// SPDX-License-Identifier: GPL-2.0-only /* * AMD am53c974 driver. * Copyright (c) 2014 Hannes Reinecke, SUSE Linux GmbH */ #include #include #include #include #include #include #include #include "esp_scsi.h" #define DRV_MODULE_NAME "am53c974" #define DRV_MODULE_VERSION "1.00" static bool am53c974_debug; static bool am53c974_fenab = true; #define esp_dma_log(f, a...) \ do { \ if (am53c974_debug) \ shost_printk(KERN_DEBUG, esp->host, f, ##a); \ } while (0) #define ESP_DMA_CMD 0x10 #define ESP_DMA_STC 0x11 #define ESP_DMA_SPA 0x12 #define ESP_DMA_WBC 0x13 #define ESP_DMA_WAC 0x14 #define ESP_DMA_STATUS 0x15 #define ESP_DMA_SMDLA 0x16 #define ESP_DMA_WMAC 0x17 #define ESP_DMA_CMD_IDLE 0x00 #define ESP_DMA_CMD_BLAST 0x01 #define ESP_DMA_CMD_ABORT 0x02 #define ESP_DMA_CMD_START 0x03 #define ESP_DMA_CMD_MASK 0x03 #define ESP_DMA_CMD_DIAG 0x04 #define ESP_DMA_CMD_MDL 0x10 #define ESP_DMA_CMD_INTE_P 0x20 #define ESP_DMA_CMD_INTE_D 0x40 #define ESP_DMA_CMD_DIR 0x80 #define ESP_DMA_STAT_PWDN 0x01 #define ESP_DMA_STAT_ERROR 0x02 #define ESP_DMA_STAT_ABORT 0x04 #define ESP_DMA_STAT_DONE 0x08 #define ESP_DMA_STAT_SCSIINT 0x10 #define ESP_DMA_STAT_BCMPLT 0x20 /* EEPROM is accessed with 16-bit values */ #define DC390_EEPROM_READ 0x80 #define DC390_EEPROM_LEN 0x40 /* * DC390 EEPROM * * 8 * 4 bytes of per-device options * followed by HBA specific options */ /* Per-device options */ #define DC390_EE_MODE1 0x00 #define DC390_EE_SPEED 0x01 /* HBA-specific options */ #define DC390_EE_ADAPT_SCSI_ID 0x40 #define DC390_EE_MODE2 0x41 #define DC390_EE_DELAY 0x42 #define DC390_EE_TAG_CMD_NUM 0x43 #define DC390_EE_MODE1_PARITY_CHK 0x01 #define DC390_EE_MODE1_SYNC_NEGO 0x02 #define DC390_EE_MODE1_EN_DISC 0x04 #define DC390_EE_MODE1_SEND_START 0x08 #define DC390_EE_MODE1_TCQ 0x10 #define DC390_EE_MODE2_MORE_2DRV 0x01 #define DC390_EE_MODE2_GREATER_1G 0x02 #define DC390_EE_MODE2_RST_SCSI_BUS 0x04 #define DC390_EE_MODE2_ACTIVE_NEGATION 0x08 #define DC390_EE_MODE2_NO_SEEK 0x10 #define DC390_EE_MODE2_LUN_CHECK 0x20 struct pci_esp_priv { struct esp *esp; u8 dma_status; }; static void pci_esp_dma_drain(struct esp *esp); static inline struct pci_esp_priv *pci_esp_get_priv(struct esp *esp) { return dev_get_drvdata(esp->dev); } static void pci_esp_write8(struct esp *esp, u8 val, unsigned long reg) { iowrite8(val, esp->regs + (reg * 4UL)); } static u8 pci_esp_read8(struct esp *esp, unsigned long reg) { return ioread8(esp->regs + (reg * 4UL)); } static void pci_esp_write32(struct esp *esp, u32 val, unsigned long reg) { return iowrite32(val, esp->regs + (reg * 4UL)); } static int pci_esp_irq_pending(struct esp *esp) { struct pci_esp_priv *pep = pci_esp_get_priv(esp); pep->dma_status = pci_esp_read8(esp, ESP_DMA_STATUS); esp_dma_log("dma intr dreg[%02x]\n", pep->dma_status); if (pep->dma_status & (ESP_DMA_STAT_ERROR | ESP_DMA_STAT_ABORT | ESP_DMA_STAT_DONE | ESP_DMA_STAT_SCSIINT)) return 1; return 0; } static void pci_esp_reset_dma(struct esp *esp) { /* Nothing to do ? */ } static void pci_esp_dma_drain(struct esp *esp) { u8 resid; int lim = 1000; if ((esp->sreg & ESP_STAT_PMASK) == ESP_DOP || (esp->sreg & ESP_STAT_PMASK) == ESP_DIP) /* Data-In or Data-Out, nothing to be done */ return; while (--lim > 0) { resid = pci_esp_read8(esp, ESP_FFLAGS) & ESP_FF_FBYTES; if (resid <= 1) break; cpu_relax(); } /* * When there is a residual BCMPLT will never be set * (obviously). But we still have to issue the BLAST * command, otherwise the data will not being transferred. * But we'll never know when the BLAST operation is * finished. So check for some time and give up eventually. */ lim = 1000; pci_esp_write8(esp, ESP_DMA_CMD_DIR | ESP_DMA_CMD_BLAST, ESP_DMA_CMD); while (pci_esp_read8(esp, ESP_DMA_STATUS) & ESP_DMA_STAT_BCMPLT) { if (--lim == 0) break; cpu_relax(); } pci_esp_write8(esp, ESP_DMA_CMD_DIR | ESP_DMA_CMD_IDLE, ESP_DMA_CMD); esp_dma_log("DMA blast done (%d tries, %d bytes left)\n", lim, resid); /* BLAST residual handling is currently untested */ if (WARN_ON_ONCE(resid == 1)) { struct esp_cmd_entry *ent = esp->active_cmd; ent->flags |= ESP_CMD_FLAG_RESIDUAL; } } static void pci_esp_dma_invalidate(struct esp *esp) { struct pci_esp_priv *pep = pci_esp_get_priv(esp); esp_dma_log("invalidate DMA\n"); pci_esp_write8(esp, ESP_DMA_CMD_IDLE, ESP_DMA_CMD); pep->dma_status = 0; } static int pci_esp_dma_error(struct esp *esp) { struct pci_esp_priv *pep = pci_esp_get_priv(esp); if (pep->dma_status & ESP_DMA_STAT_ERROR) { u8 dma_cmd = pci_esp_read8(esp, ESP_DMA_CMD); if ((dma_cmd & ESP_DMA_CMD_MASK) == ESP_DMA_CMD_START) pci_esp_write8(esp, ESP_DMA_CMD_ABORT, ESP_DMA_CMD); return 1; } if (pep->dma_status & ESP_DMA_STAT_ABORT) { pci_esp_write8(esp, ESP_DMA_CMD_IDLE, ESP_DMA_CMD); pep->dma_status = pci_esp_read8(esp, ESP_DMA_CMD); return 1; } return 0; } static void pci_esp_send_dma_cmd(struct esp *esp, u32 addr, u32 esp_count, u32 dma_count, int write, u8 cmd) { struct pci_esp_priv *pep = pci_esp_get_priv(esp); u32 val = 0; BUG_ON(!(cmd & ESP_CMD_DMA)); pep->dma_status = 0; /* Set DMA engine to IDLE */ if (write) /* DMA write direction logic is inverted */ val |= ESP_DMA_CMD_DIR; pci_esp_write8(esp, ESP_DMA_CMD_IDLE | val, ESP_DMA_CMD); pci_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW); pci_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED); if (esp->config2 & ESP_CONFIG2_FENAB) pci_esp_write8(esp, (esp_count >> 16) & 0xff, ESP_TCHI); pci_esp_write32(esp, esp_count, ESP_DMA_STC); pci_esp_write32(esp, addr, ESP_DMA_SPA); esp_dma_log("start dma addr[%x] count[%d:%d]\n", addr, esp_count, dma_count); scsi_esp_cmd(esp, cmd); /* Send DMA Start command */ pci_esp_write8(esp, ESP_DMA_CMD_START | val, ESP_DMA_CMD); } static u32 pci_esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len) { int dma_limit = 16; u32 base, end; /* * If CONFIG2_FENAB is set we can * handle up to 24 bit addresses */ if (esp->config2 & ESP_CONFIG2_FENAB) dma_limit = 24; if (dma_len > (1U << dma_limit)) dma_len = (1U << dma_limit); /* * Prevent crossing a 24-bit address boundary. */ base = dma_addr & ((1U << 24) - 1U); end = base + dma_len; if (end > (1U << 24)) end = (1U <<24); dma_len = end - base; return dma_len; } static const struct esp_driver_ops pci_esp_ops = { .esp_write8 = pci_esp_write8, .esp_read8 = pci_esp_read8, .irq_pending = pci_esp_irq_pending, .reset_dma = pci_esp_reset_dma, .dma_drain = pci_esp_dma_drain, .dma_invalidate = pci_esp_dma_invalidate, .send_dma_cmd = pci_esp_send_dma_cmd, .dma_error = pci_esp_dma_error, .dma_length_limit = pci_esp_dma_length_limit, }; /* * Read DC-390 eeprom */ static void dc390_eeprom_prepare_read(struct pci_dev *pdev, u8 cmd) { u8 carry_flag = 1, j = 0x80, bval; int i; for (i = 0; i < 9; i++) { if (carry_flag) { pci_write_config_byte(pdev, 0x80, 0x40); bval = 0xc0; } else bval = 0x80; udelay(160); pci_write_config_byte(pdev, 0x80, bval); udelay(160); pci_write_config_byte(pdev, 0x80, 0); udelay(160); carry_flag = (cmd & j) ? 1 : 0; j >>= 1; } } static u16 dc390_eeprom_get_data(struct pci_dev *pdev) { int i; u16 wval = 0; u8 bval; for (i = 0; i < 16; i++) { wval <<= 1; pci_write_config_byte(pdev, 0x80, 0x80); udelay(160); pci_write_config_byte(pdev, 0x80, 0x40); udelay(160); pci_read_config_byte(pdev, 0x00, &bval); if (bval == 0x22) wval |= 1; } return wval; } static void dc390_read_eeprom(struct pci_dev *pdev, u16 *ptr) { u8 cmd = DC390_EEPROM_READ, i; for (i = 0; i < DC390_EEPROM_LEN; i++) { pci_write_config_byte(pdev, 0xc0, 0); udelay(160); dc390_eeprom_prepare_read(pdev, cmd++); *ptr++ = dc390_eeprom_get_data(pdev); pci_write_config_byte(pdev, 0x80, 0); pci_write_config_byte(pdev, 0x80, 0); udelay(160); } } static void dc390_check_eeprom(struct esp *esp) { struct pci_dev *pdev = to_pci_dev(esp->dev); u8 EEbuf[128]; u16 *ptr = (u16 *)EEbuf, wval = 0; int i; dc390_read_eeprom(pdev, ptr); for (i = 0; i < DC390_EEPROM_LEN; i++, ptr++) wval += *ptr; /* no Tekram EEprom found */ if (wval != 0x1234) { dev_printk(KERN_INFO, &pdev->dev, "No valid Tekram EEprom found\n"); return; } esp->scsi_id = EEbuf[DC390_EE_ADAPT_SCSI_ID]; esp->num_tags = 2 << EEbuf[DC390_EE_TAG_CMD_NUM]; if (EEbuf[DC390_EE_MODE2] & DC390_EE_MODE2_ACTIVE_NEGATION) esp->config4 |= ESP_CONFIG4_RADE | ESP_CONFIG4_RAE; } static int pci_esp_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) { const struct scsi_host_template *hostt = &scsi_esp_template; int err = -ENODEV; struct Scsi_Host *shost; struct esp *esp; struct pci_esp_priv *pep; if (pci_enable_device(pdev)) { dev_printk(KERN_INFO, &pdev->dev, "cannot enable device\n"); return -ENODEV; } if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { dev_printk(KERN_INFO, &pdev->dev, "failed to set 32bit DMA mask\n"); goto fail_disable_device; } shost = scsi_host_alloc(hostt, sizeof(struct esp)); if (!shost) { dev_printk(KERN_INFO, &pdev->dev, "failed to allocate scsi host\n"); err = -ENOMEM; goto fail_disable_device; } pep = kzalloc(sizeof(struct pci_esp_priv), GFP_KERNEL); if (!pep) { dev_printk(KERN_INFO, &pdev->dev, "failed to allocate esp_priv\n"); err = -ENOMEM; goto fail_host_alloc; } esp = shost_priv(shost); esp->host = shost; esp->dev = &pdev->dev; esp->ops = &pci_esp_ops; /* * The am53c974 HBA has a design flaw of generating * spurious DMA completion interrupts when using * DMA for command submission. */ esp->flags |= ESP_FLAG_USE_FIFO; /* * Enable CONFIG2_FENAB to allow for large DMA transfers */ if (am53c974_fenab) esp->config2 |= ESP_CONFIG2_FENAB; pep->esp = esp; if (pci_request_regions(pdev, DRV_MODULE_NAME)) { dev_printk(KERN_ERR, &pdev->dev, "pci memory selection failed\n"); goto fail_priv_alloc; } esp->regs = pci_iomap(pdev, 0, pci_resource_len(pdev, 0)); if (!esp->regs) { dev_printk(KERN_ERR, &pdev->dev, "pci I/O map failed\n"); err = -EINVAL; goto fail_release_regions; } esp->dma_regs = esp->regs; pci_set_master(pdev); esp->command_block = dma_alloc_coherent(&pdev->dev, 16, &esp->command_block_dma, GFP_KERNEL); if (!esp->command_block) { dev_printk(KERN_ERR, &pdev->dev, "failed to allocate command block\n"); err = -ENOMEM; goto fail_unmap_regs; } pci_set_drvdata(pdev, pep); err = request_irq(pdev->irq, scsi_esp_intr, IRQF_SHARED, DRV_MODULE_NAME, esp); if (err < 0) { dev_printk(KERN_ERR, &pdev->dev, "failed to register IRQ\n"); goto fail_unmap_command_block; } esp->scsi_id = 7; dc390_check_eeprom(esp); shost->this_id = esp->scsi_id; shost->max_id = 8; shost->irq = pdev->irq; shost->io_port = pci_resource_start(pdev, 0); shost->n_io_port = pci_resource_len(pdev, 0); shost->unique_id = shost->io_port; esp->scsi_id_mask = (1 << esp->scsi_id); /* Assume 40MHz clock */ esp->cfreq = 40000000; err = scsi_esp_register(esp); if (err) goto fail_free_irq; return 0; fail_free_irq: free_irq(pdev->irq, esp); fail_unmap_command_block: pci_set_drvdata(pdev, NULL); dma_free_coherent(&pdev->dev, 16, esp->command_block, esp->command_block_dma); fail_unmap_regs: pci_iounmap(pdev, esp->regs); fail_release_regions: pci_release_regions(pdev); fail_priv_alloc: kfree(pep); fail_host_alloc: scsi_host_put(shost); fail_disable_device: pci_disable_device(pdev); return err; } static void pci_esp_remove_one(struct pci_dev *pdev) { struct pci_esp_priv *pep = pci_get_drvdata(pdev); struct esp *esp = pep->esp; scsi_esp_unregister(esp); free_irq(pdev->irq, esp); pci_set_drvdata(pdev, NULL); dma_free_coherent(&pdev->dev, 16, esp->command_block, esp->command_block_dma); pci_iounmap(pdev, esp->regs); pci_release_regions(pdev); pci_disable_device(pdev); kfree(pep); scsi_host_put(esp->host); } static const struct pci_device_id am53c974_pci_tbl[] = { { PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_SCSI, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { } }; MODULE_DEVICE_TABLE(pci, am53c974_pci_tbl); static struct pci_driver am53c974_driver = { .name = DRV_MODULE_NAME, .id_table = am53c974_pci_tbl, .probe = pci_esp_probe_one, .remove = pci_esp_remove_one, }; module_pci_driver(am53c974_driver); MODULE_DESCRIPTION("AM53C974 SCSI driver"); MODULE_AUTHOR("Hannes Reinecke "); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); MODULE_ALIAS("tmscsim"); module_param(am53c974_debug, bool, 0644); MODULE_PARM_DESC(am53c974_debug, "Enable debugging"); module_param(am53c974_fenab, bool, 0444); MODULE_PARM_DESC(am53c974_fenab, "Enable 24-bit DMA transfer sizes");