Instead of bypassing the kernel's adaptation layer for performing EFI
runtime calls, wire up ACPI PRM handling into it. This means these calls
can no longer occur concurrently with EFI runtime calls, and will be
made from the EFI runtime workqueue. It also means any page faults
occurring during PRM handling will be identified correctly as
originating in firmware code.
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Avoid duplicating the EFI arch setup and teardown routine calls numerous
times in efi_call_rts(). Instead, expand the efi_call_virt_pointer()
macro into efi_call_rts(), taking the pre and post parts out of the
switch.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
__efi_call_virt() exists as an alternative for efi_call_virt() for the
sole reason that ResetSystem() returns void, and so we cannot use a call
to it in the RHS of an assignment.
Given that there is only a single user, let's drop the macro, and expand
it into the caller. That way, the remaining macro can be tightened
somewhat in terms of type safety too.
Note that the use of typeof() on the runtime service invocation does not
result in an actual call being made, but it does require a few pointer
types to be fixed up and converted into the proper function pointer
prototypes.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
efi_queue_work() is a macro that implements the non-trivial manipulation
of the EFI runtime workqueue and completion data structure, most of
which is generic, and could be shared between all the users of the
macro. So move it out of the macro and into a new helper function.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The current code that marshalls the EFI runtime call arguments to hand
them off to a async helper does so in a type unsafe and slightly messy
manner - everything is cast to void* except for some integral types that
are passed by reference and dereferenced on the receiver end.
Let's clean this up a bit, and record the arguments of each runtime
service invocation exactly as they are issued, in a manner that permits
the compiler to check the types of the arguments at both ends.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Only the arch_efi_call_virt() macro that some architectures override
needs to be a macro, given that it is variadic and encapsulates calls
via function pointers that have different prototypes.
The associated setup and teardown code are not special in this regard,
and don't need to be instantiated at each call site. So turn them into
ordinary C functions and move them out of line.
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The bare metal decompressor code was never really intended to run in a
hosted environment such as the EFI boot services, and does a few things
that are becoming problematic in the context of EFI boot now that the
logo requirements are getting tighter: EFI executables will no longer be
allowed to consist of a single executable section that is mapped with
read, write and execute permissions if they are intended for use in a
context where Secure Boot is enabled (and where Microsoft's set of
certificates is used, i.e., every x86 PC built to run Windows).
To avoid stepping on reserved memory before having inspected the E820
tables, and to ensure the correct placement when running a kernel build
that is non-relocatable, the bare metal decompressor moves its own
executable image to the end of the allocation that was reserved for it,
in order to perform the decompression in place. This means the region in
question requires both write and execute permissions, which either need
to be given upfront (which EFI will no longer permit), or need to be
applied on demand using the existing page fault handling framework.
However, the physical placement of the kernel is usually randomized
anyway, and even if it isn't, a dedicated decompression output buffer
can be allocated anywhere in memory using EFI APIs when still running in
the boot services, given that EFI support already implies a relocatable
kernel. This means that decompression in place is never necessary, nor
is moving the compressed image from one end to the other.
Since EFI already maps all of memory 1:1, it is also unnecessary to
create new page tables or handle page faults when decompressing the
kernel. That means there is also no need to replace the special
exception handlers for SEV. Generally, there is little need to do
any of the things that the decompressor does beyond
- initialize SEV encryption, if needed,
- perform the 4/5 level paging switch, if needed,
- decompress the kernel
- relocate the kernel
So do all of this from the EFI stub code, and avoid the bare metal
decompressor altogether.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-24-ardb@kernel.org
Before refactoring the EFI stub boot flow to avoid the legacy bare metal
decompressor, duplicate the SNP feature check in the EFI stub before
handing over to the kernel proper.
The SNP feature check can be performed while running under the EFI boot
services, which means it can force the boot to fail gracefully and
return an error to the bootloader if the loaded kernel does not
implement support for all the features that the hypervisor enabled.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-23-ardb@kernel.org
x86 will need to limit the kernel memory allocation to the lowest 512
MiB of memory, to match the behavior of the existing bare metal KASLR
physical randomization logic. So in preparation for that, add a limit
parameter to efi_random_alloc() and wire it up.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-22-ardb@kernel.org
Currently, the EFI stub relies on DXE services in some cases to clear
non-execute restrictions from page allocations that need to be
executable. This is dodgy, because DXE services are not specified by
UEFI but by PI, and they are not intended for consumption by OS loaders.
However, no alternative existed at the time.
Now, there is a new UEFI protocol that should be used instead, so if it
exists, prefer it over the DXE services calls.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-18-ardb@kernel.org
In preparation for updating the EFI stub boot flow to avoid the bare
metal decompressor code altogether, implement the support code for
switching between 4 and 5 levels of paging before jumping to the kernel
proper.
Reuse the newly refactored trampoline that the bare metal decompressor
uses, but relies on EFI APIs to allocate 32-bit addressable memory and
remap it with the appropriate permissions. Given that the bare metal
decompressor will no longer call into the trampoline if the number of
paging levels is already set correctly, it is no longer needed to remove
NX restrictions from the memory range where this trampoline may end up.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-17-ardb@kernel.org
The so-called EFI handover protocol is value-add from the distros that
permits a loader to simply copy a PE kernel image into memory and call
an alternative entrypoint that is described by an embedded boot_params
structure.
Most implementations of this protocol do not bother to check the PE
header for minimum alignment, section placement, etc, and therefore also
don't clear the image's BSS, or even allocate enough memory for it.
Allocating more memory on the fly is rather difficult, but at least
clear the BSS region explicitly when entering in this manner, so that
the EFI stub code does not get confused by global variables that were
not zero-initialized correctly.
When booting in mixed mode, this BSS clearing must occur before any
global state is created, so clear it in the 32-bit asm entry point.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-7-ardb@kernel.org
Now that the EFI entry code in assembler is only used by the optional
and deprecated EFI handover protocol, and given that the EFI stub C code
no longer returns to it, most of it can simply be dropped.
While at it, clarify the symbol naming, by merging efi_main() and
efi_stub_entry(), making the latter the shared entry point for all
different boot modes that enter via the EFI stub.
The efi32_stub_entry() and efi64_stub_entry() names are referenced
explicitly by the tooling that populates the setup header, so these must
be retained, but can be emitted as aliases of efi_stub_entry() where
appropriate.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-5-ardb@kernel.org
Instead of returning to the calling code in assembler that does nothing
more than perform an indirect call with the boot_params pointer in
register ESI/RSI, perform the jump directly from the EFI stub C code.
This will allow the asm entrypoint code to be dropped entirely in
subsequent patches.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-4-ardb@kernel.org
We don't want absolute symbols references in the stub, so fix the double
negation in the comment.
Signed-off-by: Xiao Wang <xiao.w.wang@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
UAPI Changes:
* fbdev:
* Make fbdev userspace interfaces optional; only leaves the
framebuffer console active
* prime:
* Support dma-buf self-import for all drivers automatically: improves
support for many userspace compositors
Cross-subsystem Changes:
* backlight:
* Fix interaction with fbdev in several drivers
* base: Convert struct platform.remove to return void; part of a larger,
tree-wide effort
* dma-buf: Acquire reservation lock for mmap() in exporters; part
of an on-going effort to simplify locking around dma-bufs
* fbdev:
* Use Linux device instead of fbdev device in many places
* Use deferred-I/O helper macros in various drivers
* i2c: Convert struct i2c from .probe_new to .probe; part of a larger,
tree-wide effort
* video:
* Avoid including <linux/screen_info.h>
Core Changes:
* atomic:
* Improve logging
* prime:
* Remove struct drm_driver.gem_prime_mmap plus driver updates: all
drivers now implement this callback with drm_gem_prime_mmap()
* gem:
* Support execution contexts: provides locking over multiple GEM
objects
* ttm:
* Support init_on_free
* Swapout fixes
Driver Changes:
* accel:
* ivpu: MMU updates; Support debugfs
* ast:
* Improve device-model detection
* Cleanups
* bridge:
* dw-hdmi: Improve support for YUV420 bus format
* dw-mipi-dsi: Fix enable/disable of DSI controller
* lt9611uxc: Use MODULE_FIRMWARE()
* ps8640: Remove broken EDID code
* samsung-dsim: Fix command transfer
* tc358764: Handle HS/VS polarity; Use BIT() macro; Various cleanups
* Cleanups
* ingenic:
* Kconfig REGMAP fixes
* loongson:
* Support display controller
* mgag200:
* Minor fixes
* mxsfb:
* Support disabling overlay planes
* nouveau:
* Improve VRAM detection
* Various fixes and cleanups
* panel:
* panel-edp: Support AUO B116XAB01.4
* Support Visionox R66451 plus DT bindings
* Cleanups
* ssd130x:
* Support per-controller default resolution plus DT bindings
* Reduce memory-allocation overhead
* Cleanups
* tidss:
* Support TI AM625 plus DT bindings
* Implement new connector model plus driver updates
* vkms
* Improve write-back support
* Documentation fixes
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEchf7rIzpz2NEoWjlaA3BHVMLeiMFAmSvvRAACgkQaA3BHVML
eiNpGQgAs8jq1XjN9t8jZsdgXnoCbkZyVUI2NO0HwoVwpRCLgbXp5AX5qq2oRciE
TBhe4Fceh/ZsYqHTZQahnguxgRKM5JgXwbI4Z0iiOVcqasNbycaKAqipxJJ7kdo1
qPhGCbgQFVX7oIq2xjfXehh6O0SYX+R9r88X8dMJxMYv/pcLwOHG74kS040WOcQq
uATgcnobOf/D8ZmlqvfKGAeTUoFo/RSR2Uhlauka58qgeUbicrTELZT2barY9d+k
as6U5vv4wx2zMklTkjrlkMpAT1ZpbB9d3jGHwL27VEnjlfd3wV2bdH7Dzn9qZRf/
gn0ALg/b3u5yBWk/k7YBvijXyNcH6Q==
=bBuG
-----END PGP SIGNATURE-----
Merge tag 'drm-misc-next-2023-07-13' of git://anongit.freedesktop.org/drm/drm-misc into drm-next
drm-misc-next for v6.6:
UAPI Changes:
* fbdev:
* Make fbdev userspace interfaces optional; only leaves the
framebuffer console active
* prime:
* Support dma-buf self-import for all drivers automatically: improves
support for many userspace compositors
Cross-subsystem Changes:
* backlight:
* Fix interaction with fbdev in several drivers
* base: Convert struct platform.remove to return void; part of a larger,
tree-wide effort
* dma-buf: Acquire reservation lock for mmap() in exporters; part
of an on-going effort to simplify locking around dma-bufs
* fbdev:
* Use Linux device instead of fbdev device in many places
* Use deferred-I/O helper macros in various drivers
* i2c: Convert struct i2c from .probe_new to .probe; part of a larger,
tree-wide effort
* video:
* Avoid including <linux/screen_info.h>
Core Changes:
* atomic:
* Improve logging
* prime:
* Remove struct drm_driver.gem_prime_mmap plus driver updates: all
drivers now implement this callback with drm_gem_prime_mmap()
* gem:
* Support execution contexts: provides locking over multiple GEM
objects
* ttm:
* Support init_on_free
* Swapout fixes
Driver Changes:
* accel:
* ivpu: MMU updates; Support debugfs
* ast:
* Improve device-model detection
* Cleanups
* bridge:
* dw-hdmi: Improve support for YUV420 bus format
* dw-mipi-dsi: Fix enable/disable of DSI controller
* lt9611uxc: Use MODULE_FIRMWARE()
* ps8640: Remove broken EDID code
* samsung-dsim: Fix command transfer
* tc358764: Handle HS/VS polarity; Use BIT() macro; Various cleanups
* Cleanups
* ingenic:
* Kconfig REGMAP fixes
* loongson:
* Support display controller
* mgag200:
* Minor fixes
* mxsfb:
* Support disabling overlay planes
* nouveau:
* Improve VRAM detection
* Various fixes and cleanups
* panel:
* panel-edp: Support AUO B116XAB01.4
* Support Visionox R66451 plus DT bindings
* Cleanups
* ssd130x:
* Support per-controller default resolution plus DT bindings
* Reduce memory-allocation overhead
* Cleanups
* tidss:
* Support TI AM625 plus DT bindings
* Implement new connector model plus driver updates
* vkms
* Improve write-back support
* Documentation fixes
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
From: Thomas Zimmermann <tzimmermann@suse.de>
Link: https://patchwork.freedesktop.org/patch/msgid/20230713090830.GA23281@linux-uq9g
The header file <linux/efi.h> does not need anything from
<linux/screen_info.h>. Declare struct screen_info and remove
the include statements. Update a number of source files that
require struct screen_info's definition.
v2:
* update loongarch (Jingfeng)
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Reviewed-by: Sui Jingfeng <suijingfeng@loongson.cn>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://patchwork.freedesktop.org/patch/msgid/20230706104852.27451-2-tzimmermann@suse.de
Although some more stuff is brewing, the EFI changes that are ready for
mainline are few, so not a lot to pull this cycle:
- improve the PCI DMA paranoia logic in the EFI stub
- some constification changes
- add statfs support to efivarfs
- allow user space to enumerate updatable firmware resources without
CAP_SYS_ADMIN
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQQm/3uucuRGn1Dmh0wbglWLn0tXAUCZJ1jIwAKCRAwbglWLn0t
XDs8AP9PAAWIgukyXkYpoxabaQQK1Pqw6Zv63XAcNYBHa4zjHwD/UTcYviQIlI0B
Rfj4i8pDQVVfReSI+lKWvhXfRQ5Qbgs=
=w6zX
-----END PGP SIGNATURE-----
Merge tag 'efi-next-for-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
"Although some more stuff is brewing, the EFI changes that are ready
for mainline are few this cycle:
- improve the PCI DMA paranoia logic in the EFI stub
- some constification changes
- add statfs support to efivarfs
- allow user space to enumerate updatable firmware resources without
CAP_SYS_ADMIN"
* tag 'efi-next-for-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
efi/libstub: Disable PCI DMA before grabbing the EFI memory map
efi/esrt: Allow ESRT access without CAP_SYS_ADMIN
efivarfs: expose used and total size
efi: make kobj_type structure constant
efi: x86: make kobj_type structure constant
Currently, the EFI stub will disable PCI DMA as the very last thing it
does before calling ExitBootServices(), to avoid interfering with the
firmware's normal operation as much as possible.
However, the stub will invoke DisconnectController() on all endpoints
downstream of the PCI bridges it disables, and this may affect the
layout of the EFI memory map, making it substantially more likely that
ExitBootServices() will fail the first time around, and that the EFI
memory map needs to be reloaded.
This, in turn, increases the likelihood that the slack space we
allocated is insufficient (and we can no longer allocate memory via boot
services after having called ExitBootServices() once), causing the
second call to GetMemoryMap (and therefore the boot) to fail. This makes
the PCI DMA disable feature a bit more fragile than it already is, so
let's make it more robust, by allocating the space for the EFI memory
map after disabling PCI DMA.
Fixes: 4444f8541dad16fe ("efi: Allow disabling PCI busmastering on bridges during boot")
Reported-by: Glenn Washburn <development@efficientek.com>
Acked-by: Matthew Garrett <mjg59@srcf.ucam.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The gist of it all is that Intel TDX and AMD SEV-SNP confidential
computing guests define the notion of accepting memory before using it
and thus preventing a whole set of attacks against such guests like
memory replay and the like.
There are a couple of strategies of how memory should be accepted
- the current implementation does an on-demand way of accepting.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmSZ0f4ACgkQEsHwGGHe
VUpasw//RKoNW9HSU1csY+XnG9uuaT6QKgji+gIEZWWIGPO9iibvbBj6P5WxJE8T
fe7yb6CGa6d6thoU0v+mQGVVvCd7OjCFwPD5wAo4mXToD7Ig+4mI6jMkaKifqa2f
N1Uuy8u/zQnGyWrP5Y//WH5bJYfsmds4UGwXI2nLvKlhE7MG90/ePjt7iqnnwZsy
waLp6a0Q1VeOvnfRszFLHZw/SoER5RSJ4qeVqttkFNmPPEKMK1Kirrl2poR56OQJ
nMr6LqVtD7erlSJ36VRXOKzLI443A4iIEIg/wBjIOU6L5ZEWJGNqtCDnIqFJ6+TM
XatsejfRYkkMZH0qXtX9+M0u+HJHbZPCH5rEcA21P3Nbd7od/ANq91qCGoMjtUZ4
7pZohMG8M6IDvkLiOb8fQVkR5k/9Jbk8UvdN/8jdPx1ERxYMFO3BDvJpV2gzrW4B
KYtFTPR7j2nY3eKfDpe3flanqYzKUBsKoTlLnlH7UHaiMZ2idwG8AQjlrhC/erCq
/Lq1LXt4Mq46FyHABc+PSHytu0WWj1nBUftRt+lviY/Uv7TlkBldOTT7wm7itsfF
HUCTfLWl0CJXKPq8rbbZhAG/exN6Ay6MO3E3OcNq8A72E5y4cXenuG3ic/0tUuOu
FfjpiMk35qE2Qb4hnj1YtF3XINtd1MpKcuwzGSzEdv9s3J7hrS0=
=FS95
-----END PGP SIGNATURE-----
Merge tag 'x86_cc_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 confidential computing update from Borislav Petkov:
- Add support for unaccepted memory as specified in the UEFI spec v2.9.
The gist of it all is that Intel TDX and AMD SEV-SNP confidential
computing guests define the notion of accepting memory before using
it and thus preventing a whole set of attacks against such guests
like memory replay and the like.
There are a couple of strategies of how memory should be accepted -
the current implementation does an on-demand way of accepting.
* tag 'x86_cc_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
virt: sevguest: Add CONFIG_CRYPTO dependency
x86/efi: Safely enable unaccepted memory in UEFI
x86/sev: Add SNP-specific unaccepted memory support
x86/sev: Use large PSC requests if applicable
x86/sev: Allow for use of the early boot GHCB for PSC requests
x86/sev: Put PSC struct on the stack in prep for unaccepted memory support
x86/sev: Fix calculation of end address based on number of pages
x86/tdx: Add unaccepted memory support
x86/tdx: Refactor try_accept_one()
x86/tdx: Make _tdx_hypercall() and __tdx_module_call() available in boot stub
efi/unaccepted: Avoid load_unaligned_zeropad() stepping into unaccepted memory
efi: Add unaccepted memory support
x86/boot/compressed: Handle unaccepted memory
efi/libstub: Implement support for unaccepted memory
efi/x86: Get full memory map in allocate_e820()
mm: Add support for unaccepted memory
The UEFI v2.9 specification includes a new memory type to be used in
environments where the OS must accept memory that is provided from its
host. Before the introduction of this memory type, all memory was
accepted eagerly in the firmware. In order for the firmware to safely
stop accepting memory on the OS's behalf, the OS must affirmatively
indicate support to the firmware. This is only a problem for AMD
SEV-SNP, since Linux has had support for it since 5.19. The other
technology that can make use of unaccepted memory, Intel TDX, does not
yet have Linux support, so it can strictly require unaccepted memory
support as a dependency of CONFIG_TDX and not require communication with
the firmware.
Enabling unaccepted memory requires calling a 0-argument enablement
protocol before ExitBootServices. This call is only made if the kernel
is compiled with UNACCEPTED_MEMORY=y
This protocol will be removed after the end of life of the first LTS
that includes it, in order to give firmware implementations an
expiration date for it. When the protocol is removed, firmware will
strictly infer that a SEV-SNP VM is running an OS that supports the
unaccepted memory type. At the earliest convenience, when unaccepted
memory support is added to Linux, SEV-SNP may take strict dependence in
it. After the firmware removes support for the protocol, this should be
reverted.
[tl: address some checkscript warnings]
Signed-off-by: Dionna Glaze <dionnaglaze@google.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/0d5f3d9a20b5cf361945b7ab1263c36586a78a42.1686063086.git.thomas.lendacky@amd.com
load_unaligned_zeropad() can lead to unwanted loads across page boundaries.
The unwanted loads are typically harmless. But, they might be made to
totally unrelated or even unmapped memory. load_unaligned_zeropad()
relies on exception fixup (#PF, #GP and now #VE) to recover from these
unwanted loads.
But, this approach does not work for unaccepted memory. For TDX, a load
from unaccepted memory will not lead to a recoverable exception within
the guest. The guest will exit to the VMM where the only recourse is to
terminate the guest.
There are two parts to fix this issue and comprehensively avoid access
to unaccepted memory. Together these ensure that an extra "guard" page
is accepted in addition to the memory that needs to be used.
1. Implicitly extend the range_contains_unaccepted_memory(start, end)
checks up to end+unit_size if 'end' is aligned on a unit_size
boundary.
2. Implicitly extend accept_memory(start, end) to end+unit_size if 'end'
is aligned on a unit_size boundary.
Side note: This leads to something strange. Pages which were accepted
at boot, marked by the firmware as accepted and will never
_need_ to be accepted might be on unaccepted_pages list
This is a cue to ensure that the next page is accepted
before 'page' can be used.
This is an actual, real-world problem which was discovered during TDX
testing.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230606142637.5171-7-kirill.shutemov@linux.intel.com
efi_config_parse_tables() reserves memory that holds unaccepted memory
configuration table so it won't be reused by page allocator.
Core-mm requires few helpers to support unaccepted memory:
- accept_memory() checks the range of addresses against the bitmap and
accept memory if needed.
- range_contains_unaccepted_memory() checks if anything within the
range requires acceptance.
Architectural code has to provide efi_get_unaccepted_table() that
returns pointer to the unaccepted memory configuration table.
arch_accept_memory() handles arch-specific part of memory acceptance.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230606142637.5171-6-kirill.shutemov@linux.intel.com
UEFI Specification version 2.9 introduces the concept of memory
acceptance: Some Virtual Machine platforms, such as Intel TDX or AMD
SEV-SNP, requiring memory to be accepted before it can be used by the
guest. Accepting happens via a protocol specific for the Virtual
Machine platform.
Accepting memory is costly and it makes VMM allocate memory for the
accepted guest physical address range. It's better to postpone memory
acceptance until memory is needed. It lowers boot time and reduces
memory overhead.
The kernel needs to know what memory has been accepted. Firmware
communicates this information via memory map: a new memory type --
EFI_UNACCEPTED_MEMORY -- indicates such memory.
Range-based tracking works fine for firmware, but it gets bulky for
the kernel: e820 (or whatever the arch uses) has to be modified on every
page acceptance. It leads to table fragmentation and there's a limited
number of entries in the e820 table.
Another option is to mark such memory as usable in e820 and track if the
range has been accepted in a bitmap. One bit in the bitmap represents a
naturally aligned power-2-sized region of address space -- unit.
For x86, unit size is 2MiB: 4k of the bitmap is enough to track 64GiB or
physical address space.
In the worst-case scenario -- a huge hole in the middle of the
address space -- It needs 256MiB to handle 4PiB of the address
space.
Any unaccepted memory that is not aligned to unit_size gets accepted
upfront.
The bitmap is allocated and constructed in the EFI stub and passed down
to the kernel via EFI configuration table. allocate_e820() allocates the
bitmap if unaccepted memory is present, according to the size of
unaccepted region.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20230606142637.5171-4-kirill.shutemov@linux.intel.com
Currently allocate_e820() is only interested in the size of map and size
of memory descriptor to determine how many e820 entries the kernel
needs.
UEFI Specification version 2.9 introduces a new memory type --
unaccepted memory. To track unaccepted memory, the kernel needs to
allocate a bitmap. The size of the bitmap is dependent on the maximum
physical address present in the system. A full memory map is required to
find the maximum address.
Modify allocate_e820() to get a full memory map.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20230606142637.5171-3-kirill.shutemov@linux.intel.com
Access to the files in /sys/firmware/efi/esrt has been restricted to
CAP_SYS_ADMIN since support for ESRT was added, but this seems overly
restrictive given that the files are read-only and just provide
information about UEFI firmware updates.
Remove the CAP_SYS_ADMIN restriction so that a non-root process can read
the files, provided a suitably-privileged process changes the file
ownership first. The files are still read-only and still owned by root
by default.
Signed-off-by: Nicholas Bishop <nicholasbishop@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The cper.c file needs to include an extra header, and efi_zboot_entry
needs an extern declaration to avoid these 'make W=1' warnings:
drivers/firmware/efi/libstub/zboot.c:65:1: error: no previous prototype for 'efi_zboot_entry' [-Werror=missing-prototypes]
drivers/firmware/efi/efi.c:176:16: error: no previous prototype for 'efi_attr_is_visible' [-Werror=missing-prototypes]
drivers/firmware/efi/cper.c:626:6: error: no previous prototype for 'cper_estatus_print' [-Werror=missing-prototypes]
drivers/firmware/efi/cper.c:649:5: error: no previous prototype for 'cper_estatus_check_header' [-Werror=missing-prototypes]
drivers/firmware/efi/cper.c:662:5: error: no previous prototype for 'cper_estatus_check' [-Werror=missing-prototypes]
To make this easier, move the cper specific declarations to
include/linux/cper.h.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The Make variable containing the objcopy flags may be constructed from
the output of build tools operating on build artifacts, and these may
not exist when doing a make clean.
So avoid evaluating them eagerly, to prevent spurious build warnings.
Suggested-by: Pedro Falcato <pedro.falcato@gmail.com>
Tested-by: Alan Bartlett <ajb@elrepo.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
When writing EFI variables, one might get errors with no other message
on why it fails. Being able to see how much is used by EFI variables
helps analyzing such issues.
Since this is not a conventional filesystem, block size is intentionally
set to 1 instead of PAGE_SIZE.
x86 quirks of reserved size are taken into account; so that available
and free size can be different, further helping debugging space issues.
With this patch, one can see the remaining space in EFI variable storage
via efivarfs, like this:
$ df -h /sys/firmware/efi/efivars/
Filesystem Size Used Avail Use% Mounted on
efivarfs 176K 106K 66K 62% /sys/firmware/efi/efivars
Signed-off-by: Anisse Astier <an.astier@criteo.com>
[ardb: - rename efi_reserved_space() to efivar_reserved_space()
- whitespace/coding style tweaks]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Since commit ee6d3dd4ed48 ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definition to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
- relocate the LoongArch kernel if the preferred address is already
occupied;
- implement BTI annotations for arm64 EFI stub and zboot images;
- clean up arm64 zboot Kbuild rules for injecting the kernel code size.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQQm/3uucuRGn1Dmh0wbglWLn0tXAUCZEwUOwAKCRAwbglWLn0t
XMNzAQChdPim0N+l2G4XLa1g8WCGany/+6/B9GHPJVcmQ25zLQD/UaNvAofkHwjR
Y3P3ZEY1SPEA+UJBL/BTI0wO9/XgpAA=
=hGWP
-----END PGP SIGNATURE-----
Merge tag 'efi-next-for-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
- relocate the LoongArch kernel if the preferred address is already
occupied
- implement BTI annotations for arm64 EFI stub and zboot images
- clean up arm64 zboot Kbuild rules for injecting the kernel code size
* tag 'efi-next-for-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
efi/zboot: arm64: Grab code size from ELF symbol in payload
efi/zboot: arm64: Inject kernel code size symbol into the zboot payload
efi/zboot: Set forward edge CFI compat header flag if supported
efi/zboot: Add BSS padding before compression
arm64: efi: Enable BTI codegen and add PE/COFF annotation
efi/pe: Import new BTI/IBT header flags from the spec
efi/loongarch: Reintroduce efi_relocate_kernel() to relocate kernel
The summary of the changes for this pull requests is:
* Song Liu's new struct module_memory replacement
* Nick Alcock's MODULE_LICENSE() removal for non-modules
* My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded
prior to allocating the final module memory with vmalloc and the
respective debug code it introduces to help clarify the issue. Although
the functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to have
been picked up. Folks on larger CPU systems with modules will want to
just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details
on this pull request.
The functional change change in this pull request is the very first
patch from Song Liu which replaces the struct module_layout with a new
struct module memory. The old data structure tried to put together all
types of supported module memory types in one data structure, the new
one abstracts the differences in memory types in a module to allow each
one to provide their own set of details. This paves the way in the
future so we can deal with them in a cleaner way. If you look at changes
they also provide a nice cleanup of how we handle these different memory
areas in a module. This change has been in linux-next since before the
merge window opened for v6.3 so to provide more than a full kernel cycle
of testing. It's a good thing as quite a bit of fixes have been found
for it.
Jason Baron then made dynamic debug a first class citizen module user by
using module notifier callbacks to allocate / remove module specific
dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area
is active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454e ("kbuild: create modules.builtin without Makefile.modbuiltin
or tristate.conf"). Nick has been working on this *for years* and
AFAICT I was the only one to suggest two alternatives to this approach
for tooling. The complexity in one of my suggested approaches lies in
that we'd need a possible-obj-m and a could-be-module which would check
if the object being built is part of any kconfig build which could ever
lead to it being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0]. A more obvious yet theoretical approach I've
suggested would be to have a tristate in kconfig imply the same new
-DPOSSIBLE_MODULE as well but that means getting kconfig symbol names
mapping to modules always, and I don't think that's the case today. I am
not aware of Nick or anyone exploring either of these options. Quite
recently Josh Poimboeuf has pointed out that live patching, kprobes and
BPF would benefit from resolving some part of the disambiguation as
well but for other reasons. The function granularity KASLR (fgkaslr)
patches were mentioned but Joe Lawrence has clarified this effort has
been dropped with no clear solution in sight [1].
In the meantime removing module license tags from code which could never
be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up,
and so you'll see quite a bit of Nick's patches in other pull
requests for this merge window. I just picked up the stragglers after
rc3. LWN has good coverage on the motivation behind this work [2] and
the typical cross-tree issues he ran into along the way. The only
concrete blocker issue he ran into was that we should not remove the
MODULE_LICENSE() tags from files which have no SPDX tags yet, even if
they can never be modules. Nick ended up giving up on his efforts due
to having to do this vetting and backlash he ran into from folks who
really did *not understand* the core of the issue nor were providing
any alternative / guidance. I've gone through his changes and dropped
the patches which dropped the module license tags where an SPDX
license tag was missing, it only consisted of 11 drivers. To see
if a pull request deals with a file which lacks SPDX tags you
can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above,
but that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but
it demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees,
and I just picked up the slack after rc3 for the last kernel was out.
Those changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on
a systems with over 400 CPUs when KASAN was enabled due to running
out of virtual memory space. Although the functional change only
consists of 3 lines in the patch "module: avoid allocation if module is
already present and ready", proving that this was the best we can
do on the modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been
in linux-next since around rc3 of the last kernel, the actual final
fix for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported
with larger number of CPUs. Userspace is not yet fixed as it is taking
a bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge them,
but I'm currently inclined to just see if userspace can fix this
instead.
[0] https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/
[1] https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com
[2] https://lwn.net/Articles/927569/
[3] https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmRG4m0SHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinQ2oP/0xlvKwJg6Ey8fHZF0qv8VOskE80zoLF
hMazU3xfqLA+1TQvouW1YBxt3jwS3t1Ehs+NrV+nY9Yzcm0MzRX/n3fASJVe7nRr
oqWWQU+voYl5Pw1xsfdp6C8IXpBQorpYby3Vp0MAMoZyl2W2YrNo36NV488wM9KC
jD4HF5Z6xpnPSZTRR7AgW9mo7FdAtxPeKJ76Bch7lH8U6omT7n36WqTw+5B1eAYU
YTOvrjRs294oqmWE+LeebyiOOXhH/yEYx4JNQgCwPdxwnRiGJWKsk5va0hRApqF/
WW8dIqdEnjsa84lCuxnmWgbcPK8cgmlO0rT0DyneACCldNlldCW1LJ0HOwLk9pea
p3JFAsBL7TKue4Tos6I7/4rx1ufyBGGIigqw9/VX5g0Iif+3BhWnqKRfz+p9wiMa
Fl7cU6u7yC68CHu1HBSisK16cYMCPeOnTSd89upHj8JU/t74O6k/ARvjrQ9qmNUt
c5U+OY+WpNJ1nXQydhY/yIDhFdYg8SSpNuIO90r4L8/8jRQYXNG80FDd1UtvVDuy
eq0r2yZ8C0XHSlOT9QHaua/tWV/aaKtyC/c0hDRrigfUrq8UOlGujMXbUnrmrWJI
tLJLAc7ePWAAoZXGSHrt0U27l029GzLwRdKqJ6kkDANVnTeOdV+mmBg9zGh3/Mp6
agiwdHUMVN7X
=56WK
-----END PGP SIGNATURE-----
Merge tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull module updates from Luis Chamberlain:
"The summary of the changes for this pull requests is:
- Song Liu's new struct module_memory replacement
- Nick Alcock's MODULE_LICENSE() removal for non-modules
- My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded prior
to allocating the final module memory with vmalloc and the respective
debug code it introduces to help clarify the issue. Although the
functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to
have been picked up. Folks on larger CPU systems with modules will
want to just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details:
The functional change change in this pull request is the very first
patch from Song Liu which replaces the 'struct module_layout' with a
new 'struct module_memory'. The old data structure tried to put
together all types of supported module memory types in one data
structure, the new one abstracts the differences in memory types in a
module to allow each one to provide their own set of details. This
paves the way in the future so we can deal with them in a cleaner way.
If you look at changes they also provide a nice cleanup of how we
handle these different memory areas in a module. This change has been
in linux-next since before the merge window opened for v6.3 so to
provide more than a full kernel cycle of testing. It's a good thing as
quite a bit of fixes have been found for it.
Jason Baron then made dynamic debug a first class citizen module user
by using module notifier callbacks to allocate / remove module
specific dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area is
active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454e ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf").
Nick has been working on this *for years* and AFAICT I was the only
one to suggest two alternatives to this approach for tooling. The
complexity in one of my suggested approaches lies in that we'd need a
possible-obj-m and a could-be-module which would check if the object
being built is part of any kconfig build which could ever lead to it
being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0].
A more obvious yet theoretical approach I've suggested would be to
have a tristate in kconfig imply the same new -DPOSSIBLE_MODULE as
well but that means getting kconfig symbol names mapping to modules
always, and I don't think that's the case today. I am not aware of
Nick or anyone exploring either of these options. Quite recently Josh
Poimboeuf has pointed out that live patching, kprobes and BPF would
benefit from resolving some part of the disambiguation as well but for
other reasons. The function granularity KASLR (fgkaslr) patches were
mentioned but Joe Lawrence has clarified this effort has been dropped
with no clear solution in sight [1].
In the meantime removing module license tags from code which could
never be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up, and
so you'll see quite a bit of Nick's patches in other pull requests for
this merge window. I just picked up the stragglers after rc3. LWN has
good coverage on the motivation behind this work [2] and the typical
cross-tree issues he ran into along the way. The only concrete blocker
issue he ran into was that we should not remove the MODULE_LICENSE()
tags from files which have no SPDX tags yet, even if they can never be
modules. Nick ended up giving up on his efforts due to having to do
this vetting and backlash he ran into from folks who really did *not
understand* the core of the issue nor were providing any alternative /
guidance. I've gone through his changes and dropped the patches which
dropped the module license tags where an SPDX license tag was missing,
it only consisted of 11 drivers. To see if a pull request deals with a
file which lacks SPDX tags you can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above, but
that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but it
demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees, and I
just picked up the slack after rc3 for the last kernel was out. Those
changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on a
systems with over 400 CPUs when KASAN was enabled due to running out
of virtual memory space. Although the functional change only consists
of 3 lines in the patch "module: avoid allocation if module is already
present and ready", proving that this was the best we can do on the
modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been in
linux-next since around rc3 of the last kernel, the actual final fix
for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported with
larger number of CPUs. Userspace is not yet fixed as it is taking a
bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge
them, but I'm currently inclined to just see if userspace can fix this
instead"
Link: https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/ [0]
Link: https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com [1]
Link: https://lwn.net/Articles/927569/ [2]
Link: https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org [3]
* tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (121 commits)
module: add debugging auto-load duplicate module support
module: stats: fix invalid_mod_bytes typo
module: remove use of uninitialized variable len
module: fix building stats for 32-bit targets
module: stats: include uapi/linux/module.h
module: avoid allocation if module is already present and ready
module: add debug stats to help identify memory pressure
module: extract patient module check into helper
modules/kmod: replace implementation with a semaphore
Change DEFINE_SEMAPHORE() to take a number argument
module: fix kmemleak annotations for non init ELF sections
module: Ignore L0 and rename is_arm_mapping_symbol()
module: Move is_arm_mapping_symbol() to module_symbol.h
module: Sync code of is_arm_mapping_symbol()
scripts/gdb: use mem instead of core_layout to get the module address
interconnect: remove module-related code
interconnect: remove MODULE_LICENSE in non-modules
zswap: remove MODULE_LICENSE in non-modules
zpool: remove MODULE_LICENSE in non-modules
x86/mm/dump_pagetables: remove MODULE_LICENSE in non-modules
...
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAmRIKooUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vxq7A/9G0sInrqvqH2I9/Set/FnmMfCtGDH
YcEjHYYxL+pztSiXTavDV+ib9iaut83oYtcV9p1bUMhJoZdKNZhrNdIGzRFSemI4
0/ShtklPzNEu6nPPL24CnEzgbrODBU56ZvzrIE/tShEoOjkKa1triBnOA/JMxYTL
cUwqDQlDkdpYniCgxy05QfcFZ0mmSOkbl7runGfTMTiUKKC3xSRiaW5YN9KZe3i7
G5YHu1VVCjeQdQSICHYwyFmkyiqosCoajQNp1IHBkWqSwilzyZMg0NWJobVSA7M/
mXXnzLtFcC60oT58/9MaggQwDTaSGDE8mG+sWv05bB2u5TQVyZEZqZ4c2FzmZIZT
WLZYLB6PFRW0zePEuMnVkSLS2npkX+aGaBv28bf88sjorpaYNG01uYijnLEceolQ
yBPFRN3bsRuOyHvYY/tiZX/BP7z/DS++XXwA8zQWZnYsXSlncJdwCNquV0xIwUt+
hij4/Yu7o9SgV1LbuwtkMFAn3C9Szc65Eer+IvRRdnMZYphjVHbA5F2msRFyiCeR
HxECtMQ1jBnVrpQAcBX1Sz+Vu5MrwCqzc2n6tvTQHDvVNjXfkG3NaFhxYPc1IL9Z
NJMeCKfK1qzw7TtbvWXCluTTIM9N/bNJXrJhQbjNY7V6IaBZY1QNYW0ZFfGgj6Gb
UUPgndidRy4/hzw=
=HPXl
-----END PGP SIGNATURE-----
Merge tag 'pci-v6.4-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
Pull pci updates from Bjorn Helgaas:
"Resource management:
- Add pci_dev_for_each_resource() and pci_bus_for_each_resource()
iterators
PCIe native device hotplug:
- Fix AB-BA deadlock between reset_lock and device_lock
Power management:
- Wait longer for devices to become ready after resume (as we do for
reset) to accommodate Intel Titan Ridge xHCI devices
- Extend D3hot delay for NVIDIA HDA controllers to avoid
unrecoverable devices after a bus reset
Error handling:
- Clear PCIe Device Status after EDR since generic error recovery now
only clears it when AER is native
ASPM:
- Work around Chromebook firmware defect that clobbers Capability
list (including ASPM L1 PM Substates Cap) when returning from
D3cold to D0
Freescale i.MX6 PCIe controller driver:
- Install imprecise external abort handler only when DT indicates
PCIe support
Freescale Layerscape PCIe controller driver:
- Add ls1028a endpoint mode support
Qualcomm PCIe controller driver:
- Add SM8550 DT binding and driver support
- Add SDX55 DT binding and driver support
- Use bulk APIs for clocks of IP 1.0.0, 2.3.2, 2.3.3
- Use bulk APIs for reset of IP 2.1.0, 2.3.3, 2.4.0
- Add DT "mhi" register region for supported SoCs
- Expose link transition counts via debugfs to help debug low power
issues
- Support system suspend and resume; reduce interconnect bandwidth
and turn off clock and PHY if there are no active devices
- Enable async probe by default to reduce boot time
Miscellaneous:
- Sort controller Kconfig entries by vendor"
* tag 'pci-v6.4-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci: (56 commits)
PCI: xilinx: Drop obsolete dependency on COMPILE_TEST
PCI: mobiveil: Sort Kconfig entries by vendor
PCI: dwc: Sort Kconfig entries by vendor
PCI: Sort controller Kconfig entries by vendor
PCI: Use consistent controller Kconfig menu entry language
PCI: xilinx-nwl: Add 'Xilinx' to Kconfig prompt
PCI: hv: Add 'Microsoft' to Kconfig prompt
PCI: meson: Add 'Amlogic' to Kconfig prompt
PCI: Use of_property_present() for testing DT property presence
PCI/PM: Extend D3hot delay for NVIDIA HDA controllers
dt-bindings: PCI: qcom: Document msi-map and msi-map-mask properties
PCI: qcom: Add SM8550 PCIe support
dt-bindings: PCI: qcom: Add SM8550 compatible
PCI: qcom: Add support for SDX55 SoC
dt-bindings: PCI: qcom-ep: Fix the unit address used in example
dt-bindings: PCI: qcom: Add SDX55 SoC
dt-bindings: PCI: qcom: Update maintainers entry
PCI: qcom: Enable async probe by default
PCI: qcom: Add support for system suspend and resume
PCI/PM: Drop pci_bridge_wait_for_secondary_bus() timeout parameter
...
Instead of relying on a dodgy dd hack to copy the image code size from
the uncompressed image's PE header to the end of the compressed image,
let's grab the code size from the symbol that is injected into the ELF
object by the Kbuild rules that generate the compressed payload.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
The EFI zboot code is not built as part of the kernel proper, like the
ordinary EFI stub, but still needs access to symbols that are defined
only internally in the kernel, and are left unexposed deliberately to
avoid creating ABI inadvertently that we're stuck with later.
So capture the kernel code size of the kernel image, and inject it as an
ELF symbol into the object that contains the compressed payload, where
it will be accessible to zboot code that needs it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Add some plumbing to the zboot EFI header generation to set the newly
introduced DllCharacteristicsEx flag associated with forward edge CFI
enforcement instructions (BTI on arm64, IBT on x86)
x86 does not currently uses the zboot infrastructure, so let's wire it
up only for arm64.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We don't really care about the size of the decompressed image - what
matters is how much space needs to be allocated for the image to
execute, and this includes space for BSS that is not part of the
loadable image and so it is not accounted for in the decompressed size.
So let's add some zero padding to the end of the image: this compresses
well, and it ensures that BSS is accounted for, and as a bonus, it will
be zeroed before launching the image.
Since all architectures that implement support for EFI zboot carry this
value in the header in the same location, we can just grab it from the
binary that is being compressed.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
UEFI heavily relies on so-called protocols, which are essentially
tables populated with pointers to executable code, and these are invoked
indirectly using BR or BLR instructions.
This makes the EFI execution context vulnerable to attacks on forward
edge control flow, and so it would help if we could enable hardware
enforcement (BTI) on CPUs that implement it.
So let's no longer disable BTI codegen for the EFI stub, and set the
newly introduced PE/COFF header flag when the kernel is built with BTI
landing pads.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Fundamentally semaphores are a counted primitive, but
DEFINE_SEMAPHORE() does not expose this and explicitly creates a
binary semaphore.
Change DEFINE_SEMAPHORE() to take a number argument and use that in the
few places that open-coded it using __SEMAPHORE_INITIALIZER().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[mcgrof: add some tribal knowledge about why some folks prefer
binary sempahores over mutexes]
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Since Linux-6.3, LoongArch supports PIE kernel now, so let's reintroduce
efi_relocate_kernel() to relocate the core kernel.
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The logic in efi_random_alloc() will iterate over the memory map twice,
once to count the number of candidate slots, and another time to locate
the chosen slot after randomization.
If there is insufficient memory to do the allocation, the second loop
will run to completion without actually having located a slot, but we
currently return EFI_SUCCESS in this case, as we fail to initialize
status to the appropriate error value of EFI_OUT_OF_RESOURCES.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
In some cases, we expose the kernel's struct screen_info to the EFI stub
directly, so it gets populated before even entering the kernel. This
means the early console is available as soon as the early param parsing
happens, which is nice. It also means we need two different ways to pass
this information, as this trick only works if the EFI stub is baked into
the core kernel image, which is not always the case.
Huacai reports that the preparatory refactoring that was needed to
implement this alternative method for zboot resulted in a non-functional
efifb earlycon for other cases as well, due to the reordering of the
kernel image relocation with the population of the screen_info struct,
and the latter now takes place after copying the image to its new
location, which means we copy the old, uninitialized state.
So let's ensure that the same-image version of alloc_screen_info()
produces the correct screen_info pointer, by taking the displacement of
the loaded image into account.
Reported-by: Huacai Chen <chenhuacai@loongson.cn>
Tested-by: Huacai Chen <chenhuacai@loongson.cn>
Link: https://lore.kernel.org/linux-efi/20230310021749.921041-1-chenhuacai@loongson.cn/
Fixes: 42c8ea3dca094ab8 ("efi: libstub: Factor out EFI stub entrypoint into separate file")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Avoid needlessly rebuilding the compressed image by adding the file
'vmlinuz' to the 'targets' Kbuild make variable.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Another Lenovo convertable which reports a landscape resolution of
1920x1200 with a pitch of (1920 * 4) bytes, while the actual framebuffer
has a resolution of 1200x1920 with a pitch of (1200 * 4) bytes.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit 8633ef82f101 ("drivers/firmware: consolidate EFI framebuffer setup
for all arches") moved the sysfb_apply_efi_quirks() call in sysfb_init()
from before the [sysfb_]parse_mode() call to after it.
But sysfb_apply_efi_quirks() modifies the global screen_info struct which
[sysfb_]parse_mode() parses, so doing it later is too late.
This has broken all DMI based quirks for correcting wrong firmware efifb
settings when simpledrm is used.
To fix this move the sysfb_apply_efi_quirks() call back to its old place
and split the new setup of the efifb_fwnode (which requires
the platform_device) into its own function and call that at
the place of the moved sysfb_apply_efi_quirks(pd) calls.
Fixes: 8633ef82f101 ("drivers/firmware: consolidate EFI framebuffer setup for all arches")
Cc: stable@vger.kernel.org
Cc: Javier Martinez Canillas <javierm@redhat.com>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We no longer use the recsize argument for locating the string table in
an SMBIOS record, so we can drop it from the internal API.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Instead of using the SMBIOS type 1 record 'family' field, which is often
modified by OEMs, use the type 4 'processor ID' and 'processor version'
fields, which are set to a small set of probe-able values on all known
Ampere EFI systems in the field.
Fixes: 550b33cfd4452968 ("arm64: efi: Force the use of ...")
Tested-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>