1109 Commits

Author SHA1 Message Date
Mel Gorman
e5b31ac2ca mm, page_alloc: remove unnecessary variable from free_pcppages_bulk
The original count is never reused so it can be removed.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
da838d4fcb mm, page_alloc: pull out side effects from free_pages_check
Check without side-effects should be easier to maintain.  It also
removes the duplicated cpupid and flags reset done in !DEBUG_VM variant
of both free_pcp_prepare() and then bulkfree_pcp_prepare().  Finally, it
enables the next patch.

It shouldn't result in new branches, thanks to inlining of the check.

!DEBUG_VM bloat-o-meter:

  add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-27 (-27)
  function                                     old     new   delta
  __free_pages_ok                              748     739      -9
  free_pcppages_bulk                          1403    1385     -18

DEBUG_VM:

  add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-28 (-28)
  function                                     old     new   delta
  free_pages_prepare                           806     778     -28

This is also slightly faster because cpupid information is not set on
tail pages so we can avoid resets there.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
bb552ac6c6 mm, page_alloc: un-inline the bad part of free_pages_check
From: Vlastimil Babka <vbabka@suse.cz>

!DEBUG_VM size and bloat-o-meter:

  add/remove: 1/0 grow/shrink: 0/2 up/down: 124/-370 (-246)
  function                                     old     new   delta
  free_pages_check_bad                           -     124    +124
  free_pcppages_bulk                          1288    1171    -117
  __free_pages_ok                              948     695    -253

DEBUG_VM:

  add/remove: 1/0 grow/shrink: 0/1 up/down: 124/-214 (-90)
  function                                     old     new   delta
  free_pages_check_bad                           -     124    +124
  free_pages_prepare                          1112     898    -214

[akpm@linux-foundation.org: fix whitespace]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
7bfec6f47b mm, page_alloc: check multiple page fields with a single branch
Every page allocated or freed is checked for sanity to avoid corruptions
that are difficult to detect later.  A bad page could be due to a number
of fields.  Instead of using multiple branches, this patch combines
multiple fields into a single branch.  A detailed check is only
necessary if that check fails.

                                             4.6.0-rc2                  4.6.0-rc2
                                        initonce-v1r20            multcheck-v1r20
  Min      alloc-odr0-1               359.00 (  0.00%)           348.00 (  3.06%)
  Min      alloc-odr0-2               260.00 (  0.00%)           254.00 (  2.31%)
  Min      alloc-odr0-4               214.00 (  0.00%)           213.00 (  0.47%)
  Min      alloc-odr0-8               186.00 (  0.00%)           186.00 (  0.00%)
  Min      alloc-odr0-16              173.00 (  0.00%)           173.00 (  0.00%)
  Min      alloc-odr0-32              165.00 (  0.00%)           166.00 ( -0.61%)
  Min      alloc-odr0-64              162.00 (  0.00%)           162.00 (  0.00%)
  Min      alloc-odr0-128             161.00 (  0.00%)           160.00 (  0.62%)
  Min      alloc-odr0-256             170.00 (  0.00%)           169.00 (  0.59%)
  Min      alloc-odr0-512             181.00 (  0.00%)           180.00 (  0.55%)
  Min      alloc-odr0-1024            190.00 (  0.00%)           188.00 (  1.05%)
  Min      alloc-odr0-2048            196.00 (  0.00%)           194.00 (  1.02%)
  Min      alloc-odr0-4096            202.00 (  0.00%)           199.00 (  1.49%)
  Min      alloc-odr0-8192            205.00 (  0.00%)           202.00 (  1.46%)
  Min      alloc-odr0-16384           205.00 (  0.00%)           203.00 (  0.98%)

Again, the benefit is marginal but avoiding excessive branches is
important.  Ideally the paths would not have to check these conditions
at all but regrettably abandoning the tests would make use-after-free
bugs much harder to detect.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
93ea9964d1 mm, page_alloc: remove field from alloc_context
The classzone_idx can be inferred from preferred_zoneref so remove the
unnecessary field and save stack space.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
c33d6c06f6 mm, page_alloc: avoid looking up the first zone in a zonelist twice
The allocator fast path looks up the first usable zone in a zonelist and
then get_page_from_freelist does the same job in the zonelist iterator.
This patch preserves the necessary information.

                                             4.6.0-rc2                  4.6.0-rc2
                                        fastmark-v1r20             initonce-v1r20
  Min      alloc-odr0-1               364.00 (  0.00%)           359.00 (  1.37%)
  Min      alloc-odr0-2               262.00 (  0.00%)           260.00 (  0.76%)
  Min      alloc-odr0-4               214.00 (  0.00%)           214.00 (  0.00%)
  Min      alloc-odr0-8               186.00 (  0.00%)           186.00 (  0.00%)
  Min      alloc-odr0-16              173.00 (  0.00%)           173.00 (  0.00%)
  Min      alloc-odr0-32              165.00 (  0.00%)           165.00 (  0.00%)
  Min      alloc-odr0-64              161.00 (  0.00%)           162.00 ( -0.62%)
  Min      alloc-odr0-128             159.00 (  0.00%)           161.00 ( -1.26%)
  Min      alloc-odr0-256             168.00 (  0.00%)           170.00 ( -1.19%)
  Min      alloc-odr0-512             180.00 (  0.00%)           181.00 ( -0.56%)
  Min      alloc-odr0-1024            190.00 (  0.00%)           190.00 (  0.00%)
  Min      alloc-odr0-2048            196.00 (  0.00%)           196.00 (  0.00%)
  Min      alloc-odr0-4096            202.00 (  0.00%)           202.00 (  0.00%)
  Min      alloc-odr0-8192            206.00 (  0.00%)           205.00 (  0.49%)
  Min      alloc-odr0-16384           206.00 (  0.00%)           205.00 (  0.49%)

The benefit is negligible and the results are within the noise but each
cycle counts.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
48ee5f3696 mm, page_alloc: shortcut watermark checks for order-0 pages
Watermarks have to be checked on every allocation including the number
of pages being allocated and whether reserves can be accessed.  The
reserves only matter if memory is limited and the free_pages adjustment
only applies to high-order pages.  This patch adds a shortcut for
order-0 pages that avoids numerous calculations if there is plenty of
free memory yielding the following performance difference in a page
allocator microbenchmark;

                                             4.6.0-rc2                  4.6.0-rc2
                                         optfair-v1r20             fastmark-v1r20
  Min      alloc-odr0-1               380.00 (  0.00%)           364.00 (  4.21%)
  Min      alloc-odr0-2               273.00 (  0.00%)           262.00 (  4.03%)
  Min      alloc-odr0-4               227.00 (  0.00%)           214.00 (  5.73%)
  Min      alloc-odr0-8               196.00 (  0.00%)           186.00 (  5.10%)
  Min      alloc-odr0-16              183.00 (  0.00%)           173.00 (  5.46%)
  Min      alloc-odr0-32              173.00 (  0.00%)           165.00 (  4.62%)
  Min      alloc-odr0-64              169.00 (  0.00%)           161.00 (  4.73%)
  Min      alloc-odr0-128             169.00 (  0.00%)           159.00 (  5.92%)
  Min      alloc-odr0-256             180.00 (  0.00%)           168.00 (  6.67%)
  Min      alloc-odr0-512             190.00 (  0.00%)           180.00 (  5.26%)
  Min      alloc-odr0-1024            198.00 (  0.00%)           190.00 (  4.04%)
  Min      alloc-odr0-2048            204.00 (  0.00%)           196.00 (  3.92%)
  Min      alloc-odr0-4096            209.00 (  0.00%)           202.00 (  3.35%)
  Min      alloc-odr0-8192            213.00 (  0.00%)           206.00 (  3.29%)
  Min      alloc-odr0-16384           214.00 (  0.00%)           206.00 (  3.74%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
305347550b mm, page_alloc: reduce cost of fair zone allocation policy retry
The fair zone allocation policy is not without cost but it can be
reduced slightly.  This patch removes an unnecessary local variable,
checks the likely conditions of the fair zone policy first, uses a bool
instead of a flags check and falls through when a remote node is
encountered instead of doing a full restart.  The benefit is marginal
but it's there

                                             4.6.0-rc2                  4.6.0-rc2
                                         decstat-v1r20              optfair-v1r20
  Min      alloc-odr0-1               377.00 (  0.00%)           380.00 ( -0.80%)
  Min      alloc-odr0-2               273.00 (  0.00%)           273.00 (  0.00%)
  Min      alloc-odr0-4               226.00 (  0.00%)           227.00 ( -0.44%)
  Min      alloc-odr0-8               196.00 (  0.00%)           196.00 (  0.00%)
  Min      alloc-odr0-16              183.00 (  0.00%)           183.00 (  0.00%)
  Min      alloc-odr0-32              175.00 (  0.00%)           173.00 (  1.14%)
  Min      alloc-odr0-64              172.00 (  0.00%)           169.00 (  1.74%)
  Min      alloc-odr0-128             170.00 (  0.00%)           169.00 (  0.59%)
  Min      alloc-odr0-256             183.00 (  0.00%)           180.00 (  1.64%)
  Min      alloc-odr0-512             191.00 (  0.00%)           190.00 (  0.52%)
  Min      alloc-odr0-1024            199.00 (  0.00%)           198.00 (  0.50%)
  Min      alloc-odr0-2048            204.00 (  0.00%)           204.00 (  0.00%)
  Min      alloc-odr0-4096            210.00 (  0.00%)           209.00 (  0.48%)
  Min      alloc-odr0-8192            213.00 (  0.00%)           213.00 (  0.00%)
  Min      alloc-odr0-16384           214.00 (  0.00%)           214.00 (  0.00%)

The benefit is marginal at best but one of the most important benefits,
avoiding a second search when falling back to another node is not
triggered by this particular test so the benefit for some corner cases
is understated.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
4fcb097117 mm, page_alloc: shorten the page allocator fast path
The page allocator fast path checks page multiple times unnecessarily.
This patch avoids all the slowpath checks if the first allocation
attempt succeeds.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
3777999dd4 mm, page_alloc: check once if a zone has isolated pageblocks
When bulk freeing pages from the per-cpu lists the zone is checked for
isolated pageblocks on every release.  This patch checks it once per
drain.

[mgorman@techsingularity.net: fix locking radce, per Vlastimil]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
83d4ca8148 mm, page_alloc: move __GFP_HARDWALL modifications out of the fastpath
__GFP_HARDWALL only has meaning in the context of cpusets but the fast
path always applies the flag on the first attempt.  Move the
manipulations into the cpuset paths where they will be masked by a
static branch in the common case.

With the other micro-optimisations in this series combined, the impact
on a page allocator microbenchmark is

                                             4.6.0-rc2                  4.6.0-rc2
                                         decstat-v1r20                micro-v1r20
  Min      alloc-odr0-1               381.00 (  0.00%)           377.00 (  1.05%)
  Min      alloc-odr0-2               275.00 (  0.00%)           273.00 (  0.73%)
  Min      alloc-odr0-4               229.00 (  0.00%)           226.00 (  1.31%)
  Min      alloc-odr0-8               199.00 (  0.00%)           196.00 (  1.51%)
  Min      alloc-odr0-16              186.00 (  0.00%)           183.00 (  1.61%)
  Min      alloc-odr0-32              179.00 (  0.00%)           175.00 (  2.23%)
  Min      alloc-odr0-64              174.00 (  0.00%)           172.00 (  1.15%)
  Min      alloc-odr0-128             172.00 (  0.00%)           170.00 (  1.16%)
  Min      alloc-odr0-256             181.00 (  0.00%)           183.00 ( -1.10%)
  Min      alloc-odr0-512             193.00 (  0.00%)           191.00 (  1.04%)
  Min      alloc-odr0-1024            201.00 (  0.00%)           199.00 (  1.00%)
  Min      alloc-odr0-2048            206.00 (  0.00%)           204.00 (  0.97%)
  Min      alloc-odr0-4096            212.00 (  0.00%)           210.00 (  0.94%)
  Min      alloc-odr0-8192            215.00 (  0.00%)           213.00 (  0.93%)
  Min      alloc-odr0-16384           216.00 (  0.00%)           214.00 (  0.93%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
5bb1b16975 mm, page_alloc: remove unnecessary initialisation from __alloc_pages_nodemask()
page is guaranteed to be set before it is read with or without the
initialisation.

[akpm@linux-foundation.org: fix warning]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
be06af002f mm, page_alloc: remove unnecessary initialisation in get_page_from_freelist
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
4dfa6cd8fd mm, page_alloc: remove unnecessary local variable in get_page_from_freelist
zonelist here is a copy of a struct field that is used once.  Ditch it.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
fa379b9586 mm, page_alloc: convert nr_fair_skipped to bool
The number of zones skipped to a zone expiring its fair zone allocation
quota is irrelevant.  Convert to bool.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
c603844bdc mm, page_alloc: convert alloc_flags to unsigned
alloc_flags is a bitmask of flags but it is signed which does not
necessarily generate the best code depending on the compiler.  Even
without an impact, it makes more sense that this be unsigned.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
f75fb889d1 mm, page_alloc: avoid unnecessary zone lookups during pageblock operations
Pageblocks have an associated bitmap to store migrate types and whether
the pageblock should be skipped during compaction.  The bitmap may be
associated with a memory section or a zone but the zone is looked up
unconditionally.  The compiler should optimise this away automatically
so this is a cosmetic patch only in many cases.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
754078eb45 mm, page_alloc: use __dec_zone_state for order-0 page allocation
__dec_zone_state is cheaper to use for removing an order-0 page as it
has fewer conditions to check.

The performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                         optiter-v1r20              decstat-v1r20
  Min      alloc-odr0-1               382.00 (  0.00%)           381.00 (  0.26%)
  Min      alloc-odr0-2               282.00 (  0.00%)           275.00 (  2.48%)
  Min      alloc-odr0-4               233.00 (  0.00%)           229.00 (  1.72%)
  Min      alloc-odr0-8               203.00 (  0.00%)           199.00 (  1.97%)
  Min      alloc-odr0-16              188.00 (  0.00%)           186.00 (  1.06%)
  Min      alloc-odr0-32              182.00 (  0.00%)           179.00 (  1.65%)
  Min      alloc-odr0-64              177.00 (  0.00%)           174.00 (  1.69%)
  Min      alloc-odr0-128             175.00 (  0.00%)           172.00 (  1.71%)
  Min      alloc-odr0-256             184.00 (  0.00%)           181.00 (  1.63%)
  Min      alloc-odr0-512             197.00 (  0.00%)           193.00 (  2.03%)
  Min      alloc-odr0-1024            203.00 (  0.00%)           201.00 (  0.99%)
  Min      alloc-odr0-2048            209.00 (  0.00%)           206.00 (  1.44%)
  Min      alloc-odr0-4096            214.00 (  0.00%)           212.00 (  0.93%)
  Min      alloc-odr0-8192            218.00 (  0.00%)           215.00 (  1.38%)
  Min      alloc-odr0-16384           219.00 (  0.00%)           216.00 (  1.37%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
682a3385e7 mm, page_alloc: inline the fast path of the zonelist iterator
The page allocator iterates through a zonelist for zones that match the
addressing limitations and nodemask of the caller but many allocations
will not be restricted.  Despite this, there is always functional call
overhead which builds up.

This patch inlines the optimistic basic case and only calls the iterator
function for the complex case.  A hindrance was the fact that
cpuset_current_mems_allowed is used in the fastpath as the allowed
nodemask even though all nodes are allowed on most systems.  The patch
handles this by only considering cpuset_current_mems_allowed if a cpuset
exists.  As well as being faster in the fast-path, this removes some
junk in the slowpath.

The performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                      statinline-v1r20              optiter-v1r20
  Min      alloc-odr0-1               412.00 (  0.00%)           382.00 (  7.28%)
  Min      alloc-odr0-2               301.00 (  0.00%)           282.00 (  6.31%)
  Min      alloc-odr0-4               247.00 (  0.00%)           233.00 (  5.67%)
  Min      alloc-odr0-8               215.00 (  0.00%)           203.00 (  5.58%)
  Min      alloc-odr0-16              199.00 (  0.00%)           188.00 (  5.53%)
  Min      alloc-odr0-32              191.00 (  0.00%)           182.00 (  4.71%)
  Min      alloc-odr0-64              187.00 (  0.00%)           177.00 (  5.35%)
  Min      alloc-odr0-128             185.00 (  0.00%)           175.00 (  5.41%)
  Min      alloc-odr0-256             193.00 (  0.00%)           184.00 (  4.66%)
  Min      alloc-odr0-512             207.00 (  0.00%)           197.00 (  4.83%)
  Min      alloc-odr0-1024            213.00 (  0.00%)           203.00 (  4.69%)
  Min      alloc-odr0-2048            220.00 (  0.00%)           209.00 (  5.00%)
  Min      alloc-odr0-4096            226.00 (  0.00%)           214.00 (  5.31%)
  Min      alloc-odr0-8192            229.00 (  0.00%)           218.00 (  4.80%)
  Min      alloc-odr0-16384           229.00 (  0.00%)           219.00 (  4.37%)

perf indicated that next_zones_zonelist disappeared in the profile and
__next_zones_zonelist did not appear.  This is expected as the
micro-benchmark would hit the inlined fast-path every time.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
060e74173f mm, page_alloc: inline zone_statistics
zone_statistics has one call-site but it's a public function.  Make it
static and inline.

The performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                      statbranch-v1r20           statinline-v1r20
  Min      alloc-odr0-1               419.00 (  0.00%)           412.00 (  1.67%)
  Min      alloc-odr0-2               305.00 (  0.00%)           301.00 (  1.31%)
  Min      alloc-odr0-4               250.00 (  0.00%)           247.00 (  1.20%)
  Min      alloc-odr0-8               219.00 (  0.00%)           215.00 (  1.83%)
  Min      alloc-odr0-16              203.00 (  0.00%)           199.00 (  1.97%)
  Min      alloc-odr0-32              195.00 (  0.00%)           191.00 (  2.05%)
  Min      alloc-odr0-64              191.00 (  0.00%)           187.00 (  2.09%)
  Min      alloc-odr0-128             189.00 (  0.00%)           185.00 (  2.12%)
  Min      alloc-odr0-256             198.00 (  0.00%)           193.00 (  2.53%)
  Min      alloc-odr0-512             210.00 (  0.00%)           207.00 (  1.43%)
  Min      alloc-odr0-1024            216.00 (  0.00%)           213.00 (  1.39%)
  Min      alloc-odr0-2048            221.00 (  0.00%)           220.00 (  0.45%)
  Min      alloc-odr0-4096            227.00 (  0.00%)           226.00 (  0.44%)
  Min      alloc-odr0-8192            232.00 (  0.00%)           229.00 (  1.29%)
  Min      alloc-odr0-16384           232.00 (  0.00%)           229.00 (  1.29%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
175145748d mm, page_alloc: use new PageAnonHead helper in the free page fast path
The PageAnon check always checks for compound_head but this is a
relatively expensive check if the caller already knows the page is a
head page.  This patch creates a helper and uses it in the page free
path which only operates on head pages.

With this patch and "Only check PageCompound for high-order pages", the
performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                               vanilla           nocompound-v1r20
  Min      alloc-odr0-1               425.00 (  0.00%)           417.00 (  1.88%)
  Min      alloc-odr0-2               313.00 (  0.00%)           308.00 (  1.60%)
  Min      alloc-odr0-4               257.00 (  0.00%)           253.00 (  1.56%)
  Min      alloc-odr0-8               224.00 (  0.00%)           221.00 (  1.34%)
  Min      alloc-odr0-16              208.00 (  0.00%)           205.00 (  1.44%)
  Min      alloc-odr0-32              199.00 (  0.00%)           199.00 (  0.00%)
  Min      alloc-odr0-64              195.00 (  0.00%)           193.00 (  1.03%)
  Min      alloc-odr0-128             192.00 (  0.00%)           191.00 (  0.52%)
  Min      alloc-odr0-256             204.00 (  0.00%)           200.00 (  1.96%)
  Min      alloc-odr0-512             213.00 (  0.00%)           212.00 (  0.47%)
  Min      alloc-odr0-1024            219.00 (  0.00%)           219.00 (  0.00%)
  Min      alloc-odr0-2048            225.00 (  0.00%)           225.00 (  0.00%)
  Min      alloc-odr0-4096            230.00 (  0.00%)           231.00 ( -0.43%)
  Min      alloc-odr0-8192            235.00 (  0.00%)           234.00 (  0.43%)
  Min      alloc-odr0-16384           235.00 (  0.00%)           234.00 (  0.43%)
  Min      free-odr0-1                215.00 (  0.00%)           191.00 ( 11.16%)
  Min      free-odr0-2                152.00 (  0.00%)           136.00 ( 10.53%)
  Min      free-odr0-4                119.00 (  0.00%)           107.00 ( 10.08%)
  Min      free-odr0-8                106.00 (  0.00%)            96.00 (  9.43%)
  Min      free-odr0-16                97.00 (  0.00%)            87.00 ( 10.31%)
  Min      free-odr0-32                91.00 (  0.00%)            83.00 (  8.79%)
  Min      free-odr0-64                89.00 (  0.00%)            81.00 (  8.99%)
  Min      free-odr0-128               88.00 (  0.00%)            80.00 (  9.09%)
  Min      free-odr0-256              106.00 (  0.00%)            95.00 ( 10.38%)
  Min      free-odr0-512              116.00 (  0.00%)           111.00 (  4.31%)
  Min      free-odr0-1024             125.00 (  0.00%)           118.00 (  5.60%)
  Min      free-odr0-2048             133.00 (  0.00%)           126.00 (  5.26%)
  Min      free-odr0-4096             136.00 (  0.00%)           130.00 (  4.41%)
  Min      free-odr0-8192             138.00 (  0.00%)           130.00 (  5.80%)
  Min      free-odr0-16384            137.00 (  0.00%)           130.00 (  5.11%)

There is a sizable boost to the free allocator performance.  While there
is an apparent boost on the allocation side, it's likely a co-incidence
or due to the patches slightly reducing cache footprint.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
d61f859039 mm, page_alloc: only check PageCompound for high-order pages
Another year, another round of page allocator optimisations focusing
this time on the alloc and free fast paths.  This should be of help to
workloads that are allocator-intensive from kernel space where the cost
of zeroing is not nceessraily incurred.

The series is motivated by the observation that page alloc
microbenchmarks on multiple machines regressed between 3.12.44 and 4.4.
Second, there is discussions before LSF/MM considering the possibility
of adding another page allocator which is potentially hazardous but a
patch series improving performance is better than whining.

After the series is applied, there are still hazards.  In the free
paths, the debugging checking and page zone/pageblock lookups dominate
but there was not an obvious solution to that.  In the alloc path, the
major contributers are dealing with zonelists, new page preperation, the
fair zone allocation and numerous statistic updates.  The fair zone
allocator is removed by the per-node LRU series if that gets merged so
it's nor a major concern at the moment.

On normal userspace benchmarks, there is little impact as the zeroing
cost is significant but it's visible

  aim9
                                 4.6.0-rc3             4.6.0-rc3
                                   vanilla         deferalloc-v3
  Min      page_test   828693.33 (  0.00%)   887060.00 (  7.04%)
  Min      brk_test   4847266.67 (  0.00%)  4966266.67 (  2.45%)
  Min      exec_test     1271.00 (  0.00%)     1275.67 (  0.37%)
  Min      fork_test    12371.75 (  0.00%)    12380.00 (  0.07%)

The overall impact on a page allocator microbenchmark for a range of orders
and number of pages allocated in a batch is

                                            4.6.0-rc3                  4.6.0-rc3
                                               vanilla            deferalloc-v3r7
  Min      alloc-odr0-1               428.00 (  0.00%)           316.00 ( 26.17%)
  Min      alloc-odr0-2               314.00 (  0.00%)           231.00 ( 26.43%)
  Min      alloc-odr0-4               256.00 (  0.00%)           192.00 ( 25.00%)
  Min      alloc-odr0-8               222.00 (  0.00%)           166.00 ( 25.23%)
  Min      alloc-odr0-16              207.00 (  0.00%)           154.00 ( 25.60%)
  Min      alloc-odr0-32              197.00 (  0.00%)           148.00 ( 24.87%)
  Min      alloc-odr0-64              193.00 (  0.00%)           144.00 ( 25.39%)
  Min      alloc-odr0-128             191.00 (  0.00%)           143.00 ( 25.13%)
  Min      alloc-odr0-256             203.00 (  0.00%)           153.00 ( 24.63%)
  Min      alloc-odr0-512             212.00 (  0.00%)           165.00 ( 22.17%)
  Min      alloc-odr0-1024            221.00 (  0.00%)           172.00 ( 22.17%)
  Min      alloc-odr0-2048            225.00 (  0.00%)           179.00 ( 20.44%)
  Min      alloc-odr0-4096            232.00 (  0.00%)           185.00 ( 20.26%)
  Min      alloc-odr0-8192            235.00 (  0.00%)           187.00 ( 20.43%)
  Min      alloc-odr0-16384           236.00 (  0.00%)           188.00 ( 20.34%)
  Min      alloc-odr1-1               519.00 (  0.00%)           450.00 ( 13.29%)
  Min      alloc-odr1-2               391.00 (  0.00%)           336.00 ( 14.07%)
  Min      alloc-odr1-4               313.00 (  0.00%)           268.00 ( 14.38%)
  Min      alloc-odr1-8               277.00 (  0.00%)           235.00 ( 15.16%)
  Min      alloc-odr1-16              256.00 (  0.00%)           218.00 ( 14.84%)
  Min      alloc-odr1-32              252.00 (  0.00%)           212.00 ( 15.87%)
  Min      alloc-odr1-64              244.00 (  0.00%)           206.00 ( 15.57%)
  Min      alloc-odr1-128             244.00 (  0.00%)           207.00 ( 15.16%)
  Min      alloc-odr1-256             243.00 (  0.00%)           207.00 ( 14.81%)
  Min      alloc-odr1-512             245.00 (  0.00%)           209.00 ( 14.69%)
  Min      alloc-odr1-1024            248.00 (  0.00%)           214.00 ( 13.71%)
  Min      alloc-odr1-2048            253.00 (  0.00%)           220.00 ( 13.04%)
  Min      alloc-odr1-4096            258.00 (  0.00%)           224.00 ( 13.18%)
  Min      alloc-odr1-8192            261.00 (  0.00%)           229.00 ( 12.26%)
  Min      alloc-odr2-1               560.00 (  0.00%)           753.00 (-34.46%)
  Min      alloc-odr2-2               424.00 (  0.00%)           351.00 ( 17.22%)
  Min      alloc-odr2-4               339.00 (  0.00%)           393.00 (-15.93%)
  Min      alloc-odr2-8               298.00 (  0.00%)           246.00 ( 17.45%)
  Min      alloc-odr2-16              276.00 (  0.00%)           227.00 ( 17.75%)
  Min      alloc-odr2-32              271.00 (  0.00%)           221.00 ( 18.45%)
  Min      alloc-odr2-64              264.00 (  0.00%)           217.00 ( 17.80%)
  Min      alloc-odr2-128             264.00 (  0.00%)           217.00 ( 17.80%)
  Min      alloc-odr2-256             264.00 (  0.00%)           218.00 ( 17.42%)
  Min      alloc-odr2-512             269.00 (  0.00%)           223.00 ( 17.10%)
  Min      alloc-odr2-1024            279.00 (  0.00%)           230.00 ( 17.56%)
  Min      alloc-odr2-2048            283.00 (  0.00%)           235.00 ( 16.96%)
  Min      alloc-odr2-4096            285.00 (  0.00%)           239.00 ( 16.14%)
  Min      alloc-odr3-1               629.00 (  0.00%)           505.00 ( 19.71%)
  Min      alloc-odr3-2               472.00 (  0.00%)           374.00 ( 20.76%)
  Min      alloc-odr3-4               383.00 (  0.00%)           301.00 ( 21.41%)
  Min      alloc-odr3-8               341.00 (  0.00%)           266.00 ( 21.99%)
  Min      alloc-odr3-16              316.00 (  0.00%)           248.00 ( 21.52%)
  Min      alloc-odr3-32              308.00 (  0.00%)           241.00 ( 21.75%)
  Min      alloc-odr3-64              305.00 (  0.00%)           241.00 ( 20.98%)
  Min      alloc-odr3-128             308.00 (  0.00%)           244.00 ( 20.78%)
  Min      alloc-odr3-256             317.00 (  0.00%)           249.00 ( 21.45%)
  Min      alloc-odr3-512             327.00 (  0.00%)           256.00 ( 21.71%)
  Min      alloc-odr3-1024            331.00 (  0.00%)           261.00 ( 21.15%)
  Min      alloc-odr3-2048            333.00 (  0.00%)           266.00 ( 20.12%)
  Min      alloc-odr4-1               767.00 (  0.00%)           572.00 ( 25.42%)
  Min      alloc-odr4-2               578.00 (  0.00%)           429.00 ( 25.78%)
  Min      alloc-odr4-4               474.00 (  0.00%)           346.00 ( 27.00%)
  Min      alloc-odr4-8               422.00 (  0.00%)           310.00 ( 26.54%)
  Min      alloc-odr4-16              399.00 (  0.00%)           295.00 ( 26.07%)
  Min      alloc-odr4-32              392.00 (  0.00%)           293.00 ( 25.26%)
  Min      alloc-odr4-64              394.00 (  0.00%)           293.00 ( 25.63%)
  Min      alloc-odr4-128             405.00 (  0.00%)           305.00 ( 24.69%)
  Min      alloc-odr4-256             417.00 (  0.00%)           319.00 ( 23.50%)
  Min      alloc-odr4-512             425.00 (  0.00%)           326.00 ( 23.29%)
  Min      alloc-odr4-1024            426.00 (  0.00%)           329.00 ( 22.77%)
  Min      free-odr0-1                216.00 (  0.00%)           178.00 ( 17.59%)
  Min      free-odr0-2                152.00 (  0.00%)           125.00 ( 17.76%)
  Min      free-odr0-4                120.00 (  0.00%)            99.00 ( 17.50%)
  Min      free-odr0-8                106.00 (  0.00%)            85.00 ( 19.81%)
  Min      free-odr0-16                97.00 (  0.00%)            80.00 ( 17.53%)
  Min      free-odr0-32                92.00 (  0.00%)            76.00 ( 17.39%)
  Min      free-odr0-64                89.00 (  0.00%)            74.00 ( 16.85%)
  Min      free-odr0-128               89.00 (  0.00%)            73.00 ( 17.98%)
  Min      free-odr0-256              107.00 (  0.00%)            90.00 ( 15.89%)
  Min      free-odr0-512              117.00 (  0.00%)           108.00 (  7.69%)
  Min      free-odr0-1024             125.00 (  0.00%)           118.00 (  5.60%)
  Min      free-odr0-2048             132.00 (  0.00%)           125.00 (  5.30%)
  Min      free-odr0-4096             135.00 (  0.00%)           130.00 (  3.70%)
  Min      free-odr0-8192             137.00 (  0.00%)           130.00 (  5.11%)
  Min      free-odr0-16384            137.00 (  0.00%)           131.00 (  4.38%)
  Min      free-odr1-1                318.00 (  0.00%)           289.00 (  9.12%)
  Min      free-odr1-2                228.00 (  0.00%)           207.00 (  9.21%)
  Min      free-odr1-4                182.00 (  0.00%)           165.00 (  9.34%)
  Min      free-odr1-8                163.00 (  0.00%)           146.00 ( 10.43%)
  Min      free-odr1-16               151.00 (  0.00%)           135.00 ( 10.60%)
  Min      free-odr1-32               146.00 (  0.00%)           129.00 ( 11.64%)
  Min      free-odr1-64               145.00 (  0.00%)           130.00 ( 10.34%)
  Min      free-odr1-128              148.00 (  0.00%)           134.00 (  9.46%)
  Min      free-odr1-256              148.00 (  0.00%)           137.00 (  7.43%)
  Min      free-odr1-512              151.00 (  0.00%)           140.00 (  7.28%)
  Min      free-odr1-1024             154.00 (  0.00%)           143.00 (  7.14%)
  Min      free-odr1-2048             156.00 (  0.00%)           144.00 (  7.69%)
  Min      free-odr1-4096             156.00 (  0.00%)           142.00 (  8.97%)
  Min      free-odr1-8192             156.00 (  0.00%)           140.00 ( 10.26%)
  Min      free-odr2-1                361.00 (  0.00%)           457.00 (-26.59%)
  Min      free-odr2-2                258.00 (  0.00%)           224.00 ( 13.18%)
  Min      free-odr2-4                208.00 (  0.00%)           223.00 ( -7.21%)
  Min      free-odr2-8                185.00 (  0.00%)           160.00 ( 13.51%)
  Min      free-odr2-16               173.00 (  0.00%)           149.00 ( 13.87%)
  Min      free-odr2-32               166.00 (  0.00%)           145.00 ( 12.65%)
  Min      free-odr2-64               166.00 (  0.00%)           146.00 ( 12.05%)
  Min      free-odr2-128              169.00 (  0.00%)           148.00 ( 12.43%)
  Min      free-odr2-256              170.00 (  0.00%)           152.00 ( 10.59%)
  Min      free-odr2-512              177.00 (  0.00%)           156.00 ( 11.86%)
  Min      free-odr2-1024             182.00 (  0.00%)           162.00 ( 10.99%)
  Min      free-odr2-2048             181.00 (  0.00%)           160.00 ( 11.60%)
  Min      free-odr2-4096             180.00 (  0.00%)           159.00 ( 11.67%)
  Min      free-odr3-1                431.00 (  0.00%)           367.00 ( 14.85%)
  Min      free-odr3-2                306.00 (  0.00%)           259.00 ( 15.36%)
  Min      free-odr3-4                249.00 (  0.00%)           208.00 ( 16.47%)
  Min      free-odr3-8                224.00 (  0.00%)           186.00 ( 16.96%)
  Min      free-odr3-16               208.00 (  0.00%)           176.00 ( 15.38%)
  Min      free-odr3-32               206.00 (  0.00%)           174.00 ( 15.53%)
  Min      free-odr3-64               210.00 (  0.00%)           178.00 ( 15.24%)
  Min      free-odr3-128              215.00 (  0.00%)           182.00 ( 15.35%)
  Min      free-odr3-256              224.00 (  0.00%)           189.00 ( 15.62%)
  Min      free-odr3-512              232.00 (  0.00%)           195.00 ( 15.95%)
  Min      free-odr3-1024             230.00 (  0.00%)           195.00 ( 15.22%)
  Min      free-odr3-2048             229.00 (  0.00%)           193.00 ( 15.72%)
  Min      free-odr4-1                561.00 (  0.00%)           439.00 ( 21.75%)
  Min      free-odr4-2                418.00 (  0.00%)           318.00 ( 23.92%)
  Min      free-odr4-4                339.00 (  0.00%)           269.00 ( 20.65%)
  Min      free-odr4-8                299.00 (  0.00%)           239.00 ( 20.07%)
  Min      free-odr4-16               289.00 (  0.00%)           234.00 ( 19.03%)
  Min      free-odr4-32               291.00 (  0.00%)           235.00 ( 19.24%)
  Min      free-odr4-64               298.00 (  0.00%)           238.00 ( 20.13%)
  Min      free-odr4-128              308.00 (  0.00%)           251.00 ( 18.51%)
  Min      free-odr4-256              321.00 (  0.00%)           267.00 ( 16.82%)
  Min      free-odr4-512              327.00 (  0.00%)           269.00 ( 17.74%)
  Min      free-odr4-1024             326.00 (  0.00%)           271.00 ( 16.87%)
  Min      total-odr0-1               644.00 (  0.00%)           494.00 ( 23.29%)
  Min      total-odr0-2               466.00 (  0.00%)           356.00 ( 23.61%)
  Min      total-odr0-4               376.00 (  0.00%)           291.00 ( 22.61%)
  Min      total-odr0-8               328.00 (  0.00%)           251.00 ( 23.48%)
  Min      total-odr0-16              304.00 (  0.00%)           234.00 ( 23.03%)
  Min      total-odr0-32              289.00 (  0.00%)           224.00 ( 22.49%)
  Min      total-odr0-64              282.00 (  0.00%)           218.00 ( 22.70%)
  Min      total-odr0-128             280.00 (  0.00%)           216.00 ( 22.86%)
  Min      total-odr0-256             310.00 (  0.00%)           243.00 ( 21.61%)
  Min      total-odr0-512             329.00 (  0.00%)           273.00 ( 17.02%)
  Min      total-odr0-1024            346.00 (  0.00%)           290.00 ( 16.18%)
  Min      total-odr0-2048            357.00 (  0.00%)           304.00 ( 14.85%)
  Min      total-odr0-4096            367.00 (  0.00%)           315.00 ( 14.17%)
  Min      total-odr0-8192            372.00 (  0.00%)           317.00 ( 14.78%)
  Min      total-odr0-16384           373.00 (  0.00%)           319.00 ( 14.48%)
  Min      total-odr1-1               838.00 (  0.00%)           739.00 ( 11.81%)
  Min      total-odr1-2               619.00 (  0.00%)           543.00 ( 12.28%)
  Min      total-odr1-4               495.00 (  0.00%)           433.00 ( 12.53%)
  Min      total-odr1-8               440.00 (  0.00%)           382.00 ( 13.18%)
  Min      total-odr1-16              407.00 (  0.00%)           353.00 ( 13.27%)
  Min      total-odr1-32              398.00 (  0.00%)           341.00 ( 14.32%)
  Min      total-odr1-64              389.00 (  0.00%)           336.00 ( 13.62%)
  Min      total-odr1-128             392.00 (  0.00%)           341.00 ( 13.01%)
  Min      total-odr1-256             391.00 (  0.00%)           344.00 ( 12.02%)
  Min      total-odr1-512             396.00 (  0.00%)           349.00 ( 11.87%)
  Min      total-odr1-1024            402.00 (  0.00%)           357.00 ( 11.19%)
  Min      total-odr1-2048            409.00 (  0.00%)           364.00 ( 11.00%)
  Min      total-odr1-4096            414.00 (  0.00%)           366.00 ( 11.59%)
  Min      total-odr1-8192            417.00 (  0.00%)           369.00 ( 11.51%)
  Min      total-odr2-1               921.00 (  0.00%)          1210.00 (-31.38%)
  Min      total-odr2-2               682.00 (  0.00%)           576.00 ( 15.54%)
  Min      total-odr2-4               547.00 (  0.00%)           616.00 (-12.61%)
  Min      total-odr2-8               483.00 (  0.00%)           406.00 ( 15.94%)
  Min      total-odr2-16              449.00 (  0.00%)           376.00 ( 16.26%)
  Min      total-odr2-32              437.00 (  0.00%)           366.00 ( 16.25%)
  Min      total-odr2-64              431.00 (  0.00%)           363.00 ( 15.78%)
  Min      total-odr2-128             433.00 (  0.00%)           365.00 ( 15.70%)
  Min      total-odr2-256             434.00 (  0.00%)           371.00 ( 14.52%)
  Min      total-odr2-512             446.00 (  0.00%)           379.00 ( 15.02%)
  Min      total-odr2-1024            461.00 (  0.00%)           392.00 ( 14.97%)
  Min      total-odr2-2048            464.00 (  0.00%)           395.00 ( 14.87%)
  Min      total-odr2-4096            465.00 (  0.00%)           398.00 ( 14.41%)
  Min      total-odr3-1              1060.00 (  0.00%)           872.00 ( 17.74%)
  Min      total-odr3-2               778.00 (  0.00%)           633.00 ( 18.64%)
  Min      total-odr3-4               632.00 (  0.00%)           510.00 ( 19.30%)
  Min      total-odr3-8               565.00 (  0.00%)           452.00 ( 20.00%)
  Min      total-odr3-16              524.00 (  0.00%)           424.00 ( 19.08%)
  Min      total-odr3-32              514.00 (  0.00%)           415.00 ( 19.26%)
  Min      total-odr3-64              515.00 (  0.00%)           419.00 ( 18.64%)
  Min      total-odr3-128             523.00 (  0.00%)           426.00 ( 18.55%)
  Min      total-odr3-256             541.00 (  0.00%)           438.00 ( 19.04%)
  Min      total-odr3-512             559.00 (  0.00%)           451.00 ( 19.32%)
  Min      total-odr3-1024            561.00 (  0.00%)           456.00 ( 18.72%)
  Min      total-odr3-2048            562.00 (  0.00%)           459.00 ( 18.33%)
  Min      total-odr4-1              1328.00 (  0.00%)          1011.00 ( 23.87%)
  Min      total-odr4-2               997.00 (  0.00%)           747.00 ( 25.08%)
  Min      total-odr4-4               813.00 (  0.00%)           615.00 ( 24.35%)
  Min      total-odr4-8               721.00 (  0.00%)           550.00 ( 23.72%)
  Min      total-odr4-16              689.00 (  0.00%)           529.00 ( 23.22%)
  Min      total-odr4-32              683.00 (  0.00%)           528.00 ( 22.69%)
  Min      total-odr4-64              692.00 (  0.00%)           531.00 ( 23.27%)
  Min      total-odr4-128             713.00 (  0.00%)           556.00 ( 22.02%)
  Min      total-odr4-256             738.00 (  0.00%)           586.00 ( 20.60%)
  Min      total-odr4-512             753.00 (  0.00%)           595.00 ( 20.98%)
  Min      total-odr4-1024            752.00 (  0.00%)           600.00 ( 20.21%)

This patch (of 27):

order-0 pages by definition cannot be compound so avoid the check in the
fast path for those pages.

[akpm@linux-foundation.org: use unlikely(order) in free_pages_prepare(), per Vlastimil]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Michal Hocko
3da88fb3ba mm, oom: move GFP_NOFS check to out_of_memory
__alloc_pages_may_oom is the central place to decide when the
out_of_memory should be invoked.  This is a good approach for most
checks there because they are page allocator specific and the allocation
fails right after for all of them.

The notable exception is GFP_NOFS context which is faking
did_some_progress and keep the page allocator looping even though there
couldn't have been any progress from the OOM killer.  This patch doesn't
change this behavior because we are not ready to allow those allocation
requests to fail yet (and maybe we will face the reality that we will
never manage to safely fail these request).  Instead __GFP_FS check is
moved down to out_of_memory and prevent from OOM victim selection there.
There are two reasons for that

	- OOM notifiers might release some memory even from this context
	  as none of the registered notifier seems to be FS related
	- this might help a dying thread to get an access to memory
          reserves and move on which will make the behavior more
          consistent with the case when the task gets killed from a
          different context.

Keep a comment in __alloc_pages_may_oom to make sure we do not forget
how GFP_NOFS is special and that we really want to do something about
it.

Note to the current oom_notifier users:

The observable difference for you is that oom notifiers cannot depend on
any fs locks because we could deadlock.  Not that this would be allowed
today because that would just lockup machine in most of the cases and
ruling out the OOM killer along the way.  Another difference is that
callbacks might be invoked sooner now because GFP_NOFS is a weaker
reclaim context and so there could be reclaimable memory which is just
not reachable now.  That would require GFP_NOFS only loads which are
really rare and more importantly the observable result would be dropping
of reconstructible object and potential performance drop which is not
such a big deal when we are struggling to fulfill other important
allocation requests.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Raushaniya Maksudova <rmaksudova@parallels.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
fc2bd799c7 mm/page_alloc: correct highmem memory statistics
ZONE_MOVABLE could be treated as highmem so we need to consider it for
accurate statistics.  And, in following patches, ZONE_CMA will be
introduced and it can be treated as highmem, too.  So, instead of
manually adding stat of ZONE_MOVABLE, looping all zones and check
whether the zone is highmem or not and add stat of the zone which can be
treated as highmem.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
ba6b0979e3 power: add zone range overlapping check
There is a system thats node's pfns are overlapped as follows:

  -----pfn-------->
  N0 N1 N2 N0 N1 N2

Therefore, we need to care this overlapping when iterating pfn range.

mark_free_pages() iterates requested zone's pfn range and unset all
range's bitmap first.  And then it marks freepages in a zone to the
bitmap.  If there is an overlapping zone, above unset could clear
previous marked bit and reference to this bitmap in the future will
cause the problem.  To prevent it, this patch adds a zone check in
mark_free_pages().

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
b9eb63191a mm/memory_hotplug: add comment to some functions related to memory hotplug
__offline_isolated_pages() and test_pages_isolated() are used by memory
hotplug.  These functions require that range is in a single zone but
there is no code to do this because memory hotplug checks it before
calling these functions.  To avoid confusing future user of these
functions, this patch adds comments to them.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Li Zhang
949698a31a mm/page_alloc: Remove useless parameter of __free_pages_boot_core
__free_pages_boot_core has parameter pfn which is not used at all.
Remove it.

Signed-off-by: Li Zhang <zhlcindy@linux.vnet.ibm.com>
Reviewed-by: Pan Xinhui <xinhui.pan@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
0139aa7b7f mm: rename _count, field of the struct page, to _refcount
Many developers already know that field for reference count of the
struct page is _count and atomic type.  They would try to handle it
directly and this could break the purpose of page reference count
tracepoint.  To prevent direct _count modification, this patch rename it
to _refcount and add warning message on the code.  After that, developer
who need to handle reference count will find that field should not be
accessed directly.

[akpm@linux-foundation.org: fix comments, per Vlastimil]
[akpm@linux-foundation.org: Documentation/vm/transhuge.txt too]
[sfr@canb.auug.org.au: sync ethernet driver changes]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Sunil Goutham <sgoutham@cavium.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Manish Chopra <manish.chopra@qlogic.com>
Cc: Yuval Mintz <yuval.mintz@qlogic.com>
Cc: Tariq Toukan <tariqt@mellanox.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Jason Baron
bc22af74f2 mm: update min_free_kbytes from khugepaged after core initialization
Khugepaged attempts to raise min_free_kbytes if its set too low.
However, on boot khugepaged sets min_free_kbytes first from
subsys_initcall(), and then the mm 'core' over-rides min_free_kbytes
after from init_per_zone_wmark_min(), via a module_init() call.

Khugepaged used to use a late_initcall() to set min_free_kbytes (such
that it occurred after the core initialization), however this was
removed when the initialization of min_free_kbytes was integrated into
the starting of the khugepaged thread.

The fix here is simply to invoke the core initialization using a
core_initcall() instead of module_init(), such that the previous
initialization ordering is restored.  I didn't restore the
late_initcall() since start_stop_khugepaged() already sets
min_free_kbytes via set_recommended_min_free_kbytes().

This was noticed when we had a number of page allocation failures when
moving a workload to a kernel with this new initialization ordering.  On
an 8GB system this restores min_free_kbytes back to 67584 from 11365
when CONFIG_TRANSPARENT_HUGEPAGE=y is set and either
CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS=y or
CONFIG_TRANSPARENT_HUGEPAGE_MADVISE=y.

Fixes: 79553da293d3 ("thp: cleanup khugepaged startup")
Signed-off-by: Jason Baron <jbaron@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Vlastimil Babka
d9dddbf556 mm/page_alloc: prevent merging between isolated and other pageblocks
Hanjun Guo has reported that a CMA stress test causes broken accounting of
CMA and free pages:

> Before the test, I got:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal:         204800 kB
> CmaFree:          195044 kB
>
>
> After running the test:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal:         204800 kB
> CmaFree:         6602584 kB
>
> So the freed CMA memory is more than total..
>
> Also the the MemFree is more than mem total:
>
> -bash-4.3# cat /proc/meminfo
> MemTotal:       16342016 kB
> MemFree:        22367268 kB
> MemAvailable:   22370528 kB

Laura Abbott has confirmed the issue and suspected the freepage accounting
rewrite around 3.18/4.0 by Joonsoo Kim.  Joonsoo had a theory that this is
caused by unexpected merging between MIGRATE_ISOLATE and MIGRATE_CMA
pageblocks:

> CMA isolates MAX_ORDER aligned blocks, but, during the process,
> partialy isolated block exists. If MAX_ORDER is 11 and
> pageblock_order is 9, two pageblocks make up MAX_ORDER
> aligned block and I can think following scenario because pageblock
> (un)isolation would be done one by one.
>
> (each character means one pageblock. 'C', 'I' means MIGRATE_CMA,
> MIGRATE_ISOLATE, respectively.
>
> CC -> IC -> II (Isolation)
> II -> CI -> CC (Un-isolation)
>
> If some pages are freed at this intermediate state such as IC or CI,
> that page could be merged to the other page that is resident on
> different type of pageblock and it will cause wrong freepage count.

This was supposed to be prevented by CMA operating on MAX_ORDER blocks,
but since it doesn't hold the zone->lock between pageblocks, a race
window does exist.

It's also likely that unexpected merging can occur between
MIGRATE_ISOLATE and non-CMA pageblocks.  This should be prevented in
__free_one_page() since commit 3c605096d315 ("mm/page_alloc: restrict
max order of merging on isolated pageblock").  However, we only check
the migratetype of the pageblock where buddy merging has been initiated,
not the migratetype of the buddy pageblock (or group of pageblocks)
which can be MIGRATE_ISOLATE.

Joonsoo has suggested checking for buddy migratetype as part of
page_is_buddy(), but that would add extra checks in allocator hotpath
and bloat-o-meter has shown significant code bloat (the function is
inline).

This patch reduces the bloat at some expense of more complicated code.
The buddy-merging while-loop in __free_one_page() is initially bounded
to pageblock_border and without any migratetype checks.  The checks are
placed outside, bumping the max_order if merging is allowed, and
returning to the while-loop with a statement which can't be possibly
considered harmful.

This fixes the accounting bug and also removes the arguably weird state
in the original commit 3c605096d315 where buddies could be left
unmerged.

Fixes: 3c605096d315 ("mm/page_alloc: restrict max order of merging on isolated pageblock")
Link: https://lkml.org/lkml/2016/3/2/280
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Debugged-by: Laura Abbott <labbott@redhat.com>
Debugged-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>	[3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Tetsuo Handa
0a687aace3 mm,oom: do not loop !__GFP_FS allocation if the OOM killer is disabled
After the OOM killer is disabled during suspend operation, any
!__GFP_NOFAIL && __GFP_FS allocations are forced to fail.  Thus, any
!__GFP_NOFAIL && !__GFP_FS allocations should be forced to fail as well.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Li Zhang
987b3095c2 mm: meminit: initialise more memory for inode/dentry hash tables in early boot
Upstream has supported page parallel initialisation for X86 and the boot
time is improved greately.  Some tests have been done for Power.

Here is the result I have done with different memory size.

* 4GB memory:
    boot time is as the following:
    with patch vs without patch: 10.4s vs 24.5s
    boot time is improved 57%
* 200GB memory:
    boot time looks the same with and without patches.
    boot time is about 38s
* 32TB memory:
    boot time looks the same with and without patches
    boot time is about 160s.
    The boot time is much shorter than X86 with 24TB memory.
    From community discussion, it costs about 694s for X86 24T system.

Parallel initialisation improves the performance by deferring memory
initilisation to kswap with N kthreads, it should improve the performance
therotically.

In testing on X86, performance is improved greatly with huge memory.  But
on Power platform, it is improved greatly with less than 100GB memory.
For huge memory, it is not improved greatly.  But it saves the time with
several threads at least, as the following information shows(32TB system
log):

[   22.648169] node 9 initialised, 16607461 pages in 280ms
[   22.783772] node 3 initialised, 23937243 pages in 410ms
[   22.858877] node 6 initialised, 29179347 pages in 490ms
[   22.863252] node 2 initialised, 29179347 pages in 490ms
[   22.907545] node 0 initialised, 32049614 pages in 540ms
[   22.920891] node 15 initialised, 32212280 pages in 550ms
[   22.923236] node 4 initialised, 32306127 pages in 550ms
[   22.923384] node 12 initialised, 32314319 pages in 550ms
[   22.924754] node 8 initialised, 32314319 pages in 550ms
[   22.940780] node 13 initialised, 33353677 pages in 570ms
[   22.940796] node 11 initialised, 33353677 pages in 570ms
[   22.941700] node 5 initialised, 33353677 pages in 570ms
[   22.941721] node 10 initialised, 33353677 pages in 570ms
[   22.941876] node 7 initialised, 33353677 pages in 570ms
[   22.944946] node 14 initialised, 33353677 pages in 570ms
[   22.946063] node 1 initialised, 33345485 pages in 580ms

It saves the time about 550*16 ms at least, although it can be ignore to
compare the boot time about 160 seconds.  What's more, the boot time is
much shorter on Power even without patches than x86 for huge memory
machine.

So this patchset is still necessary to be enabled for Power.

This patch (of 2):

This patch is based on Mel Gorman's old patch in the mailing list,
https://lkml.org/lkml/2015/5/5/280 which is discussed but it is fixed with
a completion to wait for all memory initialised in page_alloc_init_late().
It is to fix the OOM problem on X86 with 24TB memory which allocates
memory in late initialisation.  But for Power platform with 32TB memory,
it causes a call trace in vfs_caches_init->inode_init() and inode hash
table needs more memory.  So this patch allocates 1GB for 0.25TB/node for
large system as it is mentioned in https://lkml.org/lkml/2015/5/1/627

This call trace is found on Power with 32TB memory, 1024CPUs, 16nodes.
Currently, it only allocates 2GB*16=32GB for early initialisation.  But
Dentry cache hash table needes 16GB and Inode cache hash table needs 16GB.
So the system have no enough memory for it.  The log from dmesg as the
following:

  Dentry cache hash table entries: 2147483648 (order: 18,17179869184 bytes)
  vmalloc: allocation failure, allocated 16021913600 of 17179934720 bytes
  swapper/0: page allocation failure: order:0,mode:0x2080020
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.4.0-0-ppc64
  Call Trace:
    .dump_stack+0xb4/0xb664 (unreliable)
    .warn_alloc_failed+0x114/0x160
    .__vmalloc_area_node+0x1a4/0x2b0
    .__vmalloc_node_range+0xe4/0x110
    .__vmalloc_node+0x40/0x50
    .alloc_large_system_hash+0x134/0x2a4
    .inode_init+0xa4/0xf0
    .vfs_caches_init+0x80/0x144
    .start_kernel+0x40c/0x4e0
    start_here_common+0x20/0x4a4

Signed-off-by: Li Zhang <zhlcindy@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joe Perches
1170532bb4 mm: convert printk(KERN_<LEVEL> to pr_<level>
Most of the mm subsystem uses pr_<level> so make it consistent.

Miscellanea:

 - Realign arguments
 - Add missing newline to format
 - kmemleak-test.c has a "kmemleak: " prefix added to the
   "Kmemleak testing" logging message via pr_fmt

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joe Perches
756a025f00 mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is
'user-visible'.

Miscellanea:

 - Add a missing newline
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Michal Hocko
0f352e5392 mm: remove __GFP_NOFAIL is deprecated comment
Commit 647757197cd3 ("mm: clarify __GFP_NOFAIL deprecation status") was
incomplete and didn't remove the comment about __GFP_NOFAIL being
deprecated in buffered_rmqueue.

Let's get rid of this leftover but keep the WARN_ON_ONCE for order > 1
because we should really discourage from using __GFP_NOFAIL with higher
order allocations because those are just too subtle.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
fe896d1878 mm: introduce page reference manipulation functions
The success of CMA allocation largely depends on the success of
migration and key factor of it is page reference count.  Until now, page
reference is manipulated by direct calling atomic functions so we cannot
follow up who and where manipulate it.  Then, it is hard to find actual
reason of CMA allocation failure.  CMA allocation should be guaranteed
to succeed so finding offending place is really important.

In this patch, call sites where page reference is manipulated are
converted to introduced wrapper function.  This is preparation step to
add tracepoint to each page reference manipulation function.  With this
facility, we can easily find reason of CMA allocation failure.  There is
no functional change in this patch.

In addition, this patch also converts reference read sites.  It will
help a second step that renames page._count to something else and
prevents later attempt to direct access to it (Suggested by Andrew).

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Mel Gorman
444eb2a449 mm: thp: set THP defrag by default to madvise and add a stall-free defrag option
THP defrag is enabled by default to direct reclaim/compact but not wake
kswapd in the event of a THP allocation failure.  The problem is that
THP allocation requests potentially enter reclaim/compaction.  This
potentially incurs a severe stall that is not guaranteed to be offset by
reduced TLB misses.  While there has been considerable effort to reduce
the impact of reclaim/compaction, it is still a high cost and workloads
that should fit in memory fail to do so.  Specifically, a simple
anon/file streaming workload will enter direct reclaim on NUMA at least
even though the working set size is 80% of RAM.  It's been years and
it's time to throw in the towel.

First, this patch defines THP defrag as follows;

 madvise: A failed allocation will direct reclaim/compact if the application requests it
 never:   Neither reclaim/compact nor wake kswapd
 defer:   A failed allocation will wake kswapd/kcompactd
 always:  A failed allocation will direct reclaim/compact (historical behaviour)
          khugepaged defrag will enter direct/reclaim but not wake kswapd.

Next it sets the default defrag option to be "madvise" to only enter
direct reclaim/compaction for applications that specifically requested
it.

Lastly, it removes a check from the page allocator slowpath that is
related to __GFP_THISNODE to allow "defer" to work.  The callers that
really cares are slub/slab and they are updated accordingly.  The slab
one may be surprising because it also corrects a comment as kswapd was
never woken up by that path.

This means that a THP fault will no longer stall for most applications
by default and the ideal for most users that get THP if they are
immediately available.  There are still options for users that prefer a
stall at startup of a new application by either restoring historical
behaviour with "always" or pick a half-way point with "defer" where
kswapd does some of the work in the background and wakes kcompactd if
necessary.  THP defrag for khugepaged remains enabled and will enter
direct/reclaim but no wakeup kswapd or kcompactd.

After this patch a THP allocation failure will quickly fallback and rely
on khugepaged to recover the situation at some time in the future.  In
some cases, this will reduce THP usage but the benefit of THP is hard to
measure and not a universal win where as a stall to reclaim/compaction
is definitely measurable and can be painful.

The first test for this is using "usemem" to read a large file and write
a large anonymous mapping (to avoid the zero page) multiple times.  The
total size of the mappings is 80% of RAM and the benchmark simply
measures how long it takes to complete.  It uses multiple threads to see
if that is a factor.  On UMA, the performance is almost identical so is
not reported but on NUMA, we see this

usemem
                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Amean    System-1       102.86 (  0.00%)       46.81 ( 54.50%)
Amean    System-4        37.85 (  0.00%)       34.02 ( 10.12%)
Amean    System-7        48.12 (  0.00%)       46.89 (  2.56%)
Amean    System-12       51.98 (  0.00%)       56.96 ( -9.57%)
Amean    System-21       80.16 (  0.00%)       79.05 (  1.39%)
Amean    System-30      110.71 (  0.00%)      107.17 (  3.20%)
Amean    System-48      127.98 (  0.00%)      124.83 (  2.46%)
Amean    Elapsd-1       185.84 (  0.00%)      105.51 ( 43.23%)
Amean    Elapsd-4        26.19 (  0.00%)       25.58 (  2.33%)
Amean    Elapsd-7        21.65 (  0.00%)       21.62 (  0.16%)
Amean    Elapsd-12       18.58 (  0.00%)       17.94 (  3.43%)
Amean    Elapsd-21       17.53 (  0.00%)       16.60 (  5.33%)
Amean    Elapsd-30       17.45 (  0.00%)       17.13 (  1.84%)
Amean    Elapsd-48       15.40 (  0.00%)       15.27 (  0.82%)

For a single thread, the benchmark completes 43.23% faster with this
patch applied with smaller benefits as the thread increases.  Similar,
notice the large reduction in most cases in system CPU usage.  The
overall CPU time is

               4.4.0       4.4.0
        kcompactd-v1r1 nodefrag-v1r3
User        10357.65    10438.33
System       3988.88     3543.94
Elapsed      2203.01     1634.41

Which is substantial. Now, the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 128458477   278352931
Major Faults                   2174976         225
Swap Ins                      16904701           0
Swap Outs                     17359627           0
Allocation stalls                43611           0
DMA allocs                           0           0
DMA32 allocs                  19832646    19448017
Normal allocs                614488453   580941839
Movable allocs                       0           0
Direct pages scanned          24163800           0
Kswapd pages scanned                 0           0
Kswapd pages reclaimed               0           0
Direct pages reclaimed        20691346           0
Compaction stalls                42263           0
Compaction success                 938           0
Compaction failures              41325           0

This patch eliminates almost all swapping and direct reclaim activity.
There is still overhead but it's from NUMA balancing which does not
identify that it's pointless trying to do anything with this workload.

I also tried the thpscale benchmark which forces a corner case where
compaction can be used heavily and measures the latency of whether base
or huge pages were used

thpscale Fault Latencies
                                       4.4.0                 4.4.0
                              kcompactd-v1r1         nodefrag-v1r3
Amean    fault-base-1      5288.84 (  0.00%)     2817.12 ( 46.73%)
Amean    fault-base-3      6365.53 (  0.00%)     3499.11 ( 45.03%)
Amean    fault-base-5      6526.19 (  0.00%)     4363.06 ( 33.15%)
Amean    fault-base-7      7142.25 (  0.00%)     4858.08 ( 31.98%)
Amean    fault-base-12    13827.64 (  0.00%)    10292.11 ( 25.57%)
Amean    fault-base-18    18235.07 (  0.00%)    13788.84 ( 24.38%)
Amean    fault-base-24    21597.80 (  0.00%)    24388.03 (-12.92%)
Amean    fault-base-30    26754.15 (  0.00%)    19700.55 ( 26.36%)
Amean    fault-base-32    26784.94 (  0.00%)    19513.57 ( 27.15%)
Amean    fault-huge-1      4223.96 (  0.00%)     2178.57 ( 48.42%)
Amean    fault-huge-3      2194.77 (  0.00%)     2149.74 (  2.05%)
Amean    fault-huge-5      2569.60 (  0.00%)     2346.95 (  8.66%)
Amean    fault-huge-7      3612.69 (  0.00%)     2997.70 ( 17.02%)
Amean    fault-huge-12     3301.75 (  0.00%)     6727.02 (-103.74%)
Amean    fault-huge-18     6696.47 (  0.00%)     6685.72 (  0.16%)
Amean    fault-huge-24     8000.72 (  0.00%)     9311.43 (-16.38%)
Amean    fault-huge-30    13305.55 (  0.00%)     9750.45 ( 26.72%)
Amean    fault-huge-32     9981.71 (  0.00%)    10316.06 ( -3.35%)

The average time to fault pages is substantially reduced in the majority
of caseds but with the obvious caveat that fewer THPs are actually used
in this adverse workload

                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Percentage huge-1         0.71 (  0.00%)       14.04 (1865.22%)
Percentage huge-3        10.77 (  0.00%)       33.05 (206.85%)
Percentage huge-5        60.39 (  0.00%)       38.51 (-36.23%)
Percentage huge-7        45.97 (  0.00%)       34.57 (-24.79%)
Percentage huge-12       68.12 (  0.00%)       40.07 (-41.17%)
Percentage huge-18       64.93 (  0.00%)       47.82 (-26.35%)
Percentage huge-24       62.69 (  0.00%)       44.23 (-29.44%)
Percentage huge-30       43.49 (  0.00%)       55.38 ( 27.34%)
Percentage huge-32       50.72 (  0.00%)       51.90 (  2.35%)

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                  37429143    47564000
Major Faults                      1916        1558
Swap Ins                          1466        1079
Swap Outs                      2936863      149626
Allocation stalls                62510           3
DMA allocs                           0           0
DMA32 allocs                   6566458     6401314
Normal allocs                216361697   216538171
Movable allocs                       0           0
Direct pages scanned          25977580       17998
Kswapd pages scanned                 0     3638931
Kswapd pages reclaimed               0      207236
Direct pages reclaimed         8833714          88
Compaction stalls               103349           5
Compaction success                 270           4
Compaction failures             103079           1

Note again that while this does swap as it's an aggressive workload, the
direct relcim activity and allocation stalls is substantially reduced.
There is some kswapd activity but ftrace showed that the kswapd activity
was due to normal wakeups from 4K pages being allocated.
Compaction-related stalls and activity are almost eliminated.

I also tried the stutter benchmark.  For this, I do not have figures for
NUMA but it's something that does impact UMA so I'll report what is
available

stutter
                                 4.4.0                 4.4.0
                        kcompactd-v1r1         nodefrag-v1r3
Min         mmap      7.3571 (  0.00%)      7.3438 (  0.18%)
1st-qrtle   mmap      7.5278 (  0.00%)     17.9200 (-138.05%)
2nd-qrtle   mmap      7.6818 (  0.00%)     21.6055 (-181.25%)
3rd-qrtle   mmap     11.0889 (  0.00%)     21.8881 (-97.39%)
Max-90%     mmap     27.8978 (  0.00%)     22.1632 ( 20.56%)
Max-93%     mmap     28.3202 (  0.00%)     22.3044 ( 21.24%)
Max-95%     mmap     28.5600 (  0.00%)     22.4580 ( 21.37%)
Max-99%     mmap     29.6032 (  0.00%)     25.5216 ( 13.79%)
Max         mmap   4109.7289 (  0.00%)   4813.9832 (-17.14%)
Mean        mmap     12.4474 (  0.00%)     19.3027 (-55.07%)

This benchmark is trying to fault an anonymous mapping while there is a
heavy IO load -- a scenario that desktop users used to complain about
frequently.  This shows a mix because the ideal case of mapping with THP
is not hit as often.  However, note that 99% of the mappings complete
13.79% faster.  The CPU usage here is particularly interesting

               4.4.0       4.4.0
        kcompactd-v1r1nodefrag-v1r3
User           67.50        0.99
System       1327.88       91.30
Elapsed      2079.00     2128.98

And once again we look at the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 335241922  1314582827
Major Faults                       715         819
Swap Ins                             0           0
Swap Outs                            0           0
Allocation stalls               532723           0
DMA allocs                           0           0
DMA32 allocs                1822364341  1177950222
Normal allocs               1815640808  1517844854
Movable allocs                       0           0
Direct pages scanned          21892772           0
Kswapd pages scanned          20015890    41879484
Kswapd pages reclaimed        19961986    41822072
Direct pages reclaimed        21892741           0
Compaction stalls              1065755           0
Compaction success                 514           0
Compaction failures            1065241           0

Allocation stalls and all direct reclaim activity is eliminated as well
as compaction-related stalls.

THP gives impressive gains in some cases but only if they are quickly
available.  We're not going to reach the point where they are completely
free so lets take the costs out of the fast paths finally and defer the
cost to kswapd, kcompactd and khugepaged where it belongs.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
795ae7a0de mm: scale kswapd watermarks in proportion to memory
In machines with 140G of memory and enterprise flash storage, we have
seen read and write bursts routinely exceed the kswapd watermarks and
cause thundering herds in direct reclaim.  Unfortunately, the only way
to tune kswapd aggressiveness is through adjusting min_free_kbytes - the
system's emergency reserves - which is entirely unrelated to the
system's latency requirements.  In order to get kswapd to maintain a
250M buffer of free memory, the emergency reserves need to be set to 1G.
That is a lot of memory wasted for no good reason.

On the other hand, it's reasonable to assume that allocation bursts and
overall allocation concurrency scale with memory capacity, so it makes
sense to make kswapd aggressiveness a function of that as well.

Change the kswapd watermark scale factor from the currently fixed 25% of
the tunable emergency reserve to a tunable 0.1% of memory.

Beyond 1G of memory, this will produce bigger watermark steps than the
current formula in default settings.  Ensure that the new formula never
chooses steps smaller than that, i.e.  25% of the emergency reserve.

On a 140G machine, this raises the default watermark steps - the
distance between min and low, and low and high - from 16M to 143M.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Igor Redko
d02bd27bd3 mm/page_alloc.c: calculate 'available' memory in a separate function
Add a new field, VIRTIO_BALLOON_S_AVAIL, to virtio_balloon memory
statistics protocol, corresponding to 'Available' in /proc/meminfo.

It indicates to the hypervisor how big the balloon can be inflated
without pushing the guest system to swap.  This metric would be very
useful in VM orchestration software to improve memory management of
different VMs under overcommit.

This patch (of 2):

Factor out calculation of the available memory counter into a separate
exportable function, in order to be able to use it in other parts of the
kernel.

In particular, it appears a relevant metric to report to the hypervisor
via virtio-balloon statistics interface (in a followup patch).

Signed-off-by: Igor Redko <redkoi@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka
698b1b3064 mm, compaction: introduce kcompactd
Memory compaction can be currently performed in several contexts:

 - kswapd balancing a zone after a high-order allocation failure
 - direct compaction to satisfy a high-order allocation, including THP
   page fault attemps
 - khugepaged trying to collapse a hugepage
 - manually from /proc

The purpose of compaction is two-fold.  The obvious purpose is to
satisfy a (pending or future) high-order allocation, and is easy to
evaluate.  The other purpose is to keep overal memory fragmentation low
and help the anti-fragmentation mechanism.  The success wrt the latter
purpose is more

The current situation wrt the purposes has a few drawbacks:

 - compaction is invoked only when a high-order page or hugepage is not
   available (or manually).  This might be too late for the purposes of
   keeping memory fragmentation low.
 - direct compaction increases latency of allocations.  Again, it would
   be better if compaction was performed asynchronously to keep
   fragmentation low, before the allocation itself comes.
 - (a special case of the previous) the cost of compaction during THP
   page faults can easily offset the benefits of THP.
 - kswapd compaction appears to be complex, fragile and not working in
   some scenarios.  It could also end up compacting for a high-order
   allocation request when it should be reclaiming memory for a later
   order-0 request.

To improve the situation, we should be able to benefit from an
equivalent of kswapd, but for compaction - i.e. a background thread
which responds to fragmentation and the need for high-order allocations
(including hugepages) somewhat proactively.

One possibility is to extend the responsibilities of kswapd, which could
however complicate its design too much.  It should be better to let
kswapd handle reclaim, as order-0 allocations are often more critical
than high-order ones.

Another possibility is to extend khugepaged, but this kthread is a
single instance and tied to THP configs.

This patch goes with the option of a new set of per-node kthreads called
kcompactd, and lays the foundations, without introducing any new
tunables.  The lifecycle mimics kswapd kthreads, including the memory
hotplug hooks.

For compaction, kcompactd uses the standard compaction_suitable() and
ompact_finished() criteria and the deferred compaction functionality.
Unlike direct compaction, it uses only sync compaction, as there's no
allocation latency to minimize.

This patch doesn't yet add a call to wakeup_kcompactd.  The kswapd
compact/reclaim loop for high-order pages will be replaced by waking up
kcompactd in the next patch with the description of what's wrong with
the old approach.

Waking up of the kcompactd threads is also tied to kswapd activity and
follows these rules:
 - we don't want to affect any fastpaths, so wake up kcompactd only from
   the slowpath, as it's done for kswapd
 - if kswapd is doing reclaim, it's more important than compaction, so
   don't invoke kcompactd until kswapd goes to sleep
 - the target order used for kswapd is passed to kcompactd

Future possible future uses for kcompactd include the ability to wake up
kcompactd on demand in special situations, such as when hugepages are
not available (currently not done due to __GFP_NO_KSWAPD) or when a
fragmentation event (i.e.  __rmqueue_fallback()) occurs.  It's also
possible to perform periodic compaction with kcompactd.

[arnd@arndb.de: fix build errors with kcompactd]
[paul.gortmaker@windriver.com: don't use modular references for non modular code]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
505f6d22db sound: query dynamic DEBUG_PAGEALLOC setting
We can disable debug_pagealloc processing even if the code is compiled
with CONFIG_DEBUG_PAGEALLOC.  This patch changes the code to query
whether it is enabled or not in runtime.

[akpm@linux-foundation.org: export _debug_pagealloc_enabled to modules]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Takashi Iwai <tiwai@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Naoya Horiguchi
832fc1de01 /proc/kpageflags: return KPF_BUDDY for "tail" buddy pages
Currently /proc/kpageflags returns nothing for "tail" buddy pages, which
is inconvenient when grasping how free pages are distributed.  This
patch sets KPF_BUDDY for such pages.

With this patch:

  $ grep MemFree /proc/meminfo ; tools/vm/page-types -b buddy
  MemFree:         3134992 kB
               flags      page-count       MB  symbolic-flags                     long-symbolic-flags
  0x0000000000000400          779272     3044  __________B_______________________________ buddy
  0x0000000000000c00            4385       17  __________BM______________________________ buddy,mmap
               total          783657     3061

783657 pages is 3134628 kB (roughly consistent with the global counter,)
so it's OK.

[akpm@linux-foundation.org: update comment, per Naoya]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
7cf91a98e6 mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
There is a performance drop report due to hugepage allocation and in
there half of cpu time are spent on pageblock_pfn_to_page() in
compaction [1].

In that workload, compaction is triggered to make hugepage but most of
pageblocks are un-available for compaction due to pageblock type and
skip bit so compaction usually fails.  Most costly operations in this
case is to find valid pageblock while scanning whole zone range.  To
check if pageblock is valid to compact, valid pfn within pageblock is
required and we can obtain it by calling pageblock_pfn_to_page().  This
function checks whether pageblock is in a single zone and return valid
pfn if possible.  Problem is that we need to check it every time before
scanning pageblock even if we re-visit it and this turns out to be very
expensive in this workload.

Although we have no way to skip this pageblock check in the system where
hole exists at arbitrary position, we can use cached value for zone
continuity and just do pfn_to_page() in the system where hole doesn't
exist.  This optimization considerably speeds up in above workload.

Before vs After
  Max: 1096 MB/s vs 1325 MB/s
  Min: 635 MB/s 1015 MB/s
  Avg: 899 MB/s 1194 MB/s

Avg is improved by roughly 30% [2].

[1]: http://www.spinics.net/lists/linux-mm/msg97378.html
[2]: https://lkml.org/lkml/2015/12/9/23

[akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reported-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Laura Abbott
1414c7f4f7 mm/page_poisoning.c: allow for zero poisoning
By default, page poisoning uses a poison value (0xaa) on free.  If this
is changed to 0, the page is not only sanitized but zeroing on alloc
with __GFP_ZERO can be skipped as well.  The tradeoff is that detecting
corruption from the poisoning is harder to detect.  This feature also
cannot be used with hibernation since pages are not guaranteed to be
zeroed after hibernation.

Credit to Grsecurity/PaX team for inspiring this work

Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Laura Abbott
8823b1dbc0 mm/page_poison.c: enable PAGE_POISONING as a separate option
Page poisoning is currently set up as a feature if architectures don't
have architecture debug page_alloc to allow unmapping of pages.  It has
uses apart from that though.  Clearing of the pages on free provides an
increase in security as it helps to limit the risk of information leaks.
Allow page poisoning to be enabled as a separate option independent of
kernel_map pages since the two features do separate work.  Because of
how hiberanation is implemented, the checks on alloc cannot occur if
hibernation is enabled.  The runtime alloc checks can also be enabled
with an option when !HIBERNATION.

Credit to Grsecurity/PaX team for inspiring this work

Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
ff8e811638 mm, debug: move bad flags printing to bad_page()
Since bad_page() is the only user of the badflags parameter of
dump_page_badflags(), we can move the code to bad_page() and simplify a
bit.

The dump_page_badflags() function is renamed to __dump_page() and can
still be called separately from dump_page() for temporary debug prints
where page_owner info is not desired.

The only user-visible change is that page->mem_cgroup is printed before
the bad flags.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
4e462112e9 mm, page_owner: dump page owner info from dump_page()
The page_owner mechanism is useful for dealing with memory leaks.  By
reading /sys/kernel/debug/page_owner one can determine the stack traces
leading to allocations of all pages, and find e.g.  a buggy driver.

This information might be also potentially useful for debugging, such as
the VM_BUG_ON_PAGE() calls to dump_page().  So let's print the stored
info from dump_page().

Example output:

  page:ffffea000292f1c0 count:1 mapcount:0 mapping:ffff8800b2f6cc18 index:0x91d
  flags: 0x1fffff8001002c(referenced|uptodate|lru|mappedtodisk)
  page dumped because: VM_BUG_ON_PAGE(1)
  page->mem_cgroup:ffff8801392c5000
  page allocated via order 0, migratetype Movable, gfp_mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY)
   [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230
   [<ffffffff811b40c8>] alloc_pages_current+0x88/0x120
   [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120
   [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240
   [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260
   [<ffffffff8116be9c>] page_cache_async_readahead+0x6c/0x70
   [<ffffffff811604c2>] generic_file_read_iter+0x3f2/0x760
   [<ffffffff811e0dc7>] __vfs_read+0xa7/0xd0
  page has been migrated, last migrate reason: compaction

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
60f30350fd mm, page_owner: print migratetype of page and pageblock, symbolic flags
The information in /sys/kernel/debug/page_owner includes the migratetype
of the pageblock the page belongs to.  This is also checked against the
page's migratetype (as declared by gfp_flags during its allocation), and
the page is reported as Fallback if its migratetype differs from the
pageblock's one.  t This is somewhat misleading because in fact fallback
allocation is not the only reason why these two can differ.  It also
doesn't direcly provide the page's migratetype, although it's possible
to derive that from the gfp_flags.

It's arguably better to print both page and pageblock's migratetype and
leave the interpretation to the consumer than to suggest fallback
allocation as the only possible reason.  While at it, we can print the
migratetypes as string the same way as /proc/pagetypeinfo does, as some
of the numeric values depend on kernel configuration.  For that, this
patch moves the migratetype_names array from #ifdef CONFIG_PROC_FS part
of mm/vmstat.c to mm/page_alloc.c and exports it.

With the new format strings for flags, we can now also provide symbolic
page and gfp flags in the /sys/kernel/debug/page_owner file.  This
replaces the positional printing of page flags as single letters, which
might have looked nicer, but was limited to a subset of flags, and
required the user to remember the letters.

Example page_owner entry after the patch:

  Page allocated via order 0, mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY)
  PFN 520 type Movable Block 1 type Movable Flags 0xfffff8001006c(referenced|uptodate|lru|active|mappedtodisk)
   [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230
   [<ffffffff811b4058>] alloc_pages_current+0x88/0x120
   [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120
   [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240
   [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260
   [<ffffffff8116bfb1>] page_cache_sync_readahead+0x31/0x50
   [<ffffffff81160523>] generic_file_read_iter+0x453/0x760
   [<ffffffff811e0d57>] __vfs_read+0xa7/0xd0

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vlastimil Babka
c5c990e8a1 mm, page_alloc: print symbolic gfp_flags on allocation failure
It would be useful to translate gfp_flags into string representation
when printing in case of an allocation failure, especially as the flags
have been undergoing some changes recently and the script
./scripts/gfp-translate needs a matching source version to be accurate.

Example output:

  stapio: page allocation failure: order:9, mode:0x2080020(GFP_ATOMIC)

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Christian Borntraeger
ea6eabb05b mm/debug_pagealloc: ask users for default setting of debug_pagealloc
Since commit 031bc5743f158 ("mm/debug-pagealloc: make debug-pagealloc
boottime configurable") CONFIG_DEBUG_PAGEALLOC is by default not adding
any page debugging.

This resulted in several unnoticed bugs, e.g.

    https://lkml.kernel.org/g/<569F5E29.3090107@de.ibm.com>
or
    https://lkml.kernel.org/g/<56A20F30.4050705@de.ibm.com>

as this behaviour change was not even documented in Kconfig.

Let's provide a new Kconfig symbol that allows to change the default
back to enabled, e.g.  for debug kernels.  This also makes the change
obvious to kernel packagers.

Let's also change the Kconfig description for CONFIG_DEBUG_PAGEALLOC, to
indicate that there are two stages of overhead.

Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00