 for ((i = 1; i <= $num_clones_per_file; i++)); do for ((j = 1; j <= $num_files; j++)); do cp --reflink=always $MNT/file_$j $MNT/file_${j}_clone_${i} cloned=$((cloned + 1)) echo -ne "\r$cloned / $((num_files * num_clones_per_file)) clone operations" done done echo btrfs subvolume snapshot -r $MNT $MNT/snap2 # Unmount and mount again to clear all cached metadata (and data). umount $DEV mount $DEV $MNT start=$(date +%s%N) btrfs send $MNT/snap2 > /dev/null end=$(date +%s%N) dur=$(( (end - start) / 1000000000 )) echo -e "\nFull send took $dur seconds" # Unmount and mount again to clear all cached metadata (and data). umount $DEV mount $DEV $MNT start=$(date +%s%N) btrfs send -p $MNT/snap1 $MNT/snap2 > /dev/null end=$(date +%s%N) dur=$(( (end - start) / 1000000000 )) echo -e "\nIncremental send took $dur seconds" umount $MNT Before applying the patchset: (...) Full send took 1108 seconds (...) Incremental send took 1135 seconds After applying the whole patchset: (...) Full send took 268 seconds (-75.8%) (...) Incremental send took 316 seconds (-72.2%) Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
f73853c716 |
btrfs: send: avoid double extent tree search when finding clone source
At find_extent_clone() we search twice for the extent item corresponding to the data extent that the current file extent items points to: 1) Once with a call to extent_from_logical(); 2) Once again during backref walking, through iterate_extent_inodes() which eventually leads to find_parent_nodes() where we will search again the extent tree for the same extent item. The extent tree can be huge, so doing this one extra search for every extent we want to send adds up and it's expensive. The first call is there since the send code was introduced and it accomplishes two things: 1) Check that the extent is flagged as a data extent in the extent tree. But it can not be anything else, otherwise we wouldn't have a file extent item in the send root pointing to it. This was probably added to catch bugs in the early days where send was yet too young and the interaction with everything else was far from perfect; 2) Check how many direct references there are on the extent, and if there's too many (more than SEND_MAX_EXTENT_REFS), avoid doing the backred walking as it may take too long and slowdown send. So improve on this by having a callback in the backref walking code that is called when it finds the extent item in the extent tree, and have those checks done in the callback. When the callback returns anything different from 0, it stops the backref walking code. This way we do a single search on the extent tree for the extent item of our data extent. Also, before this change we were only checking the number of references on the data extent against SEND_MAX_EXTENT_REFS, but after starting backref walking we will end up resolving backrefs for extent buffers in the path from a leaf having a file extent item pointing to our data extent, up to roots of trees from which the extent buffer is accessible from, due to shared subtrees resulting from snapshoting. We were therefore allowing for the possibility for send taking too long due to some node in the path from the leaf to a root node being shared too many times. After this change we check for reference counts being greater than SEND_MAX_EXTENT_REFS for both data extents and metadata extents. This change is part of a patchset comprised of the following patches: 01/17 btrfs: fix inode list leak during backref walking at resolve_indirect_refs() 02/17 btrfs: fix inode list leak during backref walking at find_parent_nodes() 03/17 btrfs: fix ulist leaks in error paths of qgroup self tests 04/17 btrfs: remove pointless and double ulist frees in error paths of qgroup tests 05/17 btrfs: send: avoid unnecessary path allocations when finding extent clone 06/17 btrfs: send: update comment at find_extent_clone() 07/17 btrfs: send: drop unnecessary backref context field initializations 08/17 btrfs: send: avoid unnecessary backref lookups when finding clone source 09/17 btrfs: send: optimize clone detection to increase extent sharing 10/17 btrfs: use a single argument for extent offset in backref walking functions 11/17 btrfs: use a structure to pass arguments to backref walking functions 12/17 btrfs: reuse roots ulist on each leaf iteration for iterate_extent_inodes() 13/17 btrfs: constify ulist parameter of ulist_next() 14/17 btrfs: send: cache leaf to roots mapping during backref walking 15/17 btrfs: send: skip unnecessary backref iterations 16/17 btrfs: send: avoid double extent tree search when finding clone source 17/17 btrfs: send: skip resolution of our own backref when finding clone source Performance test results are in the changelog of patch 17/17. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
88ffb665c8 |
btrfs: send: skip unnecessary backref iterations
When looking for a clone source for an extent, we are iterating over all the backreferences for an extent. This is often a waste of time, because once we find a good clone source we could stop immediately instead of continuing backref walking, which is expensive. Basically what happens currently is this: 1) Call iterate_extent_inodes() to iterate over all the backreferences; 2) It calls btrfs_find_all_leafs() which in turn calls the main function to walk over backrefs and collect them - find_parent_nodes(); 3) Then we collect all the references for our target data extent from the extent tree (and delayed refs if any), add them to the rb trees, resolve all the indirect backreferences and search for all the file extent items in fs trees, building a list of inodes for each one of them (struct extent_inode_elem); 4) Then back at iterate_extent_inodes() we find all the roots associated to each found leaf, and call the callback __iterate_backrefs defined at send.c for each inode in the inode list associated to each leaf. Some times one the first backreferences we find in a fs tree is optimal to satisfy the clone operation that send wants to perform, and in that case we could stop immediately and avoid resolving all the remaining indirect backreferences (search fs trees for the respective file extent items, etc). This possibly if when we find a fs tree leaf with a file extent item we are able to know what are all the roots that can lead to the leaf - this is now possible after the previous patch in the series that adds a cache that maps leaves to a list of roots. So we can now shortcircuit backref walking during send, by having the callback we pass to iterate_extent_inodes() to be called when we find a file extent item for an indirect backreference, and have it return a special value when it found a suitable backreference and it does not need to look for more backreferences. This change does that. This change is part of a patchset comprised of the following patches: 01/17 btrfs: fix inode list leak during backref walking at resolve_indirect_refs() 02/17 btrfs: fix inode list leak during backref walking at find_parent_nodes() 03/17 btrfs: fix ulist leaks in error paths of qgroup self tests 04/17 btrfs: remove pointless and double ulist frees in error paths of qgroup tests 05/17 btrfs: send: avoid unnecessary path allocations when finding extent clone 06/17 btrfs: send: update comment at find_extent_clone() 07/17 btrfs: send: drop unnecessary backref context field initializations 08/17 btrfs: send: avoid unnecessary backref lookups when finding clone source 09/17 btrfs: send: optimize clone detection to increase extent sharing 10/17 btrfs: use a single argument for extent offset in backref walking functions 11/17 btrfs: use a structure to pass arguments to backref walking functions 12/17 btrfs: reuse roots ulist on each leaf iteration for iterate_extent_inodes() 13/17 btrfs: constify ulist parameter of ulist_next() 14/17 btrfs: send: cache leaf to roots mapping during backref walking 15/17 btrfs: send: skip unnecessary backref iterations 16/17 btrfs: send: avoid double extent tree search when finding clone source 17/17 btrfs: send: skip resolution of our own backref when finding clone source Performance test results are in the changelog of patch 17/17. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
66d04209e5 |
btrfs: send: cache leaf to roots mapping during backref walking
During a send operation, when doing backref walking to determine which inodes/offsets/roots we can clone from, the most repetitive and expensive step is to map each leaf that has file extent items pointing to the target data extent to the IDs of the roots from which the leaves are accessible, which happens at iterate_extent_inodes(). That step requires finding every parent node of a leaf, then the parent of each parent, and so on until we reach a root node. So it's a naturally expensive operation, and repetitive because each leaf can have hundreds of file extent items (for a nodesize of 16K, that can be slightly over 200 file extent items). There's also temporal locality, as we process all file extent items from a leave before moving the next leaf. This change caches the mapping of leaves to root IDs, to avoid repeating those computations over and over again. The cache is limited to a maximum of 128 entries, with each entry being a struct with a size of 128 bytes, so the maximum cache size is 16K plus any nodes internally allocated by the maple tree that is used to index pointers to those structs. The cache is invalidated whenever we detect relocation happened since we started filling the cache, because if relocation happened then extent buffers for leaves and nodes of the trees used by a send operation may have been reallocated. This cache also allows for another important optimization that is introduced in the next patch in the series. This change is part of a patchset comprised of the following patches: 01/17 btrfs: fix inode list leak during backref walking at resolve_indirect_refs() 02/17 btrfs: fix inode list leak during backref walking at find_parent_nodes() 03/17 btrfs: fix ulist leaks in error paths of qgroup self tests 04/17 btrfs: remove pointless and double ulist frees in error paths of qgroup tests 05/17 btrfs: send: avoid unnecessary path allocations when finding extent clone 06/17 btrfs: send: update comment at find_extent_clone() 07/17 btrfs: send: drop unnecessary backref context field initializations 08/17 btrfs: send: avoid unnecessary backref lookups when finding clone source 09/17 btrfs: send: optimize clone detection to increase extent sharing 10/17 btrfs: use a single argument for extent offset in backref walking functions 11/17 btrfs: use a structure to pass arguments to backref walking functions 12/17 btrfs: reuse roots ulist on each leaf iteration for iterate_extent_inodes() 13/17 btrfs: constify ulist parameter of ulist_next() 14/17 btrfs: send: cache leaf to roots mapping during backref walking 15/17 btrfs: send: skip unnecessary backref iterations 16/17 btrfs: send: avoid double extent tree search when finding clone source 17/17 btrfs: send: skip resolution of our own backref when finding clone source Performance test results are in the changelog of patch 17/17. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
1baea6f18a |
btrfs: reuse roots ulist on each leaf iteration for iterate_extent_inodes()
At iterate_extent_inodes() we collect a ulist of leaves for a given extent with a call to btrfs_find_all_leafs() and then we enter a loop where we iterate over all the collected leaves. Each iteration of that loop does a call to btrfs_find_all_roots_safe(), to determine all roots from which a leaf is accessible, and that results in allocating and releasing a ulist to store the root IDs. Instead of allocating and releasing the roots ulist on every iteration, allocate a ulist before entering the loop and keep using it on each iteration, reinitializing the ulist at the end of each iteration. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
a2c8d27e5e |
btrfs: use a structure to pass arguments to backref walking functions
The public backref walking functions have quite a lot of arguments that are passed down the call stack to find_parent_nodes(), the core function of the backref walking code. The next patches in series will need to add even arguments to these functions that should be passed not only to find_parent_nodes(), but also to other functions used by the later (directly or even lower in the call stack). So create a structure to hold all these arguments and state used by the main backref walking function, find_parent_nodes(), and use it as the argument for the public backref walking functions iterate_extent_inodes(), btrfs_find_all_leafs() and btrfs_find_all_roots(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
6ce6ba5344 |
btrfs: use a single argument for extent offset in backref walking functions
The interface for find_parent_nodes() has two extent offset related arguments: 1) One u64 pointer argument for the extent offset; 2) One boolean argument to tell if the extent offset should be ignored or not. These are confusing, becase the extent offset pointer can be NULL and in some cases callers pass a NULL value as a way to tell the backref walking code to ignore offsets in file extent items (and simply consider all file extent items that point to the target data extent). The boolean argument was added in commit c995ab3cda3f ("btrfs: add a flag to iterate_inodes_from_logical to find all extent refs for uncompressed extents"), but it was never really necessary, it was enough if it could find a way to get a NULL value passed to the "extent_item_pos" argument of find_parent_nodes(). The arguments are also passed to functions called by find_parent_nodes() and respective helper functions, which further makes everything more complicated than needed. Then we have several backref walking related functions that end up calling find_parent_nodes(), either directly or through some other function that they call, and for many we have to use an "extent_item_pos" (u64) argument and a boolean "ignore_offset" argument too. This is confusing and not really necessary. So use a single argument to specify the extent offset, as a simple u64 and not as a pointer, but using a special value of (u64)-1, defined as a documented constant, to indicate when the extent offset should be ignored. This is also preparation work for the upcoming patches in the series that add other arguments to find_parent_nodes() and other related functions that use it. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
c7499a64dc |
btrfs: send: optimize clone detection to increase extent sharing
Currently send does not do the best decisions when it comes to decide between multiple clone sources, which results in clone operations for partial extent ranges, which has the following disadvantages: 1) We get less shared extents at the destination; 2) We have to read more data during the send operation and emit more write commands. Besides not being optimal behaviour, it also breaks user expectations and is often reported by users, with a recent example in the Link tag at the bottom of this change log. Part of the reason for this non-optimal behaviour is that the backref walking code does not provide information about the length of the file extent items that were found for each backref, so send is blind about which backref is the best to chose as a cloning source. The other existing reasons are just silliness, namely always prefering the inode with the lowest number when multiple are found for the same root and when we can clone from multiple roots, always prefer the send root over any of the other clone roots. This does not make any sense since any inode or root is fine and as good as any other inode/root. Fix this by making backref walking pass information about the number of bytes referenced by each file extent item and then have send's backref callback pick the inode with the highest number of bytes for each root. Finally select the root from which we can clone more bytes from. Example reproducer: $ cat test.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi mkfs.btrfs -f $DEV mount $DEV $MNT xfs_io -f -c "pwrite -S 0xab -b 2M 0 2M" $MNT/foo cp --reflink=always $MNT/foo $MNT/bar cp --reflink=always $MNT/foo $MNT/baz sync # Overwrite the second half of file foo. xfs_io -c "pwrite -S 0xcd -b 1M 1M 1M" $MNT/foo sync echo echo "*** fiemap in the original filesystem ***" echo xfs_io -c "fiemap -v" $MNT/foo xfs_io -c "fiemap -v" $MNT/bar xfs_io -c "fiemap -v" $MNT/baz echo btrfs filesystem du $MNT btrfs subvolume snapshot -r $MNT $MNT/snap btrfs send -f /tmp/send_stream $MNT/snap umount $MNT mkfs.btrfs -f $DEV &> /dev/null mount $DEV $MNT btrfs receive -f /tmp/send_stream $MNT echo echo "*** fiemap in the new filesystem ***" echo xfs_io -r -c "fiemap -v" $MNT/snap/foo xfs_io -r -c "fiemap -v" $MNT/snap/bar xfs_io -r -c "fiemap -v" $MNT/snap/baz echo btrfs filesystem du $MNT rm -f /tmp/send_stream rm -f /tmp/snap.fssum umount $MNT Before this change: $ ./test.sh (...) *** fiemap in the original filesystem *** /mnt/sdi/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..2047]: 26624..28671 2048 0x2000 1: [2048..4095]: 30720..32767 2048 0x1 /mnt/sdi/bar: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..4095]: 26624..30719 4096 0x2001 /mnt/sdi/baz: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..4095]: 26624..30719 4096 0x2001 Total Exclusive Set shared Filename 2.00MiB 1.00MiB - /mnt/sdi/foo 2.00MiB 0.00B - /mnt/sdi/bar 2.00MiB 0.00B - /mnt/sdi/baz 6.00MiB 1.00MiB 2.00MiB /mnt/sdi Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap' At subvol /mnt/sdi/snap At subvol snap *** fiemap in the new filesystem *** /mnt/sdi/snap/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..4095]: 26624..30719 4096 0x2001 /mnt/sdi/snap/bar: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..2047]: 26624..28671 2048 0x2000 1: [2048..4095]: 30720..32767 2048 0x1 /mnt/sdi/snap/baz: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..2047]: 26624..28671 2048 0x2000 1: [2048..4095]: 32768..34815 2048 0x1 Total Exclusive Set shared Filename 2.00MiB 0.00B - /mnt/sdi/snap/foo 2.00MiB 1.00MiB - /mnt/sdi/snap/bar 2.00MiB 1.00MiB - /mnt/sdi/snap/baz 6.00MiB 2.00MiB - /mnt/sdi/snap 6.00MiB 2.00MiB 2.00MiB /mnt/sdi We end up with two 1M extents that are not shared for files bar and baz. After this change: $ ./test.sh (...) *** fiemap in the original filesystem *** /mnt/sdi/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..2047]: 26624..28671 2048 0x2000 1: [2048..4095]: 30720..32767 2048 0x1 /mnt/sdi/bar: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..4095]: 26624..30719 4096 0x2001 /mnt/sdi/baz: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..4095]: 26624..30719 4096 0x2001 Total Exclusive Set shared Filename 2.00MiB 1.00MiB - /mnt/sdi/foo 2.00MiB 0.00B - /mnt/sdi/bar 2.00MiB 0.00B - /mnt/sdi/baz 6.00MiB 1.00MiB 2.00MiB /mnt/sdi Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap' At subvol /mnt/sdi/snap At subvol snap *** fiemap in the new filesystem *** /mnt/sdi/snap/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..4095]: 26624..30719 4096 0x2001 /mnt/sdi/snap/bar: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..2047]: 26624..28671 2048 0x2000 1: [2048..4095]: 30720..32767 2048 0x2001 /mnt/sdi/snap/baz: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..2047]: 26624..28671 2048 0x2000 1: [2048..4095]: 30720..32767 2048 0x2001 Total Exclusive Set shared Filename 2.00MiB 0.00B - /mnt/sdi/snap/foo 2.00MiB 0.00B - /mnt/sdi/snap/bar 2.00MiB 0.00B - /mnt/sdi/snap/baz 6.00MiB 0.00B - /mnt/sdi/snap 6.00MiB 0.00B 3.00MiB /mnt/sdi Now there's a much better sharing, files bar and baz share 1M of the extent of file foo and the second extent of files bar and baz is shared between themselves. This will later be turned into a test case for fstests. Link: https://lore.kernel.org/linux-btrfs/20221008005704.795b44b0@crass-HP-ZBook-15-G2/ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
677074792a |
btrfs: move relocation prototypes into relocation.h
Move these out of ctree.h into relocation.h to cut down on code in ctree.h Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
a0231804af |
btrfs: move extent-tree helpers into their own header file
Move all the extent tree related prototypes to extent-tree.h out of ctree.h, and then go include it everywhere needed so everything compiles. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
d68194b238 |
btrfs: sink gfp_t parameter to btrfs_backref_iter_alloc
There's only one caller that passes GFP_NOFS, we can drop the parameter an use the flags directly. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
07e81dc944 |
btrfs: move accessor helpers into accessors.h
This is a large patch, but because they're all macros it's impossible to split up. Simply copy all of the item accessors in ctree.h and paste them in accessors.h, and then update any files to include the header so everything compiles. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ reformat comments, style fixups ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
c7f13d428e |
btrfs: move fs wide helpers out of ctree.h
We have several fs wide related helpers in ctree.h. The bulk of these are the incompat flag test helpers, but there are things such as btrfs_fs_closing() and the read only helpers that also aren't directly related to the ctree code. Move these into a fs.h header, which will serve as the location for file system wide related helpers. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
6976201f18 |
btrfs: avoid unnecessary resolution of indirect backrefs during fiemap
During fiemap, when determining if a data extent is shared or not, if we don't find the extent is directly shared, then we need to determine if it's shared through subtrees. For that we need to resolve the indirect reference we found in order to figure out the path in the inode's fs tree, which is a path starting at the fs tree's root node and going down to the leaf that contains the file extent item that points to the data extent. We then proceed to determine if any extent buffer in that path is shared with other trees or not. However when the generation of the data extent is more recent than the last generation used to snapshot the root, we don't need to determine the path, since the data extent can not be shared through snapshots. For this case we currently still determine the leaf of that path (at find_parent_nodes(), but then stop determining the other nodes in the path (at btrfs_is_data_extent_shared()) as it's pointless. So do the check of the data extent's generation earlier, at find_parent_nodes(), before trying to resolve the indirect reference to determine the leaf in the path. This saves us from doing one expensive b+tree search in the fs tree of our target inode, as well as other minor work. The following test was run on a non-debug kernel (Debian's default kernel config): $ cat test-fiemap.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi umount $DEV &> /dev/null mkfs.btrfs -f $DEV # Use compression to quickly create files with a lot of extents # (each with a size of 128K). mount -o compress=lzo $DEV $MNT # 40G gives 327680 extents, each with a size of 128K. xfs_io -f -c "pwrite -S 0xab -b 1M 0 40G" $MNT/foobar # Add some more files to increase the size of the fs and extent # trees (in the real world there's a lot of files and extents # from other files). xfs_io -f -c "pwrite -S 0xcd -b 1M 0 20G" $MNT/file1 xfs_io -f -c "pwrite -S 0xef -b 1M 0 20G" $MNT/file2 xfs_io -f -c "pwrite -S 0x73 -b 1M 0 20G" $MNT/file3 umount $MNT mount -o compress=lzo $DEV $MNT start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata not cached)" echo start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata cached)" umount $MNT Before applying this patch: (...) /mnt/sdi/foobar: 327680 extents found fiemap took 1285 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 742 milliseconds (metadata cached) After applying this patch: (...) /mnt/sdi/foobar: 327680 extents found fiemap took 689 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 393 milliseconds (metadata cached) That's a -46.4% total reduction for the metadata not cached case, and a -47.0% reduction for the cached metadata case. The test is somewhat limited in the sense the gains may be higher in practice, because in the test the filesystem is small, so we have small fs and extent trees, plus there's no concurrent access to the trees as well, therefore no lock contention there. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
877c14767f |
btrfs: avoid duplicated resolution of indirect backrefs during fiemap
During fiemap, when determining if a data extent is shared or not, if we don't find the extent is directly shared, then we need to determine if it's shared through subtrees. For that we need to resolve the indirect reference we found in order to figure out the path in the inode's fs tree, which is a path starting at the fs tree's root node and going down to the leaf that contains the file extent item that points to the data extent. We then proceed to determine if any extent buffer in that path is shared with other trees or not. Currently whenever we find the data extent that a file extent item points to is not directly shared, we always resolve the path in the fs tree, and then check if any extent buffer in the path is shared. This is a lot of work and when we have file extent items that belong to the same leaf, we have the same path, so we only need to calculate it once. This change does that, it keeps track of the current and previous leaf, and when we find that a data extent is not directly shared, we try to compute the fs tree path only once and then use it for every other file extent item in the same leaf, using the existing cached path result for the leaf as long as the cache results are valid. This saves us from doing expensive b+tree searches in the fs tree of our target inode, as well as other minor work. The following test was run on a non-debug kernel (Debian's default kernel config): $ cat test-with-snapshots.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi umount $DEV &> /dev/null mkfs.btrfs -f $DEV # Use compression to quickly create files with a lot of extents # (each with a size of 128K). mount -o compress=lzo $DEV $MNT # 40G gives 327680 extents, each with a size of 128K. xfs_io -f -c "pwrite -S 0xab -b 1M 0 40G" $MNT/foobar # Add some more files to increase the size of the fs and extent # trees (in the real world there's a lot of files and extents # from other files). xfs_io -f -c "pwrite -S 0xcd -b 1M 0 20G" $MNT/file1 xfs_io -f -c "pwrite -S 0xef -b 1M 0 20G" $MNT/file2 xfs_io -f -c "pwrite -S 0x73 -b 1M 0 20G" $MNT/file3 # Create a snapshot so all the extents become indirectly shared # through subtrees, with a generation less than or equals to the # generation used to create the snapshot. btrfs subvolume snapshot -r $MNT $MNT/snap1 umount $MNT mount -o compress=lzo $DEV $MNT start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata not cached)" echo start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata cached)" umount $MNT Result before applying this patch: (...) /mnt/sdi/foobar: 327680 extents found fiemap took 1204 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 729 milliseconds (metadata cached) Result after applying this patch: (...) /mnt/sdi/foobar: 327680 extents found fiemap took 732 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 421 milliseconds (metadata cached) That's a -46.1% total reduction for the metadata not cached case, and a -42.2% reduction for the cached metadata case. The test is somewhat limited in the sense the gains may be higher in practice, because in the test the filesystem is small, so we have small fs and extent trees, plus there's no concurrent access to the trees as well, therefore no lock contention there. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
583f4ac562 |
btrfs: move up backref sharedness cache store and lookup functions
Move the static functions to lookup and store sharedness check of an extent buffer to a location above find_all_parents(), because in the next patch the lookup function will be used by find_all_parents(). The store function is also moved just because it's the counter part to the lookup function and it's best to have their definitions close together. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
73e339e6ab |
btrfs: cache sharedness of the last few data extents during fiemap
During fiemap we process all the file extent items of an inode, by their file offset order (left to right b+tree order), and then check if the data extent they point at is shared or not. Until now we didn't cache those results, we only did it for b+tree nodes/leaves since for each unique b+tree path we have access to hundreds of file extent items. However, it is also common to repeat checking the sharedness of a particular data extent in a very short time window, and the cases that lead to that are the following: 1) COW writes. If have a file extent item like this: [ bytenr X, offset = 0, num_bytes = 512K ] file offset 0 512K Then a 4K write into file offset 64K happens, we end up with the following file extent item layout: [ bytenr X, offset = 0, num_bytes = 64K ] file offset 0 64K [ bytenr Y, offset = 0, num_bytes = 4K ] file offset 64K 68K [ bytenr X, offset = 68K, num_bytes = 444K ] file offset 68K 512K So during fiemap we well check for the sharedness of the data extent with bytenr X twice. Typically for COW writes and for at least moderately updated files, we end up with many file extent items that point to different sections of the same data extent. 2) Writing into a NOCOW file after a snapshot is taken. This happens if the target extent was created in a generation older than the generation where the last snapshot for the root (the tree the inode belongs to) was made. This leads to a scenario like the previous one. 3) Writing into sections of a preallocated extent. For example if a file has the following layout: [ bytenr X, offset = 0, num_bytes = 1M, type = prealloc ] 0 1M After doing a 4K write into file offset 0 and another 4K write into offset 512K, we get the following layout: [ bytenr X, offset = 0, num_bytes = 4K, type = regular ] 0 4K [ bytenr X, offset = 4K, num_bytes = 508K, type = prealloc ] 4K 512K [ bytenr X, offset = 512K, num_bytes = 4K, type = regular ] 512K 516K [ bytenr X, offset = 516K, num_bytes = 508K, type = prealloc ] 516K 1M So we end up with 4 consecutive file extent items pointing to the data extent at bytenr X. 4) Hole punching in the middle of an extent. For example if a file has the following file extent item: [ bytenr X, offset = 0, num_bytes = 8M ] 0 8M And then hole is punched for the file range [4M, 6M[, we our file extent item split into two: [ bytenr X, offset = 0, num_bytes = 4M ] 0 4M [ 2M hole, implicit or explicit depending on NO_HOLES feature ] 4M 6M [ bytenr X, offset = 6M, num_bytes = 2M ] 6M 8M Again, we end up with two file extent items pointing to the same data extent. 5) When reflinking (clone and deduplication) within the same file. This is probably the least common case of all. In cases 1, 2, 4 and 4, when we have multiple file extent items that point to the same data extent, their distance is usually short, typically separated by a few slots in a b+tree leaf (or across sibling leaves). For case 5, the distance can vary a lot, but it's typically the less common case. This change caches the result of the sharedness checks for data extents, but only for the last 8 extents that we notice that our inode refers to with multiple file extent items. Whenever we want to check if a data extent is shared, we lookup the cache which consists of doing a linear scan of an 8 elements array, and if we find the data extent there, we return the result and don't check the extent tree and delayed refs. The array/cache is small so that doing the search has no noticeable negative impact on the performance in case we don't have file extent items within a distance of 8 slots that point to the same data extent. Slots in the cache/array are overwritten in a simple round robin fashion, as that approach fits very well. Using this simple approach with only the last 8 data extents seen is effective as usually when multiple file extents items point to the same data extent, their distance is within 8 slots. It also uses very little memory and the time to cache a result or lookup the cache is negligible. The following test was run on non-debug kernel (Debian's default kernel config) to measure the impact in the case of COW writes (first example given above), where we run fiemap after overwriting 33% of the blocks of a file: $ cat test.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi umount $DEV &> /dev/null mkfs.btrfs -f $DEV mount $DEV $MNT FILE_SIZE=$((1 * 1024 * 1024 * 1024)) # Create the file full of 1M extents. xfs_io -f -s -c "pwrite -b 1M -S 0xab 0 $FILE_SIZE" $MNT/foobar block_count=$((FILE_SIZE / 4096)) # Overwrite about 33% of the file blocks. overwrite_count=$((block_count / 3)) echo -e "\nOverwriting $overwrite_count 4K blocks (out of $block_count)..." RANDOM=123 for ((i = 1; i <= $overwrite_count; i++)); do off=$(((RANDOM % block_count) * 4096)) xfs_io -c "pwrite -S 0xcd $off 4K" $MNT/foobar > /dev/null echo -ne "\r$i blocks overwritten..." done echo -e "\n" # Unmount and mount to clear all cached metadata. umount $MNT mount $DEV $MNT start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds" umount $MNT Result before applying this patch: fiemap took 128 milliseconds Result after applying this patch: fiemap took 92 milliseconds (-28.1%) The test is somewhat limited in the sense the gains may be higher in practice, because in the test the filesystem is small, so we have small fs and extent trees, plus there's no concurrent access to the trees as well, therefore no lock contention there. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
56f5c19920 |
btrfs: remove useless logic when finding parent nodes
At find_parent_nodes(), at its last step, when iterating over all direct references, we are checking if we have a share context and if we have a reference with a different root from the one in the share context. However that logic is pointless because of two reasons: 1) After the previous patch in the series (subject "btrfs: remove roots ulist when checking data extent sharedness"), the roots argument is always NULL when using a share check context (struct share_check), so this code is never triggered; 2) Even before that previous patch, we could not hit this code because if we had a reference with a root different from the one in our share context, then we would have exited earlier when doing either of the following: - Adding a second direct ref to the direct refs red black tree resulted in extent_is_shared() returning true when called from add_direct_ref() -> add_prelim_ref(), after processing delayed references or while processing references in the extent tree; - When adding a second reference to the indirect refs red black tree (same as above, extent_is_shared() returns true); - If we only have one indirect reference and no direct references, then when resolving it at resolve_indirect_refs() we immediately return that the target extent is shared, therefore never reaching that loop that iterates over all direct references at find_parent_nodes(); - If we have 1 indirect reference and 1 direct reference, then we also exit early because extent_is_shared() ends up returning true when called through add_prelim_ref() (by add_direct_ref() or add_indirect_ref()) or add_delayed_refs(). Same applies as when having a combination of direct, indirect and indirect with missing key references. This logic had been obsoleted since commit 3ec4d3238ab165 ("btrfs: allow backref search checks for shared extents"), which introduced the early exits in case an extent is shared. So just remove that logic, and assert at find_parent_nodes() that when we have a share context we don't have a roots ulist and that we haven't found the extent to be directly shared after processing delayed references and all references from the extent tree. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
b629685803 |
btrfs: remove roots ulist when checking data extent sharedness
Currently btrfs_is_data_extent_shared() is passing a ulist for the roots argument of find_parent_nodes(), however it does not use that ulist for anything and for this context that list always ends up with at most one element. Since find_parent_nodes() is able to deal with a NULL ulist for its roots argument, make btrfs_is_data_extent_shared() pass it NULL and avoid the burden of allocating memory for the unnused roots ulist, initializing it, releasing it and allocating one struct ulist_node for it during the call to find_parent_nodes(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |