We have identified a problem with the "oversubscription" policy in the
link transmission code.
When small messages are transmitted, and the sending link has reached
the transmit window limit, those messages will be bundled and put into
the link backlog queue. However, bundles of data messages are counted
at the 'CRITICAL' level, so that the counter for that level, instead of
the counter for the real, bundled message's level is the one being
increased.
Subsequent, to-be-bundled data messages at non-CRITICAL levels continue
to be tested against the unchanged counter for their own level, while
contributing to an unrestrained increase at the CRITICAL backlog level.
This leaves a gap in congestion control algorithm for small messages
that can result in starvation for other users or a "real" CRITICAL
user. Even that eventually can lead to buffer exhaustion & link reset.
We fix this by keeping a 'target_bskb' buffer pointer at each levels,
then when bundling, we only bundle messages at the same importance
level only. This way, we know exactly how many slots a certain level
have occupied in the queue, so can manage level congestion accurately.
By bundling messages at the same level, we even have more benefits. Let
consider this:
- One socket sends 64-byte messages at the 'CRITICAL' level;
- Another sends 4096-byte messages at the 'LOW' level;
When a 64-byte message comes and is bundled the first time, we put the
overhead of message bundle to it (+ 40-byte header, data copy, etc.)
for later use, but the next message can be a 4096-byte one that cannot
be bundled to the previous one. This means the last bundle carries only
one payload message which is totally inefficient, as for the receiver
also! Later on, another 64-byte message comes, now we make a new bundle
and the same story repeats...
With the new bundling algorithm, this will not happen, the 64-byte
messages will be bundled together even when the 4096-byte message(s)
comes in between. However, if the 4096-byte messages are sent at the
same level i.e. 'CRITICAL', the bundling algorithm will again cause the
same overhead.
Also, the same will happen even with only one socket sending small
messages at a rate close to the link transmit's one, so that, when one
message is bundled, it's transmitted shortly. Then, another message
comes, a new bundle is created and so on...
We will solve this issue radically by another patch.
Fixes: 365ad353c256 ("tipc: reduce risk of user starvation during link congestion")
Reported-by: Hoang Le <hoang.h.le@dektech.com.au>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Merge conflict of mlx5 resolved using instructions in merge
commit 9566e650bf7fdf58384bb06df634f7531ca3a97e.
Signed-off-by: David S. Miller <davem@davemloft.net>
The policy for handling the skb list locks on the send and receive paths
is simple.
- On the send path we never need to grab the lock on the 'xmitq' list
when the destination is an exernal node.
- On the receive path we always need to grab the lock on the 'inputq'
list, irrespective of source node.
However, when transmitting node local messages those will eventually
end up on the receive path of a local socket, meaning that the argument
'xmitq' in tipc_node_xmit() will become the 'ínputq' argument in the
function tipc_sk_rcv(). This has been handled by always initializing
the spinlock of the 'xmitq' list at message creation, just in case it
may end up on the receive path later, and despite knowing that the lock
in most cases never will be used.
This approach is inaccurate and confusing, and has also concealed the
fact that the stated 'no lock grabbing' policy for the send path is
violated in some cases.
We now clean up this by never initializing the lock at message creation,
instead doing this at the moment we find that the message actually will
enter the receive path. At the same time we fix the four locations
where we incorrectly access the spinlock on the send/error path.
This patch also reverts commit d12cffe9329f ("tipc: ensure head->lock
is initialised") which has now become redundant.
CC: Eric Dumazet <edumazet@google.com>
Reported-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Xin Long <lucien.xin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit eliminates the use of the link 'stale_limit' & 'prev_from'
(besides the already removed - 'stale_cnt') variables in the detection
of repeated retransmit failures as there is no proper way to initialize
them to avoid a false detection, i.e. it is not really a retransmission
failure but due to a garbage values in the variables.
Instead, a jiffies variable will be added to individual skbs (like the
way we restrict the skb retransmissions) in order to mark the first skb
retransmit time. Later on, at the next retransmissions, the timestamp
will be checked to see if the skb in the link transmq is "too stale",
that is, the link tolerance time has passed, so that a link reset will
be ordered. Note, just checking on the first skb in the queue is fine
enough since it must be the oldest one.
A counter is also added to keep track the actual skb retransmissions'
number for later checking when the failure happens.
The downside of this approach is that the skb->cb[] buffer is about to
be exhausted, however it is always able to allocate another memory area
and keep a reference to it when needed.
Fixes: 77cf8edbc0e7 ("tipc: simplify stale link failure criteria")
Reported-by: Hoang Le <hoang.h.le@dektech.com.au>
Acked-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit 365ad353c256 ("tipc: reduce risk of user starvation during
link congestion") we allowed senders to add exactly one list of extra
buffers to the link backlog queues during link congestion (aka
"oversubscription"). However, the criteria for when to stop adding
wakeup messages to the input queue when the overload abates is
inaccurate, and may cause starvation problems during very high load.
Currently, we stop adding wakeup messages after 10 total failed attempts
where we find that there is no space left in the backlog queue for a
certain importance level. The counter for this is accumulated across all
levels, which may lead the algorithm to leave the loop prematurely,
although there may still be plenty of space available at some levels.
The result is sometimes that messages near the wakeup queue tail are not
added to the input queue as they should be.
We now introduce a more exact algorithm, where we keep adding wakeup
messages to a level as long as the backlog queue has free slots for
the corresponding level, and stop at the moment there are no more such
slots or when there are no more wakeup messages to dequeue.
Fixes: 365ad35 ("tipc: reduce risk of user starvation during link congestion")
Reported-by: Tung Nguyen <tung.q.nguyen@dektech.com.au>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In conjunction with changing the interfaces' MTU (e.g. especially in
the case of a bonding) where the TIPC links are brought up and down
in a short time, a couple of issues were detected with the current link
changeover mechanism:
1) When one link is up but immediately forced down again, the failover
procedure will be carried out in order to failover all the messages in
the link's transmq queue onto the other working link. The link and node
state is also set to FAILINGOVER as part of the process. The message
will be transmited in form of a FAILOVER_MSG, so its size is plus of 40
bytes (= the message header size). There is no problem if the original
message size is not larger than the link's MTU - 40, and indeed this is
the max size of a normal payload messages. However, in the situation
above, because the link has just been up, the messages in the link's
transmq are almost SYNCH_MSGs which had been generated by the link
synching procedure, then their size might reach the max value already!
When the FAILOVER_MSG is built on the top of such a SYNCH_MSG, its size
will exceed the link's MTU. As a result, the messages are dropped
silently and the failover procedure will never end up, the link will
not be able to exit the FAILINGOVER state, so cannot be re-established.
2) The same scenario above can happen more easily in case the MTU of
the links is set differently or when changing. In that case, as long as
a large message in the failure link's transmq queue was built and
fragmented with its link's MTU > the other link's one, the issue will
happen (there is no need of a link synching in advance).
3) The link synching procedure also faces with the same issue but since
the link synching is only started upon receipt of a SYNCH_MSG, dropping
the message will not result in a state deadlock, but it is not expected
as design.
The 1) & 3) issues are resolved by the last commit that only a dummy
SYNCH_MSG (i.e. without data) is generated at the link synching, so the
size of a FAILOVER_MSG if any then will never exceed the link's MTU.
For the 2) issue, the only solution is trying to fragment the messages
in the failure link's transmq queue according to the working link's MTU
so they can be failovered then. A new function is made to accomplish
this, it will still be a TUNNEL PROTOCOL/FAILOVER MSG but if the
original message size is too large, it will be fragmented & reassembled
at the receiving side.
Acked-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit along with the next one are to resolve the issues with the
link changeover mechanism. See that commit for details.
Basically, for the link synching, from now on, we will send only one
single ("dummy") SYNCH message to peer. The SYNCH message does not
contain any data, just a header conveying the synch point to the peer.
A new node capability flag ("TIPC_TUNNEL_ENHANCED") is introduced for
backward compatible!
Acked-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Suggested-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
The macro TIPC_BC_RETR_LIM is always used in combination with 'jiffies',
so we can just as well perform the addition in the macro itself. This
way, we get a few shorter code lines and one less line break.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We rename the inline function msg_get_wrapped() to the more
comprehensible msg_inner_hdr().
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We increase the allocated headroom for the buffer copies to be
retransmitted. This eliminates the need for the lower stack levels
(UDP/IP/L2) to expand the headroom in order to add their own headers.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit a4dc70d46cf1 ("tipc: extend link reset criteria for stale
packet retransmission") we made link retransmission failure events
dependent on the link tolerance, and not only of the number of failed
retransmission attempts, as we did earlier. This works well. However,
keeping the original, additional criteria of 99 failed retransmissions
is now redundant, and may in some cases lead to failure detection
times in the order of minutes instead of the expected 1.5 sec link
tolerance value.
We now remove this criteria altogether.
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It appears that a FAILOVER_MSG can come from peer even when the failure
link is resetting (i.e. just after the 'node_write_unlock()'...). This
means the failover procedure on the node has not been started yet.
The situation is as follows:
node1 node2
linkb linka linka linkb
| | | |
| | x failure |
| | RESETTING |
| | | |
| x failure RESET |
| RESETTING FAILINGOVER |
| | (FAILOVER_MSG) | |
|<-------------------------------------------------|
| *FAILINGOVER | | |
| | (dummy FAILOVER_MSG) | |
|------------------------------------------------->|
| RESET | | FAILOVER_END
| FAILINGOVER RESET |
. . . .
. . . .
. . . .
Once this happens, the link failover procedure will be triggered
wrongly on the receiving node since the node isn't in FAILINGOVER state
but then another link failover will be carried out.
The consequences are:
1) A peer might get stuck in FAILINGOVER state because the 'sync_point'
was set, reset and set incorrectly, the criteria to end the failover
would not be met, it could keep waiting for a message that has already
received.
2) The early FAILOVER_MSG(s) could be queued in the link failover
deferdq but would be purged or not pulled out because the 'drop_point'
was not set correctly.
3) The early FAILOVER_MSG(s) could be dropped too.
4) The dummy FAILOVER_MSG could make the peer leaving FAILINGOVER state
shortly, but later on it would be restarted.
The same situation can also happen when the link is in PEER_RESET state
and a FAILOVER_MSG arrives.
The commit resolves the issues by forcing the link down immediately, so
the failover procedure will be started normally (which is the same as
when receiving a FAILOVER_MSG and the link is in up state).
Also, the function "tipc_node_link_failover()" is toughen to avoid such
a situation from happening.
Acked-by: Jon Maloy <jon.maloy@ericsson.se>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
In patch series, commit 9195948fbf34 ("tipc: improve TIPC throughput by
Gap ACK blocks"), as for simplicity, the repeated retransmit failures'
detection in the function - "tipc_link_retrans()" was kept there for
broadcast retransmissions only.
This commit now reapplies this feature for link unicast retransmissions
that has been done via the function - "tipc_link_advance_transmq()".
Also, the "tipc_link_retrans()" is renamed to "tipc_link_bc_retrans()"
as it is used only for broadcast.
Acked-by: Jon Maloy <jon.maloy@ericsson.se>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
TIPC link can temporarily fall into "half-establish" that only one of
the link endpoints is ESTABLISHED and starts to send traffic, PROTOCOL
messages, whereas the other link endpoint is not up (e.g. immediately
when the endpoint receives ACTIVATE_MSG, the network interface goes
down...).
This is a normal situation and will be settled because the link
endpoint will be eventually brought down after the link tolerance time.
However, the situation will become worse when the second link is
established before the first link endpoint goes down,
For example:
1. Both links <1A-2A>, <1B-2B> down
2. Link endpoint 2A up, but 1A still down (e.g. due to network
disturbance, wrong session, etc.)
3. Link <1B-2B> up
4. Link endpoint 2A down (e.g. due to link tolerance timeout)
5. Node B starts failover onto link <1B-2B>
==> Node A does never start link failover.
When the "half-failover" situation happens, two consequences have been
observed:
a) Peer link/node gets stuck in FAILINGOVER state;
b) Traffic or user messages that peer node is trying to failover onto
the second link can be partially or completely dropped by this node.
The consequence a) was actually solved by commit c140eb166d68 ("tipc:
fix failover problem"), but that commit didn't cover the b). It's due
to the fact that the tunnel link endpoint has never been prepared for a
failover, so the 'l->drop_point' (and the other data...) is not set
correctly. When a TUNNEL_MSG from peer node arrives on the link,
depending on the inner message's seqno and the current 'l->drop_point'
value, the message can be dropped (- treated as a duplicate message) or
processed.
At this early stage, the traffic messages from peer are likely to be
NAME_DISTRIBUTORs, this means some name table entries will be missed on
the node forever!
The commit resolves the issue by starting the FAILOVER process on this
node as well. Another benefit from this solution is that we ensure the
link will not be re-established until the failover ends.
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
We currently have two levels of strict validation:
1) liberal (default)
- undefined (type >= max) & NLA_UNSPEC attributes accepted
- attribute length >= expected accepted
- garbage at end of message accepted
2) strict (opt-in)
- NLA_UNSPEC attributes accepted
- attribute length >= expected accepted
Split out parsing strictness into four different options:
* TRAILING - check that there's no trailing data after parsing
attributes (in message or nested)
* MAXTYPE - reject attrs > max known type
* UNSPEC - reject attributes with NLA_UNSPEC policy entries
* STRICT_ATTRS - strictly validate attribute size
The default for future things should be *everything*.
The current *_strict() is a combination of TRAILING and MAXTYPE,
and is renamed to _deprecated_strict().
The current regular parsing has none of this, and is renamed to
*_parse_deprecated().
Additionally it allows us to selectively set one of the new flags
even on old policies. Notably, the UNSPEC flag could be useful in
this case, since it can be arranged (by filling in the policy) to
not be an incompatible userspace ABI change, but would then going
forward prevent forgetting attribute entries. Similar can apply
to the POLICY flag.
We end up with the following renames:
* nla_parse -> nla_parse_deprecated
* nla_parse_strict -> nla_parse_deprecated_strict
* nlmsg_parse -> nlmsg_parse_deprecated
* nlmsg_parse_strict -> nlmsg_parse_deprecated_strict
* nla_parse_nested -> nla_parse_nested_deprecated
* nla_validate_nested -> nla_validate_nested_deprecated
Using spatch, of course:
@@
expression TB, MAX, HEAD, LEN, POL, EXT;
@@
-nla_parse(TB, MAX, HEAD, LEN, POL, EXT)
+nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT)
@@
expression NLH, HDRLEN, TB, MAX, POL, EXT;
@@
-nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT)
+nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT)
@@
expression NLH, HDRLEN, TB, MAX, POL, EXT;
@@
-nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT)
+nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT)
@@
expression TB, MAX, NLA, POL, EXT;
@@
-nla_parse_nested(TB, MAX, NLA, POL, EXT)
+nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT)
@@
expression START, MAX, POL, EXT;
@@
-nla_validate_nested(START, MAX, POL, EXT)
+nla_validate_nested_deprecated(START, MAX, POL, EXT)
@@
expression NLH, HDRLEN, MAX, POL, EXT;
@@
-nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT)
+nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT)
For this patch, don't actually add the strict, non-renamed versions
yet so that it breaks compile if I get it wrong.
Also, while at it, make nla_validate and nla_parse go down to a
common __nla_validate_parse() function to avoid code duplication.
Ultimately, this allows us to have very strict validation for every
new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the
next patch, while existing things will continue to work as is.
In effect then, this adds fully strict validation for any new command.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Even if the NLA_F_NESTED flag was introduced more than 11 years ago, most
netlink based interfaces (including recently added ones) are still not
setting it in kernel generated messages. Without the flag, message parsers
not aware of attribute semantics (e.g. wireshark dissector or libmnl's
mnl_nlmsg_fprintf()) cannot recognize nested attributes and won't display
the structure of their contents.
Unfortunately we cannot just add the flag everywhere as there may be
userspace applications which check nlattr::nla_type directly rather than
through a helper masking out the flags. Therefore the patch renames
nla_nest_start() to nla_nest_start_noflag() and introduces nla_nest_start()
as a wrapper adding NLA_F_NESTED. The calls which add NLA_F_NESTED manually
are rewritten to use nla_nest_start().
Except for changes in include/net/netlink.h, the patch was generated using
this semantic patch:
@@ expression E1, E2; @@
-nla_nest_start(E1, E2)
+nla_nest_start_noflag(E1, E2)
@@ expression E1, E2; @@
-nla_nest_start_noflag(E1, E2 | NLA_F_NESTED)
+nla_nest_start(E1, E2)
Signed-off-by: Michal Kubecek <mkubecek@suse.cz>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Acked-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
According to the link FSM, when a link endpoint got RESET_MSG (- a
traditional one without the stopping bit) from its peer, it moves to
PEER_RESET state and raises a LINK_DOWN event which then resets the
link itself. Its state will become ESTABLISHING after the reset event
and the link will be re-established soon after this endpoint starts to
send ACTIVATE_MSG to the peer.
There is no problem with this mechanism, however the link resetting has
cleared the link 'in_session' flag (along with the other important link
data such as: the link 'mtu') that was correctly set up at the 1st step
(i.e. when this endpoint received the peer RESET_MSG). As a result, the
link will become ESTABLISHED, but the 'in_session' flag is not set, and
all STATE_MSG from its peer will be dropped at the link_validate_msg().
It means the link not synced and will sooner or later face a failure.
Since the link reset action is obviously needed for a new link session
(this is also true in the other situations), the problem here is that
the link is re-established a bit too early when the link endpoints are
not really in-sync yet. The commit forces a resync as already done in
the previous commit 91986ee166cf ("tipc: fix link session and
re-establish issues") by simply varying the link 'peer_session' value
at the link_reset().
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit 0ae955e2656d ("tipc: improve TIPC throughput by Gap ACK
blocks"), we enhance the link transmq by releasing as many packets as
possible with the multi-ACKs from peer node. This also means the queue
is now non-linear and the peer link deferdq becomes vital.
Whereas, in the case of link failover, all messages in the link transmq
need to be transmitted as tunnel messages in such a way that message
sequentiality and cardinality per sender is preserved. This requires us
to maintain the link deferdq somehow, so that when the tunnel messages
arrive, the inner user messages along with the ones in the deferdq will
be delivered to upper layer correctly.
The commit accomplishes this by defining a new queue in the TIPC link
structure to hold the old link deferdq when link failover happens and
process it upon receipt of tunnel messages.
Also, in the case of link syncing, the link deferdq will not be purged
to avoid unnecessary retransmissions that in the worst case will fail
because the packets might have been freed on the sending side.
Acked-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
For unicast transmission, the current NACK sending althorithm is over-
active that forces the sending side to retransmit a packet that is not
really lost but just arrived at the receiving side with some delay, or
even retransmit same packets that have already been retransmitted
before. As a result, many duplicates are observed also under normal
condition, ie. without packet loss.
One example case is: node1 transmits 1 2 3 4 10 5 6 7 8 9, when node2
receives packet #10, it puts into the deferdq. When the packet #5 comes
it sends NACK with gap [6 - 9]. However, shortly after that, when
packet #6 arrives, it pulls out packet #10 from the deferfq, but it is
still out of order, so it makes another NACK with gap [7 - 9] and so on
... Finally, node1 has to retransmit the packets 5 6 7 8 9 a number of
times, but in fact all the packets are not lost at all, so duplicates!
This commit reduces duplicates by changing the condition to send NACK,
also restricting the retransmissions on individual packets via a timer
of about 1ms. However, it also needs to say that too tricky condition
for NACKs or too long timeout value for retransmissions will result in
performance reducing! The criterias in this commit are found to be
effective for both the requirements to reduce duplicates but not affect
performance.
The tipc_link_rcv() is also improved to only dequeue skb from the link
deferdq if it is expected (ie. its seqno <= rcv_nxt).
Acked-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
During unicast link transmission, it's observed very often that because
of one or a few lost/dis-ordered packets, the sending side will fastly
reach the send window limit and must wait for the packets to be arrived
at the receiving side or in the worst case, a retransmission must be
done first. The sending side cannot release a lot of subsequent packets
in its transmq even though all of them might have already been received
by the receiving side.
That is, one or two packets dis-ordered/lost and dozens of packets have
to wait, this obviously reduces the overall throughput!
This commit introduces an algorithm to overcome this by using "Gap ACK
blocks". Basically, a Gap ACK block will consist of <ack, gap> numbers
that describes the link deferdq where packets have been got by the
receiving side but with gaps, for example:
link deferdq: [1 2 3 4 10 11 13 14 15 20]
--> Gap ACK blocks: <4, 5>, <11, 1>, <15, 4>, <20, 0>
The Gap ACK blocks will be sent to the sending side along with the
traditional ACK or NACK message. Immediately when receiving the message
the sending side will now not only release from its transmq the packets
ack-ed by the ACK but also by the Gap ACK blocks! So, more packets can
be enqueued and transmitted.
In addition, the sending side can now do "multi-retransmissions"
according to the Gaps reported in the Gap ACK blocks.
The new algorithm as verified helps greatly improve the TIPC throughput
especially under packet loss condition.
So far, a maximum of 32 blocks is quite enough without any "Too few Gap
ACK blocks" reports with a 5.0% packet loss rate, however this number
can be increased in the furture if needed.
Also, the patch is backward compatible.
Acked-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, a multicast stream uses either broadcast or replicast as
transmission method, based on the ratio between number of actual
destinations nodes and cluster size.
However, when an L2 interface (e.g., VXLAN) provides pseudo
broadcast support, this becomes very inefficient, as it blindly
replicates multicast packets to all cluster/subnet nodes,
irrespective of whether they host actual target sockets or not.
The TIPC multicast algorithm is able to distinguish real destination
nodes from other nodes, and hence provides a smarter and more
efficient method for transferring multicast messages than
pseudo broadcast can do.
Because of this, we now make it possible for users to force
the broadcast link to permanently switch to using replicast,
irrespective of which capabilities the bearer provides,
or pretend to provide.
Conversely, we also make it possible to force the broadcast link
to always use true broadcast. While maybe less useful in
deployed systems, this may at least be useful for testing the
broadcast algorithm in small clusters.
We retain the current AUTOSELECT ability, i.e., to let the broadcast link
automatically select which algorithm to use, and to switch back and forth
between broadcast and replicast as the ratio between destination
node number and cluster size changes. This remains the default method.
Furthermore, we make it possible to configure the threshold ratio for
such switches. The default ratio is now set to 10%, down from 25% in the
earlier implementation.
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Hoang Le <hoang.h.le@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
The netfilter conflicts were rather simple overlapping
changes.
However, the cls_tcindex.c stuff was a bit more complex.
On the 'net' side, Cong is fixing several races and memory
leaks. Whilst on the 'net-next' side we have Vlad adding
the rtnl-ness support.
What I've decided to do, in order to resolve this, is revert the
conversion over to using a workqueue that Cong did, bringing us back
to pure RCU. I did it this way because I believe that either Cong's
races don't apply with have Vlad did things, or Cong will have to
implement the race fix slightly differently.
Signed-off-by: David S. Miller <davem@davemloft.net>
When a link endpoint is re-created (e.g. after a node reboot or
interface reset), the link session number is varied by random, the peer
endpoint will be synced with this new session number before the link is
re-established.
However, there is a shortcoming in this mechanism that can lead to the
link never re-established or faced with a failure then. It happens when
the peer endpoint is ready in ESTABLISHING state, the 'peer_session' as
well as the 'in_session' flag have been set, but suddenly this link
endpoint leaves. When it comes back with a random session number, there
are two situations possible:
1/ If the random session number is larger than (or equal to) the
previous one, the peer endpoint will be updated with this new session
upon receipt of a RESET_MSG from this endpoint, and the link can be re-
established as normal. Otherwise, all the RESET_MSGs from this endpoint
will be rejected by the peer. In turn, when this link endpoint receives
one ACTIVATE_MSG from the peer, it will move to ESTABLISHED and start
to send STATE_MSGs, but again these messages will be dropped by the
peer due to wrong session.
The peer link endpoint can still become ESTABLISHED after receiving a
traffic message from this endpoint (e.g. a BCAST_PROTOCOL or
NAME_DISTRIBUTOR), but since all the STATE_MSGs are invalid, the link
will be forced down sooner or later!
Even in case the random session number is larger than the previous one,
it can be that the ACTIVATE_MSG from the peer arrives first, and this
link endpoint moves quickly to ESTABLISHED without sending out any
RESET_MSG yet. Consequently, the peer link will not be updated with the
new session number, and the same link failure scenario as above will
happen.
2/ Another situation can be that, the peer link endpoint was reset due
to any reasons in the meantime, its link state was set to RESET from
ESTABLISHING but still in session, i.e. the 'in_session' flag is not
reset...
Now, if the random session number from this endpoint is less than the
previous one, all the RESET_MSGs from this endpoint will be rejected by
the peer. In the other direction, when this link endpoint receives a
RESET_MSG from the peer, it moves to ESTABLISHING and starts to send
ACTIVATE_MSGs, but all these messages will be rejected by the peer too.
As a result, the link cannot be re-established but gets stuck with this
link endpoint in state ESTABLISHING and the peer in RESET!
Solution:
===========
This link endpoint should not go directly to ESTABLISHED when getting
ACTIVATE_MSG from the peer which may belong to the old session if the
link was re-created. To ensure the session to be correct before the
link is re-established, the peer endpoint in ESTABLISHING state will
send back the last session number in ACTIVATE_MSG for a verification at
this endpoint. Then, if needed, a new and more appropriate session
number will be regenerated to force a re-synch first.
In addition, when a link in ESTABLISHING state is reset, its state will
move to RESET according to the link FSM, along with resetting the
'in_session' flag (and the other data) as a normal link reset, it will
also be deleted if requested.
The solution is backward compatible.
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
When we free skb at tipc_data_input, we return a 'false' boolean.
Then, skb passed to subcalling tipc_link_input in tipc_link_rcv,
<snip>
1303 int tipc_link_rcv:
...
1354 if (!tipc_data_input(l, skb, l->inputq))
1355 rc |= tipc_link_input(l, skb, l->inputq);
</snip>
Fix it by simple changing to a 'true' boolean when skb is being free-ed.
Then, tipc_link_rcv will bypassed to subcalling tipc_link_input as above
condition.
Acked-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <maloy@donjonn.com>
Signed-off-by: Hoang Le <hoang.h.le@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.
This patch fixes the following warnings:
net/tipc/link.c:1125:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
net/tipc/socket.c:736:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
net/tipc/socket.c:2418:7: warning: this statement may fall through [-Wimplicit-fallthrough=]
Warning level 3 was used: -Wimplicit-fallthrough=3
This patch is part of the ongoing efforts to enabling
-Wimplicit-fallthrough.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When sending broadcast message on high load system, there are a lot of
unnecessary packets restranmission. That issue was caused by missing in
initial criteria for retransmission.
To prevent this happen, just initialize this criteria for retransmission
in next 10 milliseconds.
Fixes: 31c4f4cc32f7 ("tipc: improve broadcast retransmission algorithm")
Acked-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Hoang Le <hoang.h.le@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
The commit adds the new trace_events for TIPC link object:
trace_tipc_link_timeout()
trace_tipc_link_fsm()
trace_tipc_link_reset()
trace_tipc_link_too_silent()
trace_tipc_link_retrans()
trace_tipc_link_bc_ack()
trace_tipc_link_conges()
And the traces for PROTOCOL messages at building and receiving:
trace_tipc_proto_build()
trace_tipc_proto_rcv()
Note:
a) The 'tipc_link_too_silent' event will only happen when the
'silent_intv_cnt' is about to reach the 'abort_limit' value (and the
event is enabled). The benefit for this kind of event is that we can
get an early indication about TIPC link loss issue due to timeout, then
can do some necessary actions for troubleshooting.
For example: To trigger the 'tipc_proto_rcv' when the 'too_silent'
event occurs:
echo 'enable_event:tipc:tipc_proto_rcv' > \
events/tipc/tipc_link_too_silent/trigger
And disable it when TIPC link is reset:
echo 'disable_event:tipc:tipc_proto_rcv' > \
events/tipc/tipc_link_reset/trigger
b) The 'tipc_link_retrans' or 'tipc_link_bc_ack' event is useful to
trace TIPC retransmission issues.
In addition, the commit adds the 'trace_tipc_list/link_dump()' at the
'retransmission failure' case. Then, if the issue occurs, the link
'transmq' along with the link data can be dumped for post-analysis.
These dump events should be enabled by default since it will only take
effect when the failure happens.
The same approach is also applied for the faulty case that the
validation of protocol message is failed.
Acked-by: Ying Xue <ying.xue@windriver.com>
Tested-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
As for the sake of debugging/tracing, the commit enables tracepoints in
TIPC along with some general trace_events as shown below. It also
defines some 'tipc_*_dump()' functions that allow to dump TIPC object
data whenever needed, that is, for general debug purposes, ie. not just
for the trace_events.
The following trace_events are now available:
- trace_tipc_skb_dump(): allows to trace and dump TIPC msg & skb data,
e.g. message type, user, droppable, skb truesize, cloned skb, etc.
- trace_tipc_list_dump(): allows to trace and dump any TIPC buffers or
queues, e.g. TIPC link transmq, socket receive queue, etc.
- trace_tipc_sk_dump(): allows to trace and dump TIPC socket data, e.g.
sk state, sk type, connection type, rmem_alloc, socket queues, etc.
- trace_tipc_link_dump(): allows to trace and dump TIPC link data, e.g.
link state, silent_intv_cnt, gap, bc_gap, link queues, etc.
- trace_tipc_node_dump(): allows to trace and dump TIPC node data, e.g.
node state, active links, capabilities, link entries, etc.
How to use:
Put the trace functions at any places where we want to dump TIPC data
or events.
Note:
a) The dump functions will generate raw data only, that is, to offload
the trace event's processing, it can require a tool or script to parse
the data but this should be simple.
b) The trace_tipc_*_dump() should be reserved for a failure cases only
(e.g. the retransmission failure case) or where we do not expect to
happen too often, then we can consider enabling these events by default
since they will almost not take any effects under normal conditions,
but once the rare condition or failure occurs, we get the dumped data
fully for post-analysis.
For other trace purposes, we can reuse these trace classes as template
but different events.
c) A trace_event is only effective when we enable it. To enable the
TIPC trace_events, echo 1 to 'enable' files in the events/tipc/
directory in the 'debugfs' file system. Normally, they are located at:
/sys/kernel/debug/tracing/events/tipc/
For example:
To enable the tipc_link_dump event:
echo 1 > /sys/kernel/debug/tracing/events/tipc/tipc_link_dump/enable
To enable all the TIPC trace_events:
echo 1 > /sys/kernel/debug/tracing/events/tipc/enable
To collect the trace data:
cat trace
or
cat trace_pipe > /trace.out &
To disable all the TIPC trace_events:
echo 0 > /sys/kernel/debug/tracing/events/tipc/enable
To clear the trace buffer:
echo > trace
d) Like the other trace_events, the feature like 'filter' or 'trigger'
is also usable for the tipc trace_events.
For more details, have a look at:
Documentation/trace/ftrace.txt
MAINTAINERS | add two new files 'trace.h' & 'trace.c' in tipc
Acked-by: Ying Xue <ying.xue@windriver.com>
Tested-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a link failure is detected locally, the link is reset, the flag
link->in_session is set to false, and a RESET_MSG with the 'stopping'
bit set is sent to the peer.
The purpose of this bit is to inform the peer that this endpoint just
is going down, and that the peer should handle the reception of this
particular RESET message as a local failure. This forces the peer to
accept another RESET or ACTIVATE message from this endpoint before it
can re-establish the link. This again is necessary to ensure that
link session numbers are properly exchanged before the link comes up
again.
If a failure is detected locally at the same time at the peer endpoint
this will do the same, which is also a correct behavior.
However, when receiving such messages, the endpoints will not
distinguish between 'stopping' RESETs and ordinary ones when it comes
to updating session numbers. Both endpoints will copy the received
session number and set their 'in_session' flags to true at the
reception, while they are still expecting another RESET from the
peer before they can go ahead and re-establish. This is contradictory,
since, after applying the validation check referred to below, the
'in_session' flag will cause rejection of all such messages, and the
link will never come up again.
We now fix this by not only handling received RESET/STOPPING messages
as a local failure, but also by omitting to set a new session number
and the 'in_session' flag in such cases.
Fixes: 7ea817f4e832 ("tipc: check session number before accepting link protocol messages")
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, the broadcast retransmission algorithm is using the
'prev_retr' field in struct tipc_link to time stamp the latest broadcast
retransmission occasion. This helps to restrict retransmission of
individual broadcast packets to max once per 10 milliseconds, even
though all other criteria for retransmission are met.
We now move this time stamp to the control block of each individual
packet, and remove other limiting criteria. This simplifies the
retransmission algorithm, and eliminates any risk of logical errors
in selecting which packets can be retransmitted.
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: LUU Duc Canh <canh.d.luu@dektech.com.au>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the commit referred to below we added link tolerance as an additional
criteria for declaring broadcast transmission "stale" and resetting the
unicast links to the affected node.
Unfortunately, this 'improvement' introduced two bugs, which each and
one alone cause only limited problems, but combined lead to seemingly
stochastic unicast link resets, depending on the amount of broadcast
traffic transmitted.
The first issue, a missing initialization of the 'tolerance' field of
the receiver broadcast link, was recently fixed by commit 047491ea334a
("tipc: set link tolerance correctly in broadcast link").
Ths second issue, where we omit to reset the 'stale_cnt' field of
the same link after a 'stale' period is over, leads to this counter
accumulating over time, and in the absence of the 'tolerance' criteria
leads to the above described symptoms. This commit adds the missing
initialization.
Fixes: a4dc70d46cf1 ("tipc: extend link reset criteria for stale packet retransmission")
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When booting kernel with LOCKDEP option, below warning info was found:
WARNING: possible recursive locking detected
4.19.0-rc7+ #14 Not tainted
--------------------------------------------
swapper/0/1 is trying to acquire lock:
00000000dcfc0fc8 (&(&list->lock)->rlock#4){+...}, at: spin_lock_bh
include/linux/spinlock.h:334 [inline]
00000000dcfc0fc8 (&(&list->lock)->rlock#4){+...}, at:
tipc_link_reset+0x125/0xdf0 net/tipc/link.c:850
but task is already holding lock:
00000000cbb9b036 (&(&list->lock)->rlock#4){+...}, at: spin_lock_bh
include/linux/spinlock.h:334 [inline]
00000000cbb9b036 (&(&list->lock)->rlock#4){+...}, at:
tipc_link_reset+0xfa/0xdf0 net/tipc/link.c:849
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(&list->lock)->rlock#4);
lock(&(&list->lock)->rlock#4);
*** DEADLOCK ***
May be due to missing lock nesting notation
2 locks held by swapper/0/1:
#0: 00000000f7539d34 (pernet_ops_rwsem){+.+.}, at:
register_pernet_subsys+0x19/0x40 net/core/net_namespace.c:1051
#1: 00000000cbb9b036 (&(&list->lock)->rlock#4){+...}, at:
spin_lock_bh include/linux/spinlock.h:334 [inline]
#1: 00000000cbb9b036 (&(&list->lock)->rlock#4){+...}, at:
tipc_link_reset+0xfa/0xdf0 net/tipc/link.c:849
stack backtrace:
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.19.0-rc7+ #14
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x1af/0x295 lib/dump_stack.c:113
print_deadlock_bug kernel/locking/lockdep.c:1759 [inline]
check_deadlock kernel/locking/lockdep.c:1803 [inline]
validate_chain kernel/locking/lockdep.c:2399 [inline]
__lock_acquire+0xf1e/0x3c60 kernel/locking/lockdep.c:3411
lock_acquire+0x1db/0x520 kernel/locking/lockdep.c:3900
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:135 [inline]
_raw_spin_lock_bh+0x31/0x40 kernel/locking/spinlock.c:168
spin_lock_bh include/linux/spinlock.h:334 [inline]
tipc_link_reset+0x125/0xdf0 net/tipc/link.c:850
tipc_link_bc_create+0xb5/0x1f0 net/tipc/link.c:526
tipc_bcast_init+0x59b/0xab0 net/tipc/bcast.c:521
tipc_init_net+0x472/0x610 net/tipc/core.c:82
ops_init+0xf7/0x520 net/core/net_namespace.c:129
__register_pernet_operations net/core/net_namespace.c:940 [inline]
register_pernet_operations+0x453/0xac0 net/core/net_namespace.c:1011
register_pernet_subsys+0x28/0x40 net/core/net_namespace.c:1052
tipc_init+0x83/0x104 net/tipc/core.c:140
do_one_initcall+0x109/0x70a init/main.c:885
do_initcall_level init/main.c:953 [inline]
do_initcalls init/main.c:961 [inline]
do_basic_setup init/main.c:979 [inline]
kernel_init_freeable+0x4bd/0x57f init/main.c:1144
kernel_init+0x13/0x180 init/main.c:1063
ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:413
The reason why the noise above was complained by LOCKDEP is because we
nested to hold l->wakeupq.lock and l->inputq->lock in tipc_link_reset
function. In fact it's unnecessary to move skb buffer from l->wakeupq
queue to l->inputq queue while holding the two locks at the same time.
Instead, we can move skb buffers in l->wakeupq queue to a temporary
list first and then move the buffers of the temporary list to l->inputq
queue, which is also safe for us.
Fixes: 3f32d0be6c16 ("tipc: lock wakeup & inputq at tipc_link_reset()")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the patch referred to below we added link tolerance as an additional
criteria for declaring broadcast transmission "stale" and resetting the
affected links.
However, the 'tolerance' field of the broadcast link is never set, and
remains at zero. This renders the whole commit without the intended
improving effect, but luckily also with no negative effect.
In this commit we add the missing initialization.
Fixes: a4dc70d46cf1 ("tipc: extend link reset criteria for stale packet retransmission")
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The initial session number when a link is created is based on a random
value, taken from struct tipc_net->random. It is then incremented for
each link reset to avoid mixing protocol messages from different link
sessions.
However, when a bearer is reset all its links are deleted, and will
later be re-created using the same random value as the first time.
This means that if the link never went down between creation and
deletion we will still sometimes have two subsequent sessions with
the same session number. In virtual environments with potentially
long transmission times this has turned out to be a real problem.
We now fix this by randomizing the session number each time a link
is created.
With a session number size of 16 bits this gives a risk of session
collision of 1/64k. To reduce this further, we also introduce a sanity
check on the very first STATE message arriving at a link. If this has
an acknowledge value differing from 0, which is logically impossible,
we ignore the message. The final risk for session collision is hence
reduced to 1/4G, which should be sufficient.
Signed-off-by: LUU Duc Canh <canh.d.luu@dektech.com.au>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We see the following scenario:
1) Link endpoint B on node 1 discovers that its peer endpoint is gone.
Since there is a second working link, failover procedure is started.
2) Link endpoint A on node 1 sends a FAILOVER message to peer endpoint
A on node 2. The node item 1->2 goes to state FAILINGOVER.
3) Linke endpoint A/2 receives the failover, and is supposed to take
down its parallell link endpoint B/2, while producing a FAILOVER
message to send back to A/1.
4) However, B/2 has already been deleted, so no FAILOVER message can
created.
5) Node 1->2 remains in state FAILINGOVER forever, refusing to receive
any messages that can bring B/1 up again. We are left with a non-
redundant link between node 1 and 2.
We fix this with letting endpoint A/2 build a dummy FAILOVER message
to send to back to A/1, so that the situation can be resolved.
Signed-off-by: LUU Duc Canh <canh.d.luu@dektech.com.au>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In tipc_link_reset() we copy the wakeup queue to input queue using
skb_queue_splice_init(link->wakeupq, link->inputq).
This is performed without holding any locks. The lists might be
simultaneously be accessed by other cpu threads in tipc_sk_rcv(),
something leading to to random missing packets.
Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fixes the following sparse warnings:
net/tipc/link.c:376:5: warning: symbol 'link_bc_rcv_gap' was not declared. Should it be static?
net/tipc/link.c:823:6: warning: symbol 'link_prepare_wakeup' was not declared. Should it be static?
net/tipc/link.c:959:6: warning: symbol 'tipc_link_advance_backlog' was not declared. Should it be static?
net/tipc/link.c:1009:5: warning: symbol 'tipc_link_retrans' was not declared. Should it be static?
net/tipc/monitor.c:687:5: warning: symbol '__tipc_nl_add_monitor_peer' was not declared. Should it be static?
net/tipc/group.c:230:20: warning: symbol 'tipc_group_find_member' was not declared. Should it be static?
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tipc_link_is_active is no longer used and can be removed.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In some virtual environments we observe a significant higher number of
packet reordering and delays than we have been used to traditionally.
This makes it necessary with stricter checks on incoming link protocol
messages' session number, which until now only has been validated for
RESET messages.
Since the other two message types, ACTIVATE and STATE messages also
carry this number, it is easy to extend the validation check to those
messages.
We also introduce a flag indicating if a link has a valid peer session
number or not. This eliminates the mixing of 32- and 16-bit arithmethics
we are currently using to achieve this.
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some switch infrastructures produce huge amounts of packet duplicates.
This becomes a problem if those messages are STATE/NACK protocol
messages, causing unnecessary retransmissions of already accepted
packets.
We now introduce a unique sequence number per STATE protocol message
so that duplicates can be identified and ignored. This will also be
useful when tracing such cases, and to avert replay attacks when TIPC
is encrypted.
For compatibility reasons we have to introduce a new capability flag
TIPC_LINK_PROTO_SEQNO to handle this new feature.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently a link is declared stale and reset if there has been 100
repeated attempts to retransmit the same packet. However, in certain
infrastructures we see that packet (NACK) duplicates and delays may
cause such retransmit attempts to occur at a high rate, so that the
peer doesn't have a reasonable chance to acknowledge the reception
before the 100-limit is hit. This may take much less than the
stipulated link tolerance time, and despite that probe/probe replies
otherwise go through as normal.
We now extend the criteria for link reset to also being time based.
I.e., we don't reset the link until the link tolerance time is passed
AND we have made 100 retransmissions attempts.
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.
Warning level 2 was used: -Wimplicit-fallthrough=2
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
gcc points out that the combined length of the fixed-length inputs to
l->name is larger than the destination buffer size:
net/tipc/link.c: In function 'tipc_link_create':
net/tipc/link.c:465:26: error: '%s' directive writing up to 32 bytes
into a region of size between 26 and 58 [-Werror=format-overflow=]
sprintf(l->name, "%s:%s-%s:unknown", self_str, if_name, peer_str);
net/tipc/link.c:465:2: note: 'sprintf' output 11 or more bytes
(assuming 75) into a destination of size 60
sprintf(l->name, "%s:%s-%s:unknown", self_str, if_name, peer_str);
A detailed analysis reveals that the theoretical maximum length of
a link name is:
max self_str + 1 + max if_name + 1 + max peer_str + 1 + max if_name =
16 + 1 + 15 + 1 + 16 + 1 + 15 = 65
Since we also need space for a trailing zero we now set MAX_LINK_NAME
to 68.
Just to be on the safe side we also replace the sprintf() call with
snprintf().
Fixes: 25b0b9c4e835 ("tipc: handle collisions of 32-bit node address
hash values")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current design of the binding table has an unnecessary memory
consuming and complex data structure. It aggregates the service range
items into an array, which is expanded by a factor two every time it
becomes too small to hold a new item. Furthermore, the arrays never
shrink when the number of ranges diminishes.
We now replace this array with an RB tree that is holding the range
items as tree nodes, each range directly holding a list of bindings.
This, along with a few name changes, improves both readability and
volume of the code, as well as reducing memory consumption and hopefully
improving cache hit rate.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a 32-bit node address is generated from a 128-bit identifier,
there is a risk of collisions which must be discovered and handled.
We do this as follows:
- We don't apply the generated address immediately to the node, but do
instead initiate a 1 sec trial period to allow other cluster members
to discover and handle such collisions.
- During the trial period the node periodically sends out a new type
of message, DSC_TRIAL_MSG, using broadcast or emulated broadcast,
to all the other nodes in the cluster.
- When a node is receiving such a message, it must check that the
presented 32-bit identifier either is unused, or was used by the very
same peer in a previous session. In both cases it accepts the request
by not responding to it.
- If it finds that the same node has been up before using a different
address, it responds with a DSC_TRIAL_FAIL_MSG containing that
address.
- If it finds that the address has already been taken by some other
node, it generates a new, unused address and returns it to the
requester.
- During the trial period the requesting node must always be prepared
to accept a failure message, i.e., a message where a peer suggests a
different (or equal) address to the one tried. In those cases it
must apply the suggested value as trial address and restart the trial
period.
This algorithm ensures that in the vast majority of cases a node will
have the same address before and after a reboot. If a legacy user
configures the address explicitly, there will be no trial period and
messages, so this protocol addition is completely backwards compatible.
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We add a 128-bit node identity, as an alternative to the currently used
32-bit node address.
For the sake of compatibility and to minimize message header changes
we retain the existing 32-bit address field. When not set explicitly by
the user, this field will be filled with a hash value generated from the
much longer node identity, and be used as a shorthand value for the
latter.
We permit either the address or the identity to be set by configuration,
but not both, so when the address value is set by a legacy user the
corresponding 128-bit node identity is generated based on the that value.
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As a preparation to changing the addressing structure of TIPC we replace
all direct accesses to the tipc_net::own_addr field with the function
dedicated for this, tipc_own_addr().
There are no changes to program logics in this commit.
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>