mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-16 05:26:07 +00:00
25 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Alice Ryhl
|
1d15880378 |
rust: sort blk includes in bindings_helper.h
The headers in this file are sorted alphabetically, which makes it easy to quickly resolve conflicts by selecting all of the headers and invoking :'<,'>sort to sort them. To keep this technique to resolve conflicts working, also apply sorting to symbols that are not letters. This file is very prone to merge conflicts, so I think keeping conflict resolution really easy is more important than not messing with git blame history. These includes were originally introduced in commit 3253aba3408a ("rust: block: introduce `kernel::block::mq` module"). Signed-off-by: Alice Ryhl <aliceryhl@google.com> Acked-by: Danilo Krummrich <dakr@kernel.org> Link: https://lore.kernel.org/r/20240809132835.274603-1-aliceryhl@google.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Linus Torvalds
|
910bfc26d1 |
Rust changes for v6.11
The highlight is the establishment of a minimum version for the Rust toolchain, including 'rustc' (and bundled tools) and 'bindgen'. The initial minimum will be the pinned version we currently have, i.e. we are just widening the allowed versions. That covers 3 stable Rust releases: 1.78.0, 1.79.0, 1.80.0 (getting released tomorrow), plus beta, plus nightly. This should already be enough for kernel developers in distributions that provide recent Rust compiler versions routinely, such as Arch Linux, Debian Unstable (outside the freeze period), Fedora Linux, Gentoo Linux (especially the testing channel), Nix (unstable) and openSUSE Slowroll and Tumbleweed. In addition, the kernel is now being built-tested by Rust's pre-merge CI. That is, every change that is attempting to land into the Rust compiler is tested against the kernel, and it is merged only if it passes. Similarly, the bindgen tool has agreed to build the kernel in their CI too. Thus, with the pre-merge CI in place, both projects hope to avoid unintentional changes to Rust that break the kernel. This means that, in general, apart from intentional changes on their side (that we will need to workaround conditionally on our side), the upcoming Rust compiler versions should generally work. In addition, the Rust project has proposed getting the kernel into stable Rust (at least solving the main blockers) as one of its three flagship goals for 2024H2 [1]. I would like to thank Niko, Sid, Emilio et al. for their help promoting the collaboration between Rust and the kernel. [1] https://rust-lang.github.io/rust-project-goals/2024h2/index.html#flagship-goals Toolchain and infrastructure: - Support several Rust toolchain versions. - Support several bindgen versions. - Remove 'cargo' requirement and simplify 'rusttest', thanks to 'alloc' having been dropped last cycle. - Provide proper error reporting for the 'rust-analyzer' target. 'kernel' crate: - Add 'uaccess' module with a safe userspace pointers abstraction. - Add 'page' module with a 'struct page' abstraction. - Support more complex generics in workqueue's 'impl_has_work!' macro. 'macros' crate: - Add 'firmware' field support to the 'module!' macro. - Improve 'module!' macro documentation. Documentation: - Provide instructions on what packages should be installed to build the kernel in some popular Linux distributions. - Introduce the new kernel.org LLVM+Rust toolchains. - Explain '#[no_std]'. And a few other small bits. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAmahqRUACgkQGXyLc2ht IW0xbA/6A26b14LjvmFBJU6LZb0ey1BCbK9cOWtd6K6f/uWp108WAIdA/+gHgOGU I6rW8nXk3af078lHRqv0ihMDUks/1mz5wyxEXoZ/mVvRJbzH9TsHN7cSP2fr4H14 8rES4esr2XBlu9OdgDFb/o7jequ7PE0+WQDapV6eAhWQlBC6AI+ShyX26pWcB5gv 8O4mE59Up51d21L8apVh+pnEgBsCsu7c68pUMbrk2k4sHVvnRti4iLoVlemf4X80 Di9hyi8iN/MvWMdfq+hCIufUIbcWde07HcCbLjQlkJv0sc20V+UIGUx4EOUasOTY ugUyzhlFNGPxJYayAZAb8KJtQZhSbGZ+R244Z/CoV2RMlEw9LxSCpyzHr1nalOLT 01gqZh6+gIFyPm6F0ORsetcV6yzdvUcGTjx1vuEJ9qqeKG/gc/VqFOcmCPaT7y8K nTOMg6zY3mzaqTn1iBebid7INzXJN7ha9dk1TkDv47BNZAic51d3L0hQFXuDrEuu MxVIPTAPKJSaQTCh0jrLxLJ649v/98OP0urYqlVeKuTeovupETxCsBTVtjjjsv+w ZomqEO+JWuf7hjG0RLuCwi/IvWpUFpEdOal4qfHbKLOAOn7zxV/WrG675HcRKbw5 Zkr/0Q44fwbZWd2b/svTO1qOKaYV7oL0utVOdUb2KX05K71NNVo= =8PYF -----END PGP SIGNATURE----- Merge tag 'rust-6.11' of https://github.com/Rust-for-Linux/linux Pull Rust updates from Miguel Ojeda: "The highlight is the establishment of a minimum version for the Rust toolchain, including 'rustc' (and bundled tools) and 'bindgen'. The initial minimum will be the pinned version we currently have, i.e. we are just widening the allowed versions. That covers three stable Rust releases: 1.78.0, 1.79.0, 1.80.0 (getting released tomorrow), plus beta, plus nightly. This should already be enough for kernel developers in distributions that provide recent Rust compiler versions routinely, such as Arch Linux, Debian Unstable (outside the freeze period), Fedora Linux, Gentoo Linux (especially the testing channel), Nix (unstable) and openSUSE Slowroll and Tumbleweed. In addition, the kernel is now being built-tested by Rust's pre-merge CI. That is, every change that is attempting to land into the Rust compiler is tested against the kernel, and it is merged only if it passes. Similarly, the bindgen tool has agreed to build the kernel in their CI too. Thus, with the pre-merge CI in place, both projects hope to avoid unintentional changes to Rust that break the kernel. This means that, in general, apart from intentional changes on their side (that we will need to workaround conditionally on our side), the upcoming Rust compiler versions should generally work. In addition, the Rust project has proposed getting the kernel into stable Rust (at least solving the main blockers) as one of its three flagship goals for 2024H2 [1]. I would like to thank Niko, Sid, Emilio et al. for their help promoting the collaboration between Rust and the kernel. Toolchain and infrastructure: - Support several Rust toolchain versions. - Support several bindgen versions. - Remove 'cargo' requirement and simplify 'rusttest', thanks to 'alloc' having been dropped last cycle. - Provide proper error reporting for the 'rust-analyzer' target. 'kernel' crate: - Add 'uaccess' module with a safe userspace pointers abstraction. - Add 'page' module with a 'struct page' abstraction. - Support more complex generics in workqueue's 'impl_has_work!' macro. 'macros' crate: - Add 'firmware' field support to the 'module!' macro. - Improve 'module!' macro documentation. Documentation: - Provide instructions on what packages should be installed to build the kernel in some popular Linux distributions. - Introduce the new kernel.org LLVM+Rust toolchains. - Explain '#[no_std]'. And a few other small bits" Link: https://rust-lang.github.io/rust-project-goals/2024h2/index.html#flagship-goals [1] * tag 'rust-6.11' of https://github.com/Rust-for-Linux/linux: (26 commits) docs: rust: quick-start: add section on Linux distributions rust: warn about `bindgen` versions 0.66.0 and 0.66.1 rust: start supporting several `bindgen` versions rust: work around `bindgen` 0.69.0 issue rust: avoid assuming a particular `bindgen` build rust: start supporting several compiler versions rust: simplify Clippy warning flags set rust: relax most deny-level lints to warnings rust: allow `dead_code` for never constructed bindings rust: init: simplify from `map_err` to `inspect_err` rust: macros: indent list item in `paste!`'s docs rust: add abstraction for `struct page` rust: uaccess: add typed accessors for userspace pointers uaccess: always export _copy_[from|to]_user with CONFIG_RUST rust: uaccess: add userspace pointers kbuild: rust-analyzer: improve comment documentation kbuild: rust-analyzer: better error handling docs: rust: no_std is used rust: alloc: add __GFP_HIGHMEM flag rust: alloc: fix typo in docs for GFP_NOWAIT ... |
||
Linus Torvalds
|
c2a96b7f18 |
Driver core changes for 6.11-rc1
Here is the big set of driver core changes for 6.11-rc1. Lots of stuff in here, with not a huge diffstat, but apis are evolving which required lots of files to be touched. Highlights of the changes in here are: - platform remove callback api final fixups (Uwe took many releases to get here, finally!) - Rust bindings for basic firmware apis and initial driver-core interactions. It's not all that useful for a "write a whole driver in rust" type of thing, but the firmware bindings do help out the phy rust drivers, and the driver core bindings give a solid base on which others can start their work. There is still a long way to go here before we have a multitude of rust drivers being added, but it's a great first step. - driver core const api changes. This reached across all bus types, and there are some fix-ups for some not-common bus types that linux-next and 0-day testing shook out. This work is being done to help make the rust bindings more safe, as well as the C code, moving toward the end-goal of allowing us to put driver structures into read-only memory. We aren't there yet, but are getting closer. - minor devres cleanups and fixes found by code inspection - arch_topology minor changes - other minor driver core cleanups All of these have been in linux-next for a very long time with no reported problems. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZqH+aQ8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+ymoOQCfVBdLcBjEDAGh3L8qHRGMPy4rV2EAoL/r+zKm cJEYtJpGtWX6aAtugm9E =ZyJV -----END PGP SIGNATURE----- Merge tag 'driver-core-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core updates from Greg KH: "Here is the big set of driver core changes for 6.11-rc1. Lots of stuff in here, with not a huge diffstat, but apis are evolving which required lots of files to be touched. Highlights of the changes in here are: - platform remove callback api final fixups (Uwe took many releases to get here, finally!) - Rust bindings for basic firmware apis and initial driver-core interactions. It's not all that useful for a "write a whole driver in rust" type of thing, but the firmware bindings do help out the phy rust drivers, and the driver core bindings give a solid base on which others can start their work. There is still a long way to go here before we have a multitude of rust drivers being added, but it's a great first step. - driver core const api changes. This reached across all bus types, and there are some fix-ups for some not-common bus types that linux-next and 0-day testing shook out. This work is being done to help make the rust bindings more safe, as well as the C code, moving toward the end-goal of allowing us to put driver structures into read-only memory. We aren't there yet, but are getting closer. - minor devres cleanups and fixes found by code inspection - arch_topology minor changes - other minor driver core cleanups All of these have been in linux-next for a very long time with no reported problems" * tag 'driver-core-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (55 commits) ARM: sa1100: make match function take a const pointer sysfs/cpu: Make crash_hotplug attribute world-readable dio: Have dio_bus_match() callback take a const * zorro: make match function take a const pointer driver core: module: make module_[add|remove]_driver take a const * driver core: make driver_find_device() take a const * driver core: make driver_[create|remove]_file take a const * firmware_loader: fix soundness issue in `request_internal` firmware_loader: annotate doctests as `no_run` devres: Correct code style for functions that return a pointer type devres: Initialize an uninitialized struct member devres: Fix memory leakage caused by driver API devm_free_percpu() devres: Fix devm_krealloc() wasting memory driver core: platform: Switch to use kmemdup_array() driver core: have match() callback in struct bus_type take a const * MAINTAINERS: add Rust device abstractions to DRIVER CORE device: rust: improve safety comments MAINTAINERS: add Danilo as FIRMWARE LOADER maintainer MAINTAINERS: add Rust FW abstractions to FIRMWARE LOADER firmware: rust: improve safety comments ... |
||
Miguel Ojeda
|
f85bea18f7 |
rust: allow dead_code for never constructed bindings
Starting with the upcoming Rust 1.80.0 (since upstream commit 35130d7233e9 ("Detect pub structs never constructed and unused associated constants in traits")), the `dead_code` pass detects more cases, which triggers in the `bindings` crate: warning: struct `boot_params` is never constructed --> rust/bindings/bindings_generated.rs:10684:12 | 10684 | pub struct boot_params { | ^^^^^^^^^^^ | = note: `#[warn(dead_code)]` on by default As well as in the `uapi` one: warning: struct `boot_params` is never constructed --> rust/uapi/uapi_generated.rs:10392:12 | 10392 | pub struct boot_params { | ^^^^^^^^^^^ | = note: `#[warn(dead_code)]` on by default These are all expected, since we do not use all the structs in the bindings that `bindgen` generates from the C headers. Therefore, allow them. Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Reviewed-by: Finn Behrens <me@kloenk.dev> Tested-by: Benno Lossin <benno.lossin@proton.me> Tested-by: Andreas Hindborg <a.hindborg@samsung.com> Link: https://lore.kernel.org/r/20240709160615.998336-4-ojeda@kernel.org Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Alice Ryhl
|
fc6e66f469 |
rust: add abstraction for struct page
Adds a new struct called `Page` that wraps a pointer to `struct page`. This struct is assumed to hold ownership over the page, so that Rust code can allocate and manage pages directly. The page type has various methods for reading and writing into the page. These methods will temporarily map the page to allow the operation. All of these methods use a helper that takes an offset and length, performs bounds checks, and returns a pointer to the given offset in the page. This patch only adds support for pages of order zero, as that is all Rust Binder needs. However, it is written to make it easy to add support for higher-order pages in the future. To do that, you would add a const generic parameter to `Page` that specifies the order. Most of the methods do not need to be adjusted, as the logic for dealing with mapping multiple pages at once can be isolated to just the `with_pointer_into_page` method. Rust Binder needs to manage pages directly as that is how transactions are delivered: Each process has an mmap'd region for incoming transactions. When an incoming transaction arrives, the Binder driver will choose a region in the mmap, allocate and map the relevant pages manually, and copy the incoming transaction directly into the page. This architecture allows the driver to copy transactions directly from the address space of one process to another, without an intermediate copy to a kernel buffer. This code is based on Wedson's page abstractions from the old rust branch, but it has been modified by Alice by removing the incomplete support for higher-order pages, by introducing the `with_*` helpers to consolidate the bounds checking logic into a single place, and various other changes. Co-developed-by: Wedson Almeida Filho <wedsonaf@gmail.com> Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Reviewed-by: Trevor Gross <tmgross@umich.edu> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240528-alice-mm-v7-4-78222c31b8f4@google.com [ Fixed typos and added a few intra-doc links. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Alice Ryhl
|
ab44079e28 |
rust: alloc: add __GFP_HIGHMEM flag
Make it possible to allocate memory that doesn't need to mapped into the kernel's address space. This flag is useful together with Page::alloc_page [1]. Rust Binder needs this for the memory that holds incoming transactions for each process. Each process will have a few megabytes of memory allocated with this flag, which is mapped into the process using vm_insert_page. When the kernel copies data for an incoming transaction into a process's memory region, it will use kmap_local_page to temporarily map pages that are being modified. There is no need for them to take up address space in the kernel when the kernel is not writing an incoming transaction into the page. Link: https://lore.kernel.org/all/20240528-alice-mm-v7-4-78222c31b8f4@google.com/ [1] Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240607-highmem-v1-1-d18c5ca4072f@google.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Andreas Hindborg
|
5b026e3412 |
rust: block: fix generated bindings after refactoring of features
Block device features and flags were refactored from `enum` to `#define`. This broke Rust binding generation. This patch fixes the binding generation. Fixes: fcf865e357f8 ("block: convert features and flags to __bitwise types") Signed-off-by: Andreas Hindborg <a.hindborg@samsung.com> Acked-by: Miguel Ojeda <ojeda@kernel.org> Link: https://lore.kernel.org/r/20240628091152.2185241-1-nmi@metaspace.dk Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Danilo Krummrich
|
de6582833d |
rust: add firmware abstractions
Add an abstraction around the kernels firmware API to request firmware images. The abstraction provides functions to access the firmware's size and backing buffer. The firmware is released once the abstraction instance is dropped. Signed-off-by: Danilo Krummrich <dakr@redhat.com> Acked-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lore.kernel.org/r/20240618154841.6716-3-dakr@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Andreas Hindborg
|
3253aba340 |
rust: block: introduce kernel::block::mq module
Add initial abstractions for working with blk-mq.
This patch is a maintained, refactored subset of code originally published
by Wedson Almeida Filho <wedsonaf@gmail.com> [1].
[1]
|
||
Wedson Almeida Filho
|
b6a006e21b |
rust: alloc: introduce allocation flags
We'll use them when allocating `Box`, `Arc`, and `UniqueArc` instances, as well as when allocating memory for `Vec` elements. These changes will come in subsequent patches. Reviewed-by: Benno Lossin <benno.lossin@proton.me> Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com> Link: https://lore.kernel.org/r/20240328013603.206764-6-wedsonaf@gmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Mika Westerberg
|
789809a3d5 |
rust: bindings: Order headers alphabetically
As the comment on top of the file suggests, sort the headers alphabetically. No functional changes. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Link: https://github.com/Rust-for-Linux/linux/issues/1002 Link: https://lore.kernel.org/r/20240216152723.993445-1-mika.westerberg@linux.intel.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Alice Ryhl
|
82e1708748 |
rust: time: add msecs to jiffies conversion
Defines type aliases and conversions for msecs and jiffies. This is used by Rust Binder for process freezing. There, we want to sleep until the freeze operation completes, but we want to be able to abort the process freezing if it doesn't complete within some timeout. The freeze timeout is supplied in msecs. Note that we need to convert to jiffies in Binder. It is not enough to introduce a variant of `CondVar::wait_timeout` that takes the timeout in msecs because we need to be able to restart the sleep with the remaining sleep duration if it is interrupted, and if the API takes msecs rather than jiffies, then that would require a conversion roundtrip jiffies-> msecs->jiffies that is best avoided. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Tiago Lam <tiagolam@gmail.com> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240108-rb-new-condvar-methods-v4-2-88e0c871cc05@google.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Linus Torvalds
|
b6964fe239 |
Rust changes for v6.8
Another routine one in terms of features. In terms of lines, this time the 'alloc' version upgrade is less prominent, given that it was fairly small (and we did not have two upgrades). Toolchain and infrastructure: - Upgrade to Rust 1.74.1. The patch release includes a fix for an ICE that the Apple AGX GPU driver was hitting. - Support 'srctree'-relative links in Rust code documentation. - Automate part of the manual constants handling (i.e. the ones not recognised by 'bindgen'). - Suppress searching builtin sysroot to avoid confusion with installed sysroots, needed for the to-be-merged arm64 support which uses a builtin target. - Ignore '__preserve_most' functions for 'bindgen'. - Reduce header inclusion bloat in exports. 'kernel' crate: - Implement 'Debug' for 'CString'. - Make 'CondVar::wait()' an uninterruptible wait. 'macros' crate: - Update 'paste!' to accept string literals. - Improve '#[vtable]' documentation. Documentation: - Add testing section (KUnit and 'rusttest' target). - Remove 'CC=clang' mentions. - Clarify that 'rustup override' applies to build directory. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAmWbS68ACgkQGXyLc2ht IW1V4w//ToMxdyHTnoqFyzI5X4mzxaV8vhEViGs5eXG87d0E8WwSRCA4weEGTbER 06huyUI1tTbYgpsOEyuUSEDd/0GiA+sGseaqS4kJ7+aA6fSof7E6nA4d2SURBb2O 0F1c3DucGbeDzZz0GZDWSnoF3RwQWRz1hPR9scMcQi4d69r5mT+HdD1UryXaGkXQ 9gDeWhmqO4EzEjFR/gd0fYxd/z7OgXsaUQJk4fpDGDJ+/USPzrE99iGoHINB6VRA mWsq5g0Po6aPwmlPDcW6bgRrLEWpzHftCNAZjQbjfT4mKjYJg4GJaqShCfM+wkZN 3NVLxueJ0ZzLXmHxpMjx9WdHM1j/MM31W/n0/Opgnalv0lETZdNKy/Ep1Fj+AOTP kKwU2bQT66We78cjY6Fh2noCNv3td9g59/q8TfKAFxsy16BqL/RLqQ21Ft0hyLO+ ebvOOO0o2ul/7onaOFhrXMRdVvaAXeK1c64kiGRUr16X5D5UcvR+ZkJ/LVf2ozvS mDtzXB561WCyVSfTFz0buGdudO4NWE+7Dh7msXhE6W6faFN+7MA6pfWZro64k+az gEmcCcwjUMpV0IrvCWH0dW1NG6XGqGQ/PkGTYdIyZ+1GajEhwNILuIPKuM8VXwLZ zmu+y4xdpPd7hMjncopCsb8G3DidAN7zeYea5tnAGILCmOZMOX4= =w+n8 -----END PGP SIGNATURE----- Merge tag 'rust-6.8' of https://github.com/Rust-for-Linux/linux Pull Rust updates from Miguel Ojeda: "Another routine one in terms of features. In terms of lines, this time the 'alloc' version upgrade is less prominent, given that it was fairly small (and we did not have two upgrades) Toolchain and infrastructure: - Upgrade to Rust 1.74.1 The patch release includes a fix for an ICE that the Apple AGX GPU driver was hitting - Support 'srctree'-relative links in Rust code documentation - Automate part of the manual constants handling (i.e. the ones not recognised by 'bindgen') - Suppress searching builtin sysroot to avoid confusion with installed sysroots, needed for the to-be-merged arm64 support which uses a builtin target - Ignore '__preserve_most' functions for 'bindgen' - Reduce header inclusion bloat in exports 'kernel' crate: - Implement 'Debug' for 'CString' - Make 'CondVar::wait()' an uninterruptible wait 'macros' crate: - Update 'paste!' to accept string literals - Improve '#[vtable]' documentation Documentation: - Add testing section (KUnit and 'rusttest' target) - Remove 'CC=clang' mentions - Clarify that 'rustup override' applies to build directory" * tag 'rust-6.8' of https://github.com/Rust-for-Linux/linux: docs: rust: Clarify that 'rustup override' applies to build directory docs: rust: Add rusttest info docs: rust: remove `CC=clang` mentions rust: support `srctree`-relative links rust: sync: Makes `CondVar::wait()` an uninterruptible wait rust: upgrade to Rust 1.74.1 rust: Suppress searching builtin sysroot rust: macros: improve `#[vtable]` documentation rust: macros: update 'paste!' macro to accept string literals rust: bindings: rename const binding using sed rust: Ignore preserve-most functions rust: replace <linux/module.h> with <linux/export.h> in rust/exports.c rust: kernel: str: Implement Debug for CString |
||
FUJITA Tomonori
|
f20fd5449a |
rust: core abstractions for network PHY drivers
This patch adds abstractions to implement network PHY drivers; the driver registration and bindings for some of callback functions in struct phy_driver and many genphy_ functions. This feature is enabled with CONFIG_RUST_PHYLIB_ABSTRACTIONS=y. This patch enables unstable const_maybe_uninit_zeroed feature for kernel crate to enable unsafe code to handle a constant value with uninitialized data. With the feature, the abstractions can initialize a phy_driver structure with zero easily; instead of initializing all the members by hand. It's supposed to be stable in the not so distant future. Link: https://github.com/rust-lang/rust/pull/116218 Signed-off-by: FUJITA Tomonori <fujita.tomonori@gmail.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Gary Guo
|
743766565d |
rust: bindings: rename const binding using sed
Currently, for `const`s that bindgen doesn't recognise, we define a helper constant with const <TYPE> BINDINGS_<NAME> = <NAME>; in `bindings_helper.h` and then we put pub const <NAME>: <TYPE> = BINDINGS_<NAME>; in `bindings/lib.rs`. This is fine since we currently only have 3 constants that are defined this way, but is going to be more annoying when more constants are added since every new constant needs to be defined in two places. This patch changes the way we define constant helpers to const <TYPE> RUST_CONST_HELPER_<NAME> = <NAME>; and then use `sed` to postprocess Rust code generated by bindgen to remove the distinct prefix, so users of the `bindings` crate can refer to the name directly. Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Gary Guo <gary@garyguo.net> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20231104145700.2495176-1-gary@garyguo.net [ Reworded for typos. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Alice Ryhl
|
d4d791d4aa |
rust: workqueue: add low-level workqueue bindings
Define basic low-level bindings to a kernel workqueue. The API defined here can only be used unsafely. Later commits will provide safe wrappers. Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: "Andreas Hindborg (Samsung)" <nmi@metaspace.dk> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Linus Torvalds
|
815c24a085 |
linux-kselftest-kunit-6.6-rc1
This kunit update for Linux 6.6.rc1 consists of: -- Adds support for running Rust documentation tests as KUnit tests -- Makes init, str, sync, types doctests compilable/testable -- Adds support for attributes API which include speed, modules attributes, ability to filter and report attributes. -- Adds support for marking tests slow using attributes API. -- Adds attributes API documentation -- Fixes to wild-memory-access bug in kunit_filter_suites() and a possible memory leak in kunit_filter_suites() -- Adds support for counting number of test suites in a module, list action to kunit test modules, and test filtering on module tests. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEPZKym/RZuOCGeA/kCwJExA0NQxwFAmTsxL8ACgkQCwJExA0N Qxwt6BAA5FgF7nUeGRZCnot4MQCNGRThxsns2k3CKjM1Iokp8tstTDoNHXzk2veS WlRYOHFQqQOVTVRP+laXyjjMMHnlnhFxqbv93UKsen4JIUJDLFLq9x+0i+0bZh97 N1rE5cKUnqjAOL6MIJuomW9IzEIrbMcqdljm6SOCZp90NLvq1+I4pDGLgx2bxcow Y/7dkx+dnlEsoACZ19CL1L2TaR21GpKdpOudpHNCShsbE0aOAlyHAVcmH64FTqCy Z1LtrA0odS71q0yxDVCk5X3cIkeVfGBMz6aMZBRzS9k5jU4H1EN1eG1rGdGErIe5 YduwX3KMikYJB2stT64T1vgldIpT/emxqkBigmxQ37g3Flgopz4bI1snMBry+nKb ViD/WQNjsf2iL8MooCgYBzH7yjmX6lXXQTZXROogBj4lP2/0gHiQVZyXZEAjtoO3 uNzUbfHQGnvtTphBHV4nNGaO+7kU9Y/oX8TYFcSYJQzcH5UVx16uBwevZjT1bii/ q89bRAQLnJpzkR93SGpnmsRgoDcYJSYsEA1o/f9Eqq8j3guOS2idpJvkheXq8+A2 MqTSOCJHENKZ3v0UGKlvZUPStaMaqN58z/VjlWug5EaB83LLfPcXJrGjz/EHk967 hYDHcwPoamTegr1zlg3ckOLiWEhga2tv6aHPkshkcFphpnhRU/c= =Nsb8 -----END PGP SIGNATURE----- Merge tag 'linux-kselftest-kunit-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest Pull kunit updates from Shuah Khan: - add support for running Rust documentation tests as KUnit tests - make init, str, sync, types doctests compilable/testable - add support for attributes API which include speed, modules attributes, ability to filter and report attributes - add support for marking tests slow using attributes API - add attributes API documentation - fix a wild-memory-access bug in kunit_filter_suites() and a possible memory leak in kunit_filter_suites() - add support for counting number of test suites in a module, list action to kunit test modules, and test filtering on module tests * tag 'linux-kselftest-kunit-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest: (25 commits) kunit: fix struct kunit_attr header kunit: replace KUNIT_TRIGGER_STATIC_STUB maro with KUNIT_STATIC_STUB_REDIRECT kunit: Allow kunit test modules to use test filtering kunit: Make 'list' action available to kunit test modules kunit: Report the count of test suites in a module kunit: fix uninitialized variables bug in attributes filtering kunit: fix possible memory leak in kunit_filter_suites() kunit: fix wild-memory-access bug in kunit_filter_suites() kunit: Add documentation of KUnit test attributes kunit: add tests for filtering attributes kunit: time: Mark test as slow using test attributes kunit: memcpy: Mark tests as slow using test attributes kunit: tool: Add command line interface to filter and report attributes kunit: Add ability to filter attributes kunit: Add module attribute kunit: Add speed attribute kunit: Add test attributes API structure MAINTAINERS: add Rust KUnit files to the KUnit entry rust: support running Rust documentation tests as KUnit ones rust: types: make doctests compilable/testable ... |
||
Boqun Feng
|
b3d8aa84bb |
rust: allocator: Prevent mis-aligned allocation
Currently the rust allocator simply passes the size of the type Layout to krealloc(), and in theory the alignment requirement from the type Layout may be larger than the guarantee provided by SLAB, which means the allocated object is mis-aligned. Fix this by adjusting the allocation size to the nearest power of two, which SLAB always guarantees a size-aligned allocation. And because Rust guarantees that the original size must be a multiple of alignment and the alignment must be a power of two, then the alignment requirement is satisfied. Suggested-by: Vlastimil Babka <vbabka@suse.cz> Co-developed-by: "Andreas Hindborg (Samsung)" <nmi@metaspace.dk> Signed-off-by: "Andreas Hindborg (Samsung)" <nmi@metaspace.dk> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Cc: stable@vger.kernel.org # v6.1+ Acked-by: Vlastimil Babka <vbabka@suse.cz> Fixes: 247b365dc8dc ("rust: add `kernel` crate") Link: https://github.com/Rust-for-Linux/linux/issues/974 Link: https://lore.kernel.org/r/20230730012905.643822-2-boqun.feng@gmail.com [ Applied rewording of comment as discussed in the mailing list. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Miguel Ojeda
|
a66d733da8 |
rust: support running Rust documentation tests as KUnit ones
Rust has documentation tests: these are typically examples of usage of any item (e.g. function, struct, module...). They are very convenient because they are just written alongside the documentation. For instance: /// Sums two numbers. /// /// ``` /// assert_eq!(mymod::f(10, 20), 30); /// ``` pub fn f(a: i32, b: i32) -> i32 { a + b } In userspace, the tests are collected and run via `rustdoc`. Using the tool as-is would be useful already, since it allows to compile-test most tests (thus enforcing they are kept in sync with the code they document) and run those that do not depend on in-kernel APIs. However, by transforming the tests into a KUnit test suite, they can also be run inside the kernel. Moreover, the tests get to be compiled as other Rust kernel objects instead of targeting userspace. On top of that, the integration with KUnit means the Rust support gets to reuse the existing testing facilities. For instance, the kernel log would look like: KTAP version 1 1..1 KTAP version 1 # Subtest: rust_doctests_kernel 1..59 # rust_doctest_kernel_build_assert_rs_0.location: rust/kernel/build_assert.rs:13 ok 1 rust_doctest_kernel_build_assert_rs_0 # rust_doctest_kernel_build_assert_rs_1.location: rust/kernel/build_assert.rs:56 ok 2 rust_doctest_kernel_build_assert_rs_1 # rust_doctest_kernel_init_rs_0.location: rust/kernel/init.rs:122 ok 3 rust_doctest_kernel_init_rs_0 ... # rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150 ok 59 rust_doctest_kernel_types_rs_2 # rust_doctests_kernel: pass:59 fail:0 skip:0 total:59 # Totals: pass:59 fail:0 skip:0 total:59 ok 1 rust_doctests_kernel Therefore, add support for running Rust documentation tests in KUnit. Some other notes about the current implementation and support follow. The transformation is performed by a couple scripts written as Rust hostprogs. Tests using the `?` operator are also supported as usual, e.g.: /// ``` /// # use kernel::{spawn_work_item, workqueue}; /// spawn_work_item!(workqueue::system(), || pr_info!("x"))?; /// # Ok::<(), Error>(()) /// ``` The tests are also compiled with Clippy under `CLIPPY=1`, just like normal code, thus also benefitting from extra linting. The names of the tests are currently automatically generated. This allows to reduce the burden for documentation writers, while keeping them fairly stable for bisection. This is an improvement over the `rustdoc`-generated names, which include the line number; but ideally we would like to get `rustdoc` to provide the Rust item path and a number (for multiple examples in a single documented Rust item). In order for developers to easily see from which original line a failed doctests came from, a KTAP diagnostic line is printed to the log, containing the location (file and line) of the original test (i.e. instead of the location in the generated Rust file): # rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150 This line follows the syntax for declaring test metadata in the proposed KTAP v2 spec [1], which may be used for the proposed KUnit test attributes API [2]. Thus hopefully this will make migration easier later on (suggested by David [3]). The original line in that test attribute is figured out by providing an anchor (suggested by Boqun [4]). The original file is found by walking the filesystem, checking directory prefixes to reduce the amount of combinations to check, and it is only done once per file. Ambiguities are detected and reported. A notable difference from KUnit C tests is that the Rust tests appear to assert using the usual `assert!` and `assert_eq!` macros from the Rust standard library (`core`). We provide a custom version that forwards the call to KUnit instead. Importantly, these macros do not require passing context, unlike the KUnit C ones (i.e. `struct kunit *`). This makes them easier to use, and readers of the documentation do not need to care about which testing framework is used. In addition, it may allow us to test third-party code more easily in the future. However, a current limitation is that KUnit does not support assertions in other tasks. Thus we presently simply print an error to the kernel log if an assertion actually failed. This should be revisited to properly fail the test, perhaps saving the context somewhere else, or letting KUnit handle it. Link: https://lore.kernel.org/lkml/20230420205734.1288498-1-rmoar@google.com/ [1] Link: https://lore.kernel.org/linux-kselftest/20230707210947.1208717-1-rmoar@google.com/ [2] Link: https://lore.kernel.org/rust-for-linux/CABVgOSkOLO-8v6kdAGpmYnZUb+LKOX0CtYCo-Bge7r_2YTuXDQ@mail.gmail.com/ [3] Link: https://lore.kernel.org/rust-for-linux/ZIps86MbJF%2FiGIzd@boqun-archlinux/ [4] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Reviewed-by: David Gow <davidgow@google.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org> |
||
Gary Guo
|
d2e3115d71 |
rust: error: impl Debug for Error with errname() integration
Integrate the `Error` type with `errname()` by providing a new `name()` method. Then, implement `Debug` for the type using the new method. [ Miguel: under `CONFIG_SYMBOLIC_ERRNAME=n`, `errname()` is a `static inline`, so added a helper to support that case, like we had in the `rust` branch. Also moved `#include` up and reworded commit message for clarity. ] Co-developed-by: Wedson Almeida Filho <walmeida@microsoft.com> Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com> Co-developed-by: Sven Van Asbroeck <thesven73@gmail.com> Signed-off-by: Sven Van Asbroeck <thesven73@gmail.com> Signed-off-by: Gary Guo <gary@garyguo.net> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Link: https://lore.kernel.org/r/20230531174450.3733220-1-aliceryhl@google.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Miguel Ojeda
|
3ed03f4da0 |
rust: upgrade to Rust 1.68.2
This is the first upgrade to the Rust toolchain since the initial Rust merge, from 1.62.0 to 1.68.2 (i.e. the latest). # Context The kernel currently supports only a single Rust version [1] (rather than a minimum) given our usage of some "unstable" Rust features [2] which do not promise backwards compatibility. The goal is to reach a point where we can declare a minimum version for the toolchain. For instance, by waiting for some of the features to be stabilized. Therefore, the first minimum Rust version that the kernel will support is "in the future". # Upgrade policy Given we will eventually need to reach that minimum version, it would be ideal to upgrade the compiler from time to time to be as close as possible to that goal and find any issues sooner. In the extreme, we could upgrade as soon as a new Rust release is out. Of course, upgrading so often is in stark contrast to what one normally would need for GCC and LLVM, especially given the release schedule: 6 weeks for Rust vs. half a year for LLVM and a year for GCC. Having said that, there is no particular advantage to updating slowly either: kernel developers in "stable" distributions are unlikely to be able to use their distribution-provided Rust toolchain for the kernel anyway [3]. Instead, by routinely upgrading to the latest instead, kernel developers using Linux distributions that track the latest Rust release may be able to use those rather than Rust-provided ones, especially if their package manager allows to pin / hold back / downgrade the version for some days during windows where the version may not match. For instance, Arch, Fedora, Gentoo and openSUSE all provide and track the latest version of Rust as they get released every 6 weeks. Then, when the minimum version is reached, we will stop upgrading and decide how wide the window of support will be. For instance, a year of Rust versions. We will probably want to start small, and then widen it over time, just like the kernel did originally for LLVM, see commit 3519c4d6e08e ("Documentation: add minimum clang/llvm version"). # Unstable features stabilized This upgrade allows us to remove the following unstable features since they were stabilized: - `feature(explicit_generic_args_with_impl_trait)` (1.63). - `feature(core_ffi_c)` (1.64). - `feature(generic_associated_types)` (1.65). - `feature(const_ptr_offset_from)` (1.65, *). - `feature(bench_black_box)` (1.66, *). - `feature(pin_macro)` (1.68). The ones marked with `*` apply only to our old `rust` branch, not mainline yet, i.e. only for code that we may potentially upstream. With this patch applied, the only unstable feature allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. # Other required changes Since 1.63, `rustdoc` triggers the `broken_intra_doc_links` lint for links pointing to exported (`#[macro_export]`) `macro_rules`. An issue was opened upstream [4], but it turns out it is intended behavior. For the moment, just add an explicit reference for each link. Later we can revisit this if `rustdoc` removes the compatibility measure. Nevertheless, this was helpful to discover a link that was pointing to the wrong place unintentionally. Since that one was actually wrong, it is fixed in a previous commit independently. Another change was the addition of `cfg(no_rc)` and `cfg(no_sync)` in upstream [5], thus remove our original changes for that. Similarly, upstream now tests that it compiles successfully with `#[cfg(not(no_global_oom_handling))]` [6], which allow us to get rid of some changes, such as an `#[allow(dead_code)]`. In addition, remove another `#[allow(dead_code)]` due to new uses within the standard library. Finally, add `try_extend_trusted` and move the code in `spec_extend.rs` since upstream moved it for the infallible version. # `alloc` upgrade and reviewing There are a large amount of changes, but the vast majority of them are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: https://github.com/Rust-for-Linux/linux/issues/2 [2] Link: https://lore.kernel.org/rust-for-linux/CANiq72mT3bVDKdHgaea-6WiZazd8Mvurqmqegbe5JZxVyLR8Yg@mail.gmail.com/ [3] Link: https://github.com/rust-lang/rust/issues/106142 [4] Link: https://github.com/rust-lang/rust/pull/89891 [5] Link: https://github.com/rust-lang/rust/pull/98652 [6] Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-By: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Tested-by: Ariel Miculas <amiculas@cisco.com> Tested-by: David Gow <davidgow@google.com> Tested-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lore.kernel.org/r/20230418214347.324156-4-ojeda@kernel.org [ Removed `feature(core_ffi_c)` from `uapi` ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
19096bce81 |
rust: sync: introduce CondVar
This is the traditional condition variable or monitor synchronisation primitive. It is implemented with C's `wait_queue_head_t`. It allows users to release a lock and go to sleep while guaranteeing that notifications won't be missed. This is achieved by enqueuing a wait entry before releasing the lock. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Will Deacon <will@kernel.org> Cc: Waiman Long <longman@redhat.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20230411054543.21278-12-wedsonaf@gmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
313c4281bc |
rust: add basic Task
It is an abstraction for C's `struct task_struct`. It implements `AlwaysRefCounted`, so the refcount of the wrapped object is managed safely on the Rust side. Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com> Link: https://lore.kernel.org/r/20230411054543.21278-9-wedsonaf@gmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
9dc0436550 |
rust: sync: add Arc for ref-counted allocations
This is a basic implementation of `Arc` backed by C's `refcount_t`. It allows Rust code to idiomatically allocate memory that is ref-counted. Cc: Will Deacon <will@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com> Acked-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Miguel Ojeda
|
8326ac05ee |
rust: add bindings crate
This crate contains the bindings to the C side of the kernel. Calling C (in general, FFI) is assumed to be unsafe in Rust and, in many cases, this is accurate. For instance, virtually all C functions that take a pointer are unsafe since, typically, it will be dereferenced at some point (and in most cases there is no way for the callee to check its validity beforehand). Since one of the goals of using Rust in the kernel is precisely to avoid unsafe code in "leaf" kernel modules (e.g. drivers), these bindings should not be used directly by them. Instead, these bindings need to be wrapped into safe abstractions. These abstractions provide a safe API that kernel modules can use. In this way, unsafe code in kernel modules is minimized. Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com> Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com> Co-developed-by: Finn Behrens <me@kloenk.de> Signed-off-by: Finn Behrens <me@kloenk.de> Co-developed-by: Wedson Almeida Filho <wedsonaf@google.com> Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com> Co-developed-by: Sven Van Asbroeck <thesven73@gmail.com> Signed-off-by: Sven Van Asbroeck <thesven73@gmail.com> Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Co-developed-by: Maciej Falkowski <m.falkowski@samsung.com> Signed-off-by: Maciej Falkowski <m.falkowski@samsung.com> Co-developed-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Co-developed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Signed-off-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |