Timestamps on regular files are the last metadata that XFS does not update
transactionally. Now that we use the delaylog mode exclusively and made
the log scode scale extremly well there is no need to bypass that code for
timestamp updates. Logging all updates allows to drop a lot of code, and
will allow for further performance improvements later on.
Note that this patch drops optimized handling of fdatasync - it will be
added back in a separate commit.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Split the log regrant case out of xfs_log_reserve into a separate function,
and merge xlog_grant_log_space and xlog_regrant_write_log_space into their
respective callers. Also replace the XFS_LOG_PERM_RESERV flag, which easily
got misused before the previous cleanups with a simple boolean parameter.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a new data structure to allow sharing code between the log grant and
regrant code.
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Stop reusing dquots from the freelist when allocating new ones directly, and
implement a shrinker that actually follows the specifications for the
interface. The shrinker implementation is still highly suboptimal at this
point, but we can gradually work on it.
This also fixes an bug in the previous lock ordering, where we would take
the hash and dqlist locks inside of the freelist lock against the normal
lock ordering. This is only solvable by introducing the dispose list,
and thus not when using direct reclaim of unused dquots for new allocations.
As a side-effect the quota upper bound and used to free ratio values in
/proc/fs/xfs/xqm are set to 0 as these values don't make any sense in the
new world order.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 04da0c8196ac0b12fb6b84f4b7a51ad2fa56d869)
Now that we use the VFS i_size field throughout XFS there is no need for the
i_new_size field any more given that the VFS i_size field gets updated
in ->write_end before unlocking the page, and thus is always uptodate when
writeback could see a page. Removing i_new_size also has the advantage that
we will never have to trim back di_size during a failed buffered write,
given that it never gets updated past i_size.
Note that currently the generic direct I/O code only updates i_size after
calling our end_io handler, which requires a small workaround to make
sure di_size actually makes it to disk. I hope to fix this properly in
the generic code.
A downside is that we lose the support for parallel non-overlapping O_DIRECT
appending writes that recently was added. I don't think keeping the complex
and fragile i_new_size infrastructure for this is a good tradeoff - if we
really care about parallel appending writers we should investigate turning
the iolock into a range lock, which would also allow for parallel
non-overlapping buffered writers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is no fundamental need to keep an in-memory inode size copy in the XFS
inode. We already have the on-disk value in the dinode, and the separate
in-memory copy that we need for regular files only in the XFS inode.
Remove the xfs_inode i_size field and change the XFS_ISIZE macro to use the
VFS inode i_size field for regular files. Switch code that was directly
accessing the i_size field in the xfs_inode to XFS_ISIZE, or in cases where
we are limited to regular files direct access of the VFS inode i_size field.
This also allows dropping some fairly complicated code in the write path
which dealt with keeping the xfs_inode i_size uptodate with the VFS i_size
that is getting updated inside ->write_end.
Note that we do not bother resetting the VFS i_size when truncating a file
that gets freed to zero as there is no point in doing so because the VFS inode
is no longer in use at this point. Just relax the assert in xfs_ifree to
only check the on-disk size instead.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
We spent a lot of effort to maintain this field, but it always equals to the
fork size divided by the constant size of an extent. The prime use of it is
to assert that the two stay in sync. Just divide the fork size by the extent
size in the few places that we actually use it and remove the overhead
of maintaining it. Also introduce a few helpers to consolidate the places
where we actually care about the value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
This wrapper isn't overly useful, not to say rather confusing.
Around the call to xfs_itruncate_extents it does:
- add tracing
- add a few asserts in debug builds
- conditionally update the inode size in two places
- log the inode
Both the tracing and the inode logging can be moved to xfs_itruncate_extents
as they are useful for the attribute fork as well - in fact the attr code
already does an equivalent xfs_trans_log_inode call just after calling
xfs_itruncate_extents. The conditional size updates are a mess, and there
was no reason to do them in two places anyway, as the first one was
conditional on the inode having extents - but without extents we
xfs_itruncate_extents would be a no-op and the placement wouldn't matter
anyway. Instead move the size assignments and the asserts that make sense
to the callers that want it.
As a side effect of this clean up xfs_setattr_size by introducing variables
for the old and new inode size, and moving the size updates into a common
place.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Do not remove dquots from the freelist when we grab a reference to them in
xfs_qm_dqlookup, but leave them on the freelist util scanning notices that
they have a reference. This speeds up the lookup fastpath, and greatly
simplifies the lock ordering constraints. Note that the same scheme is
used by the VFS inode and dentry caches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Apply the scheme used in log_regrant_write_log_space to wake up any other
threads waiting for log space before the newly added one to
log_regrant_write_log_space as well, and factor the code into readable
helpers. For each of the queues we have add two helpers:
- one to try to wake up all waiting threads. This helper will also be
usable by xfs_log_move_tail once we remove the current opportunistic
wakeups in it.
- one to sleep on t_wait until enough log space is available, loosely
modelled after Linux waitqueues.
And use them to reimplement the guts of log_regrant_write_log_space and
log_regrant_write_log_space. These two function now use one and the same
algorithm for waiting on log space instead of subtly different ones before,
with an option to completely unify them in the near future.
Also move the filesystem shutdown handling to the common caller given
that we had to touch it anyway.
Based on hard debugging and an earlier patch from
Chandra Seetharaman <sekharan@us.ibm.com>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandra Seetharaman <sekharan@us.ibm.com>
Tested-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Directories are only updated transactionally, which means fsync only
needs to flush the log the inode is currently dirty, but not bother
with checking for dirty data, non-transactional updates, and most
importanly doesn't have to flush disk caches except as part of a
transaction commit.
While the first two optimizations can't easily be measured, the
latter actually makes a difference when doing lots of fsync that do
not actually have to commit the inode, e.g. because an earlier fsync
already pushed the log far enough.
The new xfs_dir_fsync is identical to xfs_nfs_commit_metadata except
for the prototype, but I'm not sure creating a common helper for the
two is worth it given how simple the functions are.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Unify the ways we add buffers to the delwri queue by always calling
xfs_buf_delwri_queue directly. The xfs_bdwrite functions is removed and
opencoded in its callers, and the two places setting XBF_DELWRI while a
buffer is locked and expecting xfs_buf_unlock to pick it up are converted
to call xfs_buf_delwri_queue directly, too. Also replace the
XFS_BUF_UNDELAYWRITE macro with direct calls to xfs_buf_delwri_dequeue
to make the explicit queuing/dequeuing more obvious.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
Use the move from Linux 2.6 to Linux 3.x as an excuse to kill the
annoying subdirectories in the XFS source code. Besides the large
amount of file rename the only changes are to the Makefile, a few
files including headers with the subdirectory prefix, and the binary
sysctl compat code that includes a header under fs/xfs/ from
kernel/.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>