Commit Graph

150 Commits

Author SHA1 Message Date
Dan Williams
f1eca35a0d mm/sparsemem: introduce struct mem_section_usage
Patch series "mm: Sub-section memory hotplug support", v10.

The memory hotplug section is an arbitrary / convenient unit for memory
hotplug.  'Section-size' units have bled into the user interface
('memblock' sysfs) and can not be changed without breaking existing
userspace.  The section-size constraint, while mostly benign for typical
memory hotplug, has and continues to wreak havoc with 'device-memory'
use cases, persistent memory (pmem) in particular.  Recall that pmem
uses devm_memremap_pages(), and subsequently arch_add_memory(), to
allocate a 'struct page' memmap for pmem.  However, it does not use the
'bottom half' of memory hotplug, i.e.  never marks pmem pages online and
never exposes the userspace memblock interface for pmem.  This leaves an
opening to redress the section-size constraint.

To date, the libnvdimm subsystem has attempted to inject padding to
satisfy the internal constraints of arch_add_memory().  Beyond
complicating the code, leading to bugs [2], wasting memory, and limiting
configuration flexibility, the padding hack is broken when the platform
changes this physical memory alignment of pmem from one boot to the
next.  Device failure (intermittent or permanent) and physical
reconfiguration are events that can cause the platform firmware to
change the physical placement of pmem on a subsequent boot, and device
failure is an everyday event in a data-center.

It turns out that sections are only a hard requirement of the
user-facing interface for memory hotplug and with a bit more
infrastructure sub-section arch_add_memory() support can be added for
kernel internal usages like devm_memremap_pages().  Here is an analysis
of the current design assumptions in the current code and how they are
addressed in the new implementation:

Current design assumptions:

 - Sections that describe boot memory (early sections) are never
   unplugged / removed.

 - pfn_valid(), in the CONFIG_SPARSEMEM_VMEMMAP=y, case devolves to a
   valid_section() check

 - __add_pages() and helper routines assume all operations occur in
   PAGES_PER_SECTION units.

 - The memblock sysfs interface only comprehends full sections

New design assumptions:

 - Sections are instrumented with a sub-section bitmask to track (on
   x86) individual 2MB sub-divisions of a 128MB section.

 - Partially populated early sections can be extended with additional
   sub-sections, and those sub-sections can be removed with
   arch_remove_memory(). With this in place we no longer lose usable
   memory capacity to padding.

 - pfn_valid() is updated to look deeper than valid_section() to also
   check the active-sub-section mask. This indication is in the same
   cacheline as the valid_section() so the performance impact is
   expected to be negligible. So far the lkp robot has not reported any
   regressions.

 - Outside of the core vmemmap population routines which are replaced,
   other helper routines like shrink_{zone,pgdat}_span() are updated to
   handle the smaller granularity. Core memory hotplug routines that
   deal with online memory are not touched.

 - The existing memblock sysfs user api guarantees / assumptions are not
   touched since this capability is limited to !online
   !memblock-sysfs-accessible sections.

Meanwhile the issue reports continue to roll in from users that do not
understand when and how the 128MB constraint will bite them.  The current
implementation relied on being able to support at least one misaligned
namespace, but that immediately falls over on any moderately complex
namespace creation attempt.  Beyond the initial problem of 'System RAM'
colliding with pmem, and the unsolvable problem of physical alignment
changes, Linux is now being exposed to platforms that collide pmem ranges
with other pmem ranges by default [3].  In short, devm_memremap_pages()
has pushed the venerable section-size constraint past the breaking point,
and the simplicity of section-aligned arch_add_memory() is no longer
tenable.

These patches are exposed to the kbuild robot on a subsection-v10 branch
[4], and a preview of the unit test for this functionality is available
on the 'subsection-pending' branch of ndctl [5].

[2]: https://lore.kernel.org/r/155000671719.348031.2347363160141119237.stgit@dwillia2-desk3.amr.corp.intel.com
[3]: https://github.com/pmem/ndctl/issues/76
[4]: https://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm.git/log/?h=subsection-v10
[5]: https://github.com/pmem/ndctl/commit/7c59b4867e1c

This patch (of 13):

Towards enabling memory hotplug to track partial population of a section,
introduce 'struct mem_section_usage'.

A pointer to a 'struct mem_section_usage' instance replaces the existing
pointer to a 'pageblock_flags' bitmap.  Effectively it adds one more
'unsigned long' beyond the 'pageblock_flags' (usemap) allocation to house
a new 'subsection_map' bitmap.  The new bitmap enables the memory
hot{plug,remove} implementation to act on incremental sub-divisions of a
section.

SUBSECTION_SHIFT is defined as global constant instead of per-architecture
value like SECTION_SIZE_BITS in order to allow cross-arch compatibility of
subsection users.  Specifically a common subsection size allows for the
possibility that persistent memory namespace configurations be made
compatible across architectures.

The primary motivation for this functionality is to support platforms that
mix "System RAM" and "Persistent Memory" within a single section, or
multiple PMEM ranges with different mapping lifetimes within a single
section.  The section restriction for hotplug has caused an ongoing saga
of hacks and bugs for devm_memremap_pages() users.

Beyond the fixups to teach existing paths how to retrieve the 'usemap'
from a section, and updates to usemap allocation path, there are no
expected behavior changes.

Link: http://lkml.kernel.org/r/156092349845.979959.73333291612799019.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>	[ppc64]
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Qian Cai <cai@lca.pw>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:07 -07:00
David Hildenbrand
2491f0a2c0 mm: section numbers use the type "unsigned long"
Patch series "mm: Further memory block device cleanups", v1.

Some further cleanups around memory block devices.  Especially, clean up
and simplify walk_memory_range().  Including some other minor cleanups.

This patch (of 6):

We are using a mixture of "int" and "unsigned long".  Let's make this
consistent by using "unsigned long" everywhere.  We'll do the same with
memory block ids next.

While at it, turn the "unsigned long i" in removable_show() into an int
- sections_per_block is an int.

[akpm@linux-foundation.org: s/unsigned long i/unsigned long nr/]
[david@redhat.com: v3]
  Link: http://lkml.kernel.org/r/20190620183139.4352-2-david@redhat.com
Link: http://lkml.kernel.org/r/20190614100114.311-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
Wei Yang
26f26bedab mm/sparse.c: set section nid for hot-add memory
In case of NODE_NOT_IN_PAGE_FLAGS is set, we store section's node id in
section_to_node_table[].  While for hot-add memory, this is missed.
Without this information, page_to_nid() may not give the right node id.

BTW, current online_pages works because it leverages nid in
memory_block.  But the granularity of node id should be mem_section
wide.

Link: http://lkml.kernel.org/r/20190618005537.18878-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand
b9bf8d342d mm/memory_hotplug: remove "zone" parameter from sparse_remove_one_section
The parameter is unused, so let's drop it.  Memory removal paths should
never care about zones.  This is the job of memory offlining and will
require more refactorings.

Link: http://lkml.kernel.org/r/20190527111152.16324-12-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand
80ec922dbd mm/memory_hotplug: allow arch_remove_memory() without CONFIG_MEMORY_HOTREMOVE
We want to improve error handling while adding memory by allowing to use
arch_remove_memory() and __remove_pages() even if
CONFIG_MEMORY_HOTREMOVE is not set to e.g., implement something like:

	arch_add_memory()
	rc = do_something();
	if (rc) {
		arch_remove_memory();
	}

We won't get rid of CONFIG_MEMORY_HOTREMOVE for now, as it will require
quite some dependencies for memory offlining.

Link: http://lkml.kernel.org/r/20190527111152.16324-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Mark Brown <broonie@kernel.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
Baoquan He
7567cfc5da mm/sparse.c: clean up obsolete code comment
The code comment above sparse_add_one_section() is obsolete and incorrect.
Clean it up and write a new one.

Link: http://lkml.kernel.org/r/20190329144250.14315-1-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Qian Cai
9b7ea46a82 mm/hotplug: fix offline undo_isolate_page_range()
Commit f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded
memory to zones until online") introduced move_pfn_range_to_zone() which
calls memmap_init_zone() during onlining a memory block.
memmap_init_zone() will reset pagetype flags and makes migrate type to
be MOVABLE.

However, in __offline_pages(), it also call undo_isolate_page_range()
after offline_isolated_pages() to do the same thing.  Due to commit
2ce13640b3 ("mm: __first_valid_page skip over offline pages") changed
__first_valid_page() to skip offline pages, undo_isolate_page_range()
here just waste CPU cycles looping around the offlining PFN range while
doing nothing, because __first_valid_page() will return NULL as
offline_isolated_pages() has already marked all memory sections within
the pfn range as offline via offline_mem_sections().

Also, after calling the "useless" undo_isolate_page_range() here, it
reaches the point of no returning by notifying MEM_OFFLINE.  Those pages
will be marked as MIGRATE_MOVABLE again once onlining.  The only thing
left to do is to decrease the number of isolated pageblocks zone counter
which would make some paths of the page allocation slower that the above
commit introduced.

Even if alloc_contig_range() can be used to isolate 16GB-hugetlb pages
on ppc64, an "int" should still be enough to represent the number of
pageblocks there.  Fix an incorrect comment along the way.

[cai@lca.pw: v4]
  Link: http://lkml.kernel.org/r/20190314150641.59358-1-cai@lca.pw
Link: http://lkml.kernel.org/r/20190313143133.46200-1-cai@lca.pw
Fixes: 2ce13640b3 ("mm: __first_valid_page skip over offline pages")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>	[4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 10:01:37 -07:00
Mike Rapoport
26fb3dae0a memblock: drop memblock_alloc_*_nopanic() variants
As all the memblock allocation functions return NULL in case of error
rather than panic(), the duplicates with _nopanic suffix can be removed.

Link: http://lkml.kernel.org/r/1548057848-15136-22-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>		[printk]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com>				[c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com>			[Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-12 10:04:02 -07:00
Mike Rapoport
8a7f97b902 treewide: add checks for the return value of memblock_alloc*()
Add check for the return value of memblock_alloc*() functions and call
panic() in case of error.  The panic message repeats the one used by
panicing memblock allocators with adjustment of parameters to include
only relevant ones.

The replacement was mostly automated with semantic patches like the one
below with manual massaging of format strings.

  @@
  expression ptr, size, align;
  @@
  ptr = memblock_alloc(size, align);
  + if (!ptr)
  + 	panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align);

[anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type]
  Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org
[rppt@linux.ibm.com: fix format strings for panics after memblock_alloc]
  Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com
[rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails]
  Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx
[akpm@linux-foundation.org: fix xtensa printk warning]
Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Reviewed-by: Guo Ren <ren_guo@c-sky.com>		[c-sky]
Acked-by: Paul Burton <paul.burton@mips.com>		[MIPS]
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>	[s390]
Reviewed-by: Juergen Gross <jgross@suse.com>		[Xen]
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>	[m68k]
Acked-by: Max Filippov <jcmvbkbc@gmail.com>		[xtensa]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-12 10:04:02 -07:00
Qian Cai
d778015ac9 mm/sparse: fix a bad comparison
next_present_section_nr() could only return an unsigned number -1, so
just check it specifically where compilers will convert -1 to unsigned
if needed.

  mm/sparse.c: In function 'sparse_init_nid':
  mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
         ((section_nr >= 0) &&    \
                      ^~
  mm/sparse.c:478:2: note: in expansion of macro
  'for_each_present_section_nr'
    for_each_present_section_nr(pnum_begin, pnum) {
    ^~~~~~~~~~~~~~~~~~~~~~~~~~~
  mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
         ((section_nr >= 0) &&    \
                      ^~
  mm/sparse.c:497:2: note: in expansion of macro
  'for_each_present_section_nr'
    for_each_present_section_nr(pnum_begin, pnum) {
    ^~~~~~~~~~~~~~~~~~~~~~~~~~~
  mm/sparse.c: In function 'sparse_init':
  mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
         ((section_nr >= 0) &&    \
                      ^~
  mm/sparse.c:520:2: note: in expansion of macro
  'for_each_present_section_nr'
    for_each_present_section_nr(pnum_begin + 1, pnum_end) {
    ^~~~~~~~~~~~~~~~~~~~~~~~~~~

Link: http://lkml.kernel.org/r/20190228181839.86504-1-cai@lca.pw
Fixes: c4e1be9ec1 ("mm, sparsemem: break out of loops early")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:21 -08:00
Wei Yang
4e0d2e7ef1 mm, sparse: pass nid instead of pgdat to sparse_add_one_section()
Since the information needed in sparse_add_one_section() is node id to
allocate proper memory, it is not necessary to pass its pgdat.

This patch changes the prototype of sparse_add_one_section() to pass node
id directly.  This is intended to reduce misleading that
sparse_add_one_section() would touch pgdat.

Link: http://lkml.kernel.org/r/20181204085657.20472-2-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:49 -08:00
Wei Yang
83af658898 mm, sparse: drop pgdat_resize_lock in sparse_add/remove_one_section()
pgdat_resize_lock is used to protect pgdat's memory region information
like: node_start_pfn, node_present_pages, etc.  While in function
sparse_add/remove_one_section(), pgdat_resize_lock is used to protect
initialization/release of one mem_section.  This looks not proper.

These code paths are currently protected by mem_hotplug_lock currently but
should there ever be any reason for locking at the sparse layer a
dedicated lock should be introduced.

Following is the current call trace of sparse_add/remove_one_section()

    mem_hotplug_begin()
    arch_add_memory()
       add_pages()
           __add_pages()
               __add_section()
                   sparse_add_one_section()
    mem_hotplug_done()

    mem_hotplug_begin()
    arch_remove_memory()
        __remove_pages()
            __remove_section()
                sparse_remove_one_section()
    mem_hotplug_done()

The comment above the pgdat_resize_lock also mentions "Holding this will
also guarantee that any pfn_valid() stays that way.", which is true with
the current implementation and false after this patch.  But current
implementation doesn't meet this comment.  There isn't any pfn walkers to
take the lock so this looks like a relict from the past.  This patch also
removes this comment.

[richard.weiyang@gmail.com: v4]
  Link: http://lkml.kernel.org/r/20181204085657.20472-1-richard.weiyang@gmail.com
[mhocko@suse.com: changelog suggestion]
Link: http://lkml.kernel.org/r/20181128091243.19249-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:49 -08:00
Balbir Singh
5eb570a8d9 mm/hotplug: optimize clear_hwpoisoned_pages()
In hot remove, we try to clear poisoned pages, but a small optimization to
check if num_poisoned_pages is 0 helps remove the iteration through
nr_pages.

[akpm@linux-foundation.org: tweak comment text]
Link: http://lkml.kernel.org/r/20181102120001.4526-1-bsingharora@gmail.com
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:46 -08:00
Logan Gunthorpe
9def36e0fa mm/sparse: add common helper to mark all memblocks present
Presently the arches arm64, arm and sh have a function which loops
through each memblock and calls memory present.  riscv will require a
similar function.

Introduce a common memblocks_present() function that can be used by all
the arches.  Subsequent patches will cleanup the arches that make use of
this.

Link: http://lkml.kernel.org/r/20181107205433.3875-3-logang@deltatee.com
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-14 15:05:45 -08:00
Mike Rapoport
7e1c4e2792 memblock: stop using implicit alignment to SMP_CACHE_BYTES
When a memblock allocation APIs are called with align = 0, the alignment
is implicitly set to SMP_CACHE_BYTES.

Implicit alignment is done deep in the memblock allocator and it can
come as a surprise.  Not that such an alignment would be wrong even
when used incorrectly but it is better to be explicit for the sake of
clarity and the prinicple of the least surprise.

Replace all such uses of memblock APIs with the 'align' parameter
explicitly set to SMP_CACHE_BYTES and stop implicit alignment assignment
in the memblock internal allocation functions.

For the case when memblock APIs are used via helper functions, e.g.  like
iommu_arena_new_node() in Alpha, the helper functions were detected with
Coccinelle's help and then manually examined and updated where
appropriate.

The direct memblock APIs users were updated using the semantic patch below:

@@
expression size, min_addr, max_addr, nid;
@@
(
|
- memblock_alloc_try_nid_raw(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid_raw(size, SMP_CACHE_BYTES, min_addr, max_addr,
nid)
|
- memblock_alloc_try_nid_nopanic(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid_nopanic(size, SMP_CACHE_BYTES, min_addr, max_addr,
nid)
|
- memblock_alloc_try_nid(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid(size, SMP_CACHE_BYTES, min_addr, max_addr, nid)
|
- memblock_alloc(size, 0)
+ memblock_alloc(size, SMP_CACHE_BYTES)
|
- memblock_alloc_raw(size, 0)
+ memblock_alloc_raw(size, SMP_CACHE_BYTES)
|
- memblock_alloc_from(size, 0, min_addr)
+ memblock_alloc_from(size, SMP_CACHE_BYTES, min_addr)
|
- memblock_alloc_nopanic(size, 0)
+ memblock_alloc_nopanic(size, SMP_CACHE_BYTES)
|
- memblock_alloc_low(size, 0)
+ memblock_alloc_low(size, SMP_CACHE_BYTES)
|
- memblock_alloc_low_nopanic(size, 0)
+ memblock_alloc_low_nopanic(size, SMP_CACHE_BYTES)
|
- memblock_alloc_from_nopanic(size, 0, min_addr)
+ memblock_alloc_from_nopanic(size, SMP_CACHE_BYTES, min_addr)
|
- memblock_alloc_node(size, 0, nid)
+ memblock_alloc_node(size, SMP_CACHE_BYTES, nid)
)

[mhocko@suse.com: changelog update]
[akpm@linux-foundation.org: coding-style fixes]
[rppt@linux.ibm.com: fix missed uses of implicit alignment]
  Link: http://lkml.kernel.org/r/20181016133656.GA10925@rapoport-lnx
Link: http://lkml.kernel.org/r/1538687224-17535-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Paul Burton <paul.burton@mips.com>	[MIPS]
Acked-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Mike Rapoport
57c8a661d9 mm: remove include/linux/bootmem.h
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.

The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>

@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>

[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
  Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Mike Rapoport
97ad1087ef memblock: replace BOOTMEM_ALLOC_* with MEMBLOCK variants
Drop BOOTMEM_ALLOC_ACCESSIBLE and BOOTMEM_ALLOC_ANYWHERE in favor of
identical MEMBLOCK definitions.

Link: http://lkml.kernel.org/r/1536927045-23536-29-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Mike Rapoport
3913c8f9f9 memblock: add align parameter to memblock_alloc_node()
With the align parameter memblock_alloc_node() can be used as drop in
replacement for alloc_bootmem_pages_node() and __alloc_bootmem_node(),
which is done in the following patches.

Link: http://lkml.kernel.org/r/1536927045-23536-15-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:15 -07:00
Mike Rapoport
eb31d559f1 memblock: remove _virt from APIs returning virtual address
The conversion is done using

sed -i 's@memblock_virt_alloc@memblock_alloc@g' \
	$(git grep -l memblock_virt_alloc)

Link: http://lkml.kernel.org/r/1536927045-23536-8-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:15 -07:00
Alexander Duyck
f682a97a00 mm: provide kernel parameter to allow disabling page init poisoning
Patch series "Address issues slowing persistent memory initialization", v5.

The main thing this patch set achieves is that it allows us to initialize
each node worth of persistent memory independently.  As a result we reduce
page init time by about 2 minutes because instead of taking 30 to 40
seconds per node and going through each node one at a time, we process all
4 nodes in parallel in the case of a 12TB persistent memory setup spread
evenly over 4 nodes.

This patch (of 3):

On systems with a large amount of memory it can take a significant amount
of time to initialize all of the page structs with the PAGE_POISON_PATTERN
value.  I have seen it take over 2 minutes to initialize a system with
over 12TB of RAM.

In order to work around the issue I had to disable CONFIG_DEBUG_VM and
then the boot time returned to something much more reasonable as the
arch_add_memory call completed in milliseconds versus seconds.  However in
doing that I had to disable all of the other VM debugging on the system.

In order to work around a kernel that might have CONFIG_DEBUG_VM enabled
on a system that has a large amount of memory I have added a new kernel
parameter named "vm_debug" that can be set to "-" in order to disable it.

Link: http://lkml.kernel.org/r/20180925201921.3576.84239.stgit@localhost.localdomain
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:34 -07:00
Pavel Tatashin
2a3cb8baef mm/sparse: delete old sparse_init and enable new one
Rename new_sparse_init() to sparse_init() which enables it.  Delete old
sparse_init() and all the code that became obsolete with.

[pasha.tatashin@oracle.com: remove unused sparse_mem_maps_populate_node()]
  Link: http://lkml.kernel.org/r/20180716174447.14529-6-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180712203730.8703-6-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
Tested-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:32 -07:00
Pavel Tatashin
85c77f7913 mm/sparse: add new sparse_init_nid() and sparse_init()
sparse_init() requires to temporary allocate two large buffers: usemap_map
and map_map.  Baoquan He has identified that these buffers are so large
that Linux is not bootable on small memory machines, such as a kdump boot.
The buffers are especially large when CONFIG_X86_5LEVEL is set, as they
are scaled to the maximum physical memory size.

Baoquan provided a fix, which reduces these sizes of these buffers, but it
is much better to get rid of them entirely.

Add a new way to initialize sparse memory: sparse_init_nid(), which only
operates within one memory node, and thus allocates memory either in large
contiguous block or allocates section by section.  This eliminates the
need for use of temporary buffers.

For simplified bisecting and review temporarly call sparse_init()
new_sparse_init(), the new interface is going to be enabled as well as old
code removed in the next patch.

Link: http://lkml.kernel.org/r/20180712203730.8703-5-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:32 -07:00
Pavel Tatashin
afda57bc13 mm/sparse: move buffer init/fini to the common place
Now that both variants of sparse memory use the same buffers to populate
memory map, we can move sparse_buffer_init()/sparse_buffer_fini() to the
common place.

Link: http://lkml.kernel.org/r/20180712203730.8703-4-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
Tested-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:32 -07:00
Pavel Tatashin
e131c06b14 mm/sparse: use the new sparse buffer functions in non-vmemmap
non-vmemmap sparse also allocated large contiguous chunk of memory, and if
fails falls back to smaller allocations.  Use the same functions to
allocate buffer as the vmemmap-sparse

Link: http://lkml.kernel.org/r/20180712203730.8703-3-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:32 -07:00
Pavel Tatashin
35fd1eb1e8 mm/sparse: abstract sparse buffer allocations
Patch series "sparse_init rewrite", v6.

In sparse_init() we allocate two large buffers to temporary hold usemap
and memmap for the whole machine.  However, we can avoid doing that if
we changed sparse_init() to operated on per-node bases instead of doing
it on the whole machine beforehand.

As shown by Baoquan
  http://lkml.kernel.org/r/20180628062857.29658-1-bhe@redhat.com

The buffers are large enough to cause machine stop to boot on small
memory systems.

Another benefit of these changes is that they also obsolete
CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER.

This patch (of 5):

When struct pages are allocated for sparse-vmemmap VA layout, we first try
to allocate one large buffer, and than if that fails allocate struct pages
for each section as we go.

The code that allocates buffer is uses global variables and is spread
across several call sites.

Cleanup the code by introducing three functions to handle the global
buffer:

sparse_buffer_init()	initialize the buffer
sparse_buffer_fini()	free the remaining part of the buffer
sparse_buffer_alloc()	alloc from the buffer, and if buffer is empty
return NULL

Define these functions in sparse.c instead of sparse-vmemmap.c because
later we will use them for non-vmemmap sparse allocations as well.

[akpm@linux-foundation.org: use PTR_ALIGN()]
[akpm@linux-foundation.org: s/BUG_ON/WARN_ON/]
Link: http://lkml.kernel.org/r/20180712203730.8703-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:32 -07:00
Baoquan He
c98aff6493 mm/sparse: optimize memmap allocation during sparse_init()
In sparse_init(), two temporary pointer arrays, usemap_map and map_map
are allocated with the size of NR_MEM_SECTIONS.  They are used to store
each memory section's usemap and mem map if marked as present.  With the
help of these two arrays, continuous memory chunk is allocated for
usemap and memmap for memory sections on one node.  This avoids too many
memory fragmentations.  Like below diagram, '1' indicates the present
memory section, '0' means absent one.  The number 'n' could be much
smaller than NR_MEM_SECTIONS on most of systems.

  |1|1|1|1|0|0|0|0|1|1|0|0|...|1|0||1|0|...|1||0|1|...|0|
  -------------------------------------------------------
   0 1 2 3         4 5         i   i+1     n-1   n

If we fail to populate the page tables to map one section's memmap, its
->section_mem_map will be cleared finally to indicate that it's not
present.  After use, these two arrays will be released at the end of
sparse_init().

In 4-level paging mode, each array costs 4M which can be ignorable.
While in 5-level paging, they costs 256M each, 512M altogether.  Kdump
kernel Usually only reserves very few memory, e.g 256M.  So, even thouth
they are temporarily allocated, still not acceptable.

In fact, there's no need to allocate them with the size of
NR_MEM_SECTIONS.  Since the ->section_mem_map clearing has been deferred
to the last, the number of present memory sections are kept the same
during sparse_init() until we finally clear out the memory section's
->section_mem_map if its usemap or memmap is not correctly handled.
Thus in the middle whenever for_each_present_section_nr() loop is taken,
the i-th present memory section is always the same one.

Here only allocate usemap_map and map_map with the size of
'nr_present_sections'.  For the i-th present memory section, install its
usemap and memmap to usemap_map[i] and mam_map[i] during allocation.
Then in the last for_each_present_section_nr() loop which clears the
failed memory section's ->section_mem_map, fetch usemap and memmap from
usemap_map[] and map_map[] array and set them into mem_section[]
accordingly.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20180628062857.29658-5-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oscar Salvador <osalvador@techadventures.net>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Baoquan He
9258631b33 mm/sparse.c: add a new parameter 'data_unit_size' for alloc_usemap_and_memmap
It's used to pass the size of map data unit into
alloc_usemap_and_memmap, and is preparation for next patch.

Link: http://lkml.kernel.org/r/20180228032657.32385-4-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Baoquan He
07a34a8c36 mm/sparsemem.c: defer the ms->section_mem_map clearing
In sparse_init(), if CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER=y, system
will allocate one continuous memory chunk for mem maps on one node and
populate the relevant page tables to map memory section one by one.  If
fail to populate for a certain mem section, print warning and its
->section_mem_map will be cleared to cancel the marking of being
present.  Like this, the number of mem sections marked as present could
become less during sparse_init() execution.

Here just defer the ms->section_mem_map clearing if failed to populate
its page tables until the last for_each_present_section_nr() loop.  This
is in preparation for later optimizing the mem map allocation.

[akpm@linux-foundation.org: remove now-unused local `ms', per Oscar]
Link: http://lkml.kernel.org/r/20180228032657.32385-3-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Baoquan He
f2fc10e0b3 mm/sparse.c: add a static variable nr_present_sections
Patch series "mm/sparse: Optimize memmap allocation during
sparse_init()", v6.

In sparse_init(), two temporary pointer arrays, usemap_map and map_map
are allocated with the size of NR_MEM_SECTIONS.  They are used to store
each memory section's usemap and mem map if marked as present.  In
5-level paging mode, this will cost 512M memory though they will be
released at the end of sparse_init().  System with few memory, like
kdump kernel which usually only has about 256M, will fail to boot
because of allocation failure if CONFIG_X86_5LEVEL=y.

In this patchset, optimize the memmap allocation code to only use
usemap_map and map_map with the size of nr_present_sections.  This makes
kdump kernel boot up with normal crashkernel='' setting when
CONFIG_X86_5LEVEL=y.

This patch (of 5):

nr_present_sections is used to record how many memory sections are
marked as present during system boot up, and will be used in the later
patch.

Link: http://lkml.kernel.org/r/20180228032657.32385-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Oscar Salvador
4e40987f12 mm/sparse.c: make sparse_init_one_section void and remove check
sparse_init_one_section() is being called from two sites: sparse_init()
and sparse_add_one_section().  The former calls it from a
for_each_present_section_nr() loop, and the latter marks the section as
present before calling it.  This means that when
sparse_init_one_section() gets called, we already know that the section
is present.  So there is no point to double check that in the function.

This removes the check and makes the function void.

[ross.zwisler@linux.intel.com: fix error path in sparse_add_one_section]
  Link: http://lkml.kernel.org/r/20180706190658.6873-1-ross.zwisler@linux.intel.com
[ross.zwisler@linux.intel.com: simplification suggested by Oscar]
  Link: http://lkml.kernel.org/r/20180706223358.742-1-ross.zwisler@linux.intel.com
Link: http://lkml.kernel.org/r/20180702154325.12196-1-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Wei Yang
08994b2467 mm/sparse.c: pass the __highest_present_section_nr + 1 to alloc_func()
In commit c4e1be9ec1 ("mm, sparsemem: break out of loops early")
__highest_present_section_nr is introduced to reduce the loop counts for
present section.  This is also helpful for usemap and memmap allocation.

This patch uses __highest_present_section_nr + 1 to optimize the loop.

Link: http://lkml.kernel.org/r/20180326081956.75275-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:35 -07:00
Wei Yang
d538c164fc mm/sparse.c: check __highest_present_section_nr only for a present section
When searching a present section, there are two boundaries:

    * __highest_present_section_nr
    * NR_MEM_SECTIONS

And it is known, __highest_present_section_nr is a more strict boundary
than NR_MEM_SECTIONS.  This means it would be necessary to check
__highest_present_section_nr only.

Link: http://lkml.kernel.org/r/20180326081956.75275-2-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:35 -07:00
Pavel Tatashin
27227c7338 mm: sections are not offlined during memory hotremove
Memory hotplug and hotremove operate with per-block granularity.  If the
machine has a large amount of memory (more than 64G), the size of a
memory block can span multiple sections.  By mistake, during hotremove
we set only the first section to offline state.

The bug was discovered because kernel selftest started to fail:
  https://lkml.kernel.org/r/20180423011247.GK5563@yexl-desktop

After commit, "mm/memory_hotplug: optimize probe routine".  But, the bug
is older than this commit.  In this optimization we also added a check
for sections to be in a proper state during hotplug operation.

Link: http://lkml.kernel.org/r/20180427145257.15222-1-pasha.tatashin@oracle.com
Fixes: 2d070eab2e ("mm: consider zone which is not fully populated to have holes")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-11 17:28:45 -07:00
Pavel Tatashin
d0dc12e86b mm/memory_hotplug: optimize memory hotplug
During memory hotplugging we traverse struct pages three times:

1. memset(0) in sparse_add_one_section()
2. loop in __add_section() to set do: set_page_node(page, nid); and
   SetPageReserved(page);
3. loop in memmap_init_zone() to call __init_single_pfn()

This patch removes the first two loops, and leaves only loop 3.  All
struct pages are initialized in one place, the same as it is done during
boot.

The benefits:

 - We improve memory hotplug performance because we are not evicting the
   cache several times and also reduce loop branching overhead.

 - Remove condition from hotpath in __init_single_pfn(), that was added
   in order to fix the problem that was reported by Bharata in the above
   email thread, thus also improve performance during normal boot.

 - Make memory hotplug more similar to the boot memory initialization
   path because we zero and initialize struct pages only in one
   function.

 - Simplifies memory hotplug struct page initialization code, and thus
   enables future improvements, such as multi-threading the
   initialization of struct pages in order to improve hotplug
   performance even further on larger machines.

[pasha.tatashin@oracle.com: v5]
  Link: http://lkml.kernel.org/r/20180228030308.1116-7-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180215165920.8570-7-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Linus Torvalds
f5a8eb632b arch: remove obsolete architecture ports
This removes the entire architecture code for blackfin, cris, frv, m32r,
 metag, mn10300, score, and tile, including the associated device drivers.
 
 I have been working with the (former) maintainers for each one to ensure
 that my interpretation was right and the code is definitely unused in
 mainline kernels. Many had fond memories of working on the respective
 ports to start with and getting them included in upstream, but also saw
 no point in keeping the port alive without any users.
 
 In the end, it seems that while the eight architectures are extremely
 different, they all suffered the same fate: There was one company
 in charge of an SoC line, a CPU microarchitecture and a software
 ecosystem, which was more costly than licensing newer off-the-shelf
 CPU cores from a third party (typically ARM, MIPS, or RISC-V). It seems
 that all the SoC product lines are still around, but have not used the
 custom CPU architectures for several years at this point. In contrast,
 CPU instruction sets that remain popular and have actively maintained
 kernel ports tend to all be used across multiple licensees.
 
 The removal came out of a discussion that is now documented at
 https://lwn.net/Articles/748074/. Unlike the original plans, I'm not
 marking any ports as deprecated but remove them all at once after I made
 sure that they are all unused. Some architectures (notably tile, mn10300,
 and blackfin) are still being shipped in products with old kernels,
 but those products will never be updated to newer kernel releases.
 
 After this series, we still have a few architectures without mainline
 gcc support:
 
 - unicore32 and hexagon both have very outdated gcc releases, but the
   maintainers promised to work on providing something newer. At least
   in case of hexagon, this will only be llvm, not gcc.
 
 - openrisc, risc-v and nds32 are still in the process of finishing their
   support or getting it added to mainline gcc in the first place.
   They all have patched gcc-7.3 ports that work to some degree, but
   complete upstream support won't happen before gcc-8.1. Csky posted
   their first kernel patch set last week, their situation will be similar.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJawdL2AAoJEGCrR//JCVInuH0P/RJAZh1nTD+TR34ZhJq2TBoo
 PgygwDU7Z2+tQVU+EZ453Gywz9/NMRFk1RWAZqrLix4ZtyIMvC6A1qfT2yH1Y7Fb
 Qh6tccQeLe4ezq5u4S/46R/fQXu3Txr92yVwzJJUuPyU0arF9rv5MmI8e6p7L1en
 yb74kSEaCe+/eMlsEj1Cc1dgthDNXGKIURHkRsILoweysCpesjiTg4qDcL+yTibV
 FP2wjVbniKESMKS6qL71tiT5sexvLsLwMNcGiHPj94qCIQuI7DLhLdBVsL5Su6gI
 sbtgv0dsq4auRYAbQdMaH1hFvu6WptsuttIbOMnz2Yegi2z28H8uVXkbk2WVLbqG
 ZESUwutGh8MzOL2RJ4jyyQq5sfo++CRGlfKjr6ImZRv03dv0pe/W85062cK5cKNs
 cgDDJjGRorOXW7dyU6jG2gRqODOQBObIv3w5efdq5OgzOWlbI4EC+Y5u1Z0JF/76
 pSwtGXA6YhwC+9LLAlnVTHG+yOwuLmAICgoKcTbzTVDKA2YQZG/cYuQfI5S1wD8e
 X6urPx3Md2GCwLXQ9mzKBzKZUpu/Tuhx0NvwF4qVxy6x1PELjn68zuP7abDHr46r
 57/09ooVN+iXXnEGMtQVS/OPvYHSa2NgTSZz6Y86lCRbZmUOOlK31RDNlMvYNA+s
 3iIVHovno/JuJnTOE8LY
 =fQ8z
 -----END PGP SIGNATURE-----

Merge tag 'arch-removal' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic

Pul removal of obsolete architecture ports from Arnd Bergmann:
 "This removes the entire architecture code for blackfin, cris, frv,
  m32r, metag, mn10300, score, and tile, including the associated device
  drivers.

  I have been working with the (former) maintainers for each one to
  ensure that my interpretation was right and the code is definitely
  unused in mainline kernels. Many had fond memories of working on the
  respective ports to start with and getting them included in upstream,
  but also saw no point in keeping the port alive without any users.

  In the end, it seems that while the eight architectures are extremely
  different, they all suffered the same fate: There was one company in
  charge of an SoC line, a CPU microarchitecture and a software
  ecosystem, which was more costly than licensing newer off-the-shelf
  CPU cores from a third party (typically ARM, MIPS, or RISC-V). It
  seems that all the SoC product lines are still around, but have not
  used the custom CPU architectures for several years at this point. In
  contrast, CPU instruction sets that remain popular and have actively
  maintained kernel ports tend to all be used across multiple licensees.

  [ See the new nds32 port merged in the previous commit for the next
    generation of "one company in charge of an SoC line, a CPU
    microarchitecture and a software ecosystem"   - Linus ]

  The removal came out of a discussion that is now documented at
  https://lwn.net/Articles/748074/. Unlike the original plans, I'm not
  marking any ports as deprecated but remove them all at once after I
  made sure that they are all unused. Some architectures (notably tile,
  mn10300, and blackfin) are still being shipped in products with old
  kernels, but those products will never be updated to newer kernel
  releases.

  After this series, we still have a few architectures without mainline
  gcc support:

   - unicore32 and hexagon both have very outdated gcc releases, but the
     maintainers promised to work on providing something newer. At least
     in case of hexagon, this will only be llvm, not gcc.

   - openrisc, risc-v and nds32 are still in the process of finishing
     their support or getting it added to mainline gcc in the first
     place. They all have patched gcc-7.3 ports that work to some
     degree, but complete upstream support won't happen before gcc-8.1.
     Csky posted their first kernel patch set last week, their situation
     will be similar

  [ Palmer Dabbelt points out that RISC-V support is in mainline gcc
    since gcc-7, although gcc-7.3.0 is the recommended minimum  - Linus ]"

This really says it all:

 2498 files changed, 95 insertions(+), 467668 deletions(-)

* tag 'arch-removal' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (74 commits)
  MAINTAINERS: UNICORE32: Change email account
  staging: iio: remove iio-trig-bfin-timer driver
  tty: hvc: remove tile driver
  tty: remove bfin_jtag_comm and hvc_bfin_jtag drivers
  serial: remove tile uart driver
  serial: remove m32r_sio driver
  serial: remove blackfin drivers
  serial: remove cris/etrax uart drivers
  usb: Remove Blackfin references in USB support
  usb: isp1362: remove blackfin arch glue
  usb: musb: remove blackfin port
  usb: host: remove tilegx platform glue
  pwm: remove pwm-bfin driver
  i2c: remove bfin-twi driver
  spi: remove blackfin related host drivers
  watchdog: remove bfin_wdt driver
  can: remove bfin_can driver
  mmc: remove bfin_sdh driver
  input: misc: remove blackfin rotary driver
  input: keyboard: remove bf54x driver
  ...
2018-04-02 20:20:12 -07:00
David Rientjes
fc5d1073ca x86/mm/32: Remove unused node_memmap_size_bytes() & CONFIG_NEED_NODE_MEMMAP_SIZE logic
node_memmap_size_bytes() has been unused since the v3.9 kernel, so remove it.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Fixes: f03574f2d5 ("x86-32, mm: Rip out x86_32 NUMA remapping code")
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803262325540.256524@chino.kir.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-27 08:45:02 +02:00
Arnd Bergmann
79375ea3ec mm: remove obsolete alloc_remap()
Tile was the only remaining architecture to implement alloc_remap(),
and since that is being removed, there is no point in keeping this
function.

Removing all callers simplifies the mem_map handling.

Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-03-16 10:56:13 +01:00
Linus Torvalds
3ff1b28caa libnvdimm for 4.16
* Require struct page by default for filesystem DAX to remove a number of
   surprising failure cases.  This includes failures with direct I/O, gdb and
   fork(2).
 
 * Add support for the new Platform Capabilities Structure added to the NFIT in
   ACPI 6.2a.  This new table tells us whether the platform supports flushing
   of CPU and memory controller caches on unexpected power loss events.
 
 * Revamp vmem_altmap and dev_pagemap handling to clean up code and better
   support future future PCI P2P uses.
 
 * Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has become
   out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL spec, and
   instead rely on the generic ND_CMD_CALL approach used by the two other IOCTL
   families, NVDIMM_FAMILY_{HPE,MSFT}.
 
 * Enhance nfit_test so we can test some of the new things added in version 1.6
   of the DSM specification.  This includes testing firmware download and
   simulating the Last Shutdown State (LSS) status.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJaeOg0AAoJEJ/BjXdf9fLBAFoQAI/IgcgJ2h9lfEpgjBRTC44t
 2p8dxwT1Ofw3Y1aR/tI8nYRXjRtAGuP4UIeRVnb1CL/N7PagJyoMGU+6hmzg+ptY
 c7cEDvw6nZOhrFwXx/xn7R53sYG8zH+UE6+jTR/PP/G4mQJfFCg4iF9R72Y7z0n7
 aurf82Kz137NPUy6dNr4V9bmPMJWAaOci9WOj5SKddR5ZSNbjoxylTwQRvre5y4r
 7HQTScEkirABOdSf1JoXTSUXCH/RC9UFFXR03ScHstGb1HjCj3KdcicVc50Q++Ub
 qsEudhE6i44PEW1Hh4Qkg6hjHMEa8qHP+ShBuRuVaUmlghYTQn66niJAYLZilwdz
 EVjE7vR+toHA5g3YCalEmYVutUEhIDkh/xfpd7vM6ZorUGJy95a2elEJs2fHBffC
 gEhnCip7FROPcK5RDNUM8hBgnG/q5wwWPQMKY+6rKDZQx3mXssCrKp2Vlx7kBwMG
 rpblkEpYjPonbLEHxsSU8yTg9Uq55ciIWgnOToffcjZvjbihi8WUVlHcwHUMPf/o
 DWElg+4qmG0Sdd4S2NeAGwTl1Ewrf2RrtUGMjHtH4OUFs1wo6ZmfrxFzzMfoZ1Od
 ko/s65v4uwtTzECh2o+XQaNsReR5YETXxmA40N/Jpo7/7twABIoZ/ASvj/3ZBYj+
 sie+u2rTod8/gQWSfHpJ
 =MIMX
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Ross Zwisler:

 - Require struct page by default for filesystem DAX to remove a number
   of surprising failure cases. This includes failures with direct I/O,
   gdb and fork(2).

 - Add support for the new Platform Capabilities Structure added to the
   NFIT in ACPI 6.2a. This new table tells us whether the platform
   supports flushing of CPU and memory controller caches on unexpected
   power loss events.

 - Revamp vmem_altmap and dev_pagemap handling to clean up code and
   better support future future PCI P2P uses.

 - Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has
   become out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL
   spec, and instead rely on the generic ND_CMD_CALL approach used by
   the two other IOCTL families, NVDIMM_FAMILY_{HPE,MSFT}.

 - Enhance nfit_test so we can test some of the new things added in
   version 1.6 of the DSM specification. This includes testing firmware
   download and simulating the Last Shutdown State (LSS) status.

* tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (37 commits)
  libnvdimm, namespace: remove redundant initialization of 'nd_mapping'
  acpi, nfit: fix register dimm error handling
  libnvdimm, namespace: make min namespace size 4K
  tools/testing/nvdimm: force nfit_test to depend on instrumented modules
  libnvdimm/nfit_test: adding support for unit testing enable LSS status
  libnvdimm/nfit_test: add firmware download emulation
  nfit-test: Add platform cap support from ACPI 6.2a to test
  libnvdimm: expose platform persistence attribute for nd_region
  acpi: nfit: add persistent memory control flag for nd_region
  acpi: nfit: Add support for detect platform CPU cache flush on power loss
  device-dax: Fix trailing semicolon
  libnvdimm, btt: fix uninitialized err_lock
  dax: require 'struct page' by default for filesystem dax
  ext2: auto disable dax instead of failing mount
  ext4: auto disable dax instead of failing mount
  mm, dax: introduce pfn_t_special()
  mm: Fix devm_memremap_pages() collision handling
  mm: Fix memory size alignment in devm_memremap_pages_release()
  memremap: merge find_dev_pagemap into get_dev_pagemap
  memremap: change devm_memremap_pages interface to use struct dev_pagemap
  ...
2018-02-06 10:41:33 -08:00
Ross Zwisler
ee95f4059a Merge branch 'for-4.16/nfit' into libnvdimm-for-next 2018-02-03 00:26:26 -07:00
Petr Tesarik
def9b71ee6 include/linux/mmzone.h: fix explanation of lower bits in the SPARSEMEM mem_map pointer
The comment is confusing.  On the one hand, it refers to 32-bit
alignment (struct page alignment on 32-bit platforms), but this would
only guarantee that the 2 lowest bits must be zero.  On the other hand,
it claims that at least 3 bits are available, and 3 bits are actually
used.

This is not broken, because there is a stronger alignment guarantee,
just less obvious.  Let's fix the comment to make it clear how many bits
are available and why.

Although memmap arrays are allocated in various places, the resulting
pointer is encoded eventually, so I am adding a BUG_ON() here to enforce
at runtime that all expected bits are indeed available.

I have also added a BUILD_BUG_ON to check that PFN_SECTION_SHIFT is
sufficient, because this part of the calculation can be easily checked
at build time.

[ptesarik@suse.com: v2]
  Link: http://lkml.kernel.org/r/20180125100516.589ea6af@ezekiel.suse.cz
Link: http://lkml.kernel.org/r/20180119080908.3a662e6f@ezekiel.suse.cz
Signed-off-by: Petr Tesarik <ptesarik@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:39 -08:00
Christoph Hellwig
24b6d41643 mm: pass the vmem_altmap to vmemmap_free
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-01-08 11:46:23 -08:00
Christoph Hellwig
7b73d978a5 mm: pass the vmem_altmap to vmemmap_populate
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-01-08 11:46:23 -08:00
Baoquan He
d09cfbbfa0 mm/sparse.c: wrong allocation for mem_section
In commit 83e3c48729 ("mm/sparsemem: Allocate mem_section at runtime
for CONFIG_SPARSEMEM_EXTREME=y") mem_section is allocated at runtime to
save memory.

It allocates the first dimension of array with sizeof(struct mem_section).

It costs extra memory, should be sizeof(struct mem_section *).

Fix it.

Link: http://lkml.kernel.org/r/1513932498-20350-1-git-send-email-bhe@redhat.com
Fixes: 83e3c48729 ("mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y")
Signed-off-by: Baoquan He <bhe@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Atsushi Kumagai <ats-kumagai@wm.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-04 16:45:09 -08:00
Pavel Tatashin
f7f99100d8 mm: stop zeroing memory during allocation in vmemmap
vmemmap_alloc_block() will no longer zero the block, so zero memory at
its call sites for everything except struct pages.  Struct page memory
is zero'd by struct page initialization.

Replace allocators in sparse-vmemmap to use the non-zeroing version.
So, we will get the performance improvement by zeroing the memory in
parallel when struct pages are zeroed.

Add struct page zeroing as a part of initialization of other fields in
__init_single_page().

This single thread performance collected on: Intel(R) Xeon(R) CPU E7-8895
v3 @ 2.60GHz with 1T of memory (268400646 pages in 8 nodes):

                         BASE            FIX
sparse_init     11.244671836s   0.007199623s
zone_sizes_init  4.879775891s   8.355182299s
                  --------------------------
Total           16.124447727s   8.362381922s

sparse_init is where memory for struct pages is zeroed, and the zeroing
part is moved later in this patch into __init_single_page(), which is
called from zone_sizes_init().

[akpm@linux-foundation.org: make vmemmap_alloc_block_zero() private to sparse-vmemmap.c]
Link: http://lkml.kernel.org/r/20171013173214.27300-10-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:05 -08:00
Ingo Molnar
d04fdafc06 Merge branch 'x86/mm' into x86/asm, to merge branches
Most of x86/mm is already in x86/asm, so merge the rest too.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-10 08:05:30 +01:00
Kirill A. Shutemov
629a359bdb mm/sparsemem: Fix ARM64 boot crash when CONFIG_SPARSEMEM_EXTREME=y
Since commit:

  83e3c48729 ("mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y")

we allocate the mem_section array dynamically in sparse_memory_present_with_active_regions(),
but some architectures, like arm64, don't call the routine to initialize sparsemem.

Let's move the initialization into memory_present() it should cover all
architectures.

Reported-and-tested-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Fixes: 83e3c48729 ("mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y")
Link: http://lkml.kernel.org/r/20171107083337.89952-1-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-07 11:16:08 +01:00
Ingo Molnar
b3d9a13681 Merge branch 'linus' into x86/asm, to pick up fixes and resolve conflicts
Conflicts:
	arch/x86/kernel/cpu/Makefile

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-07 10:53:06 +01:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Kirill A. Shutemov
83e3c48729 mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y
Size of the mem_section[] array depends on the size of the physical address space.

In preparation for boot-time switching between paging modes on x86-64
we need to make the allocation of mem_section[] dynamic, because otherwise
we waste a lot of RAM: with CONFIG_NODE_SHIFT=10, mem_section[] size is 32kB
for 4-level paging and 2MB for 5-level paging mode.

The patch allocates the array on the first call to sparse_memory_present_with_active_regions().

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@suse.de>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170929140821.37654-2-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-20 13:07:09 +02:00
Michal Hocko
b4ccec41af mm/sparse.c: fix typo in online_mem_sections
online_mem_sections() accidentally marks online only the first section
in the given range.  This is a typo which hasn't been noticed because I
haven't tested large 2GB blocks previously.  All users of
pfn_to_online_page would get confused on the the rest of the pfn range
in the block.

All we need to fix this is to use iterator (pfn) rather than start_pfn.

Link: http://lkml.kernel.org/r/20170904112210.3401-1-mhocko@kernel.org
Fixes: 2d070eab2e ("mm: consider zone which is not fully populated to have holes")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:47 -07:00