// SPDX-License-Identifier: GPL-2.0 /* * Thunderbolt driver - bus logic (NHI independent) * * Copyright (c) 2014 Andreas Noever * Copyright (C) 2019, Intel Corporation */ #include #include #include #include #include #include "tb.h" #include "tb_regs.h" #include "tunnel.h" #define TB_TIMEOUT 100 /* ms */ #define TB_RELEASE_BW_TIMEOUT 10000 /* ms */ /* * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver * direction. This is 40G - 10% guard band bandwidth. */ #define TB_ASYM_MIN (40000 * 90 / 100) /* * Threshold bandwidth (in Mb/s) that is used to switch the links to * asymmetric and back. This is selected as 45G which means when the * request is higher than this, we switch the link to asymmetric, and * when it is less than this we switch it back. The 45G is selected so * that we still have 27G (of the total 72G) for bulk PCIe traffic when * switching back to symmetric. */ #define TB_ASYM_THRESHOLD 45000 #define MAX_GROUPS 7 /* max Group_ID is 7 */ static unsigned int asym_threshold = TB_ASYM_THRESHOLD; module_param_named(asym_threshold, asym_threshold, uint, 0444); MODULE_PARM_DESC(asym_threshold, "threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: " __MODULE_STRING(TB_ASYM_THRESHOLD) ")"); /** * struct tb_cm - Simple Thunderbolt connection manager * @tunnel_list: List of active tunnels * @dp_resources: List of available DP resources for DP tunneling * @hotplug_active: tb_handle_hotplug will stop progressing plug * events and exit if this is not set (it needs to * acquire the lock one more time). Used to drain wq * after cfg has been paused. * @remove_work: Work used to remove any unplugged routers after * runtime resume * @groups: Bandwidth groups used in this domain. */ struct tb_cm { struct list_head tunnel_list; struct list_head dp_resources; bool hotplug_active; struct delayed_work remove_work; struct tb_bandwidth_group groups[MAX_GROUPS]; }; static inline struct tb *tcm_to_tb(struct tb_cm *tcm) { return ((void *)tcm - sizeof(struct tb)); } struct tb_hotplug_event { struct work_struct work; struct tb *tb; u64 route; u8 port; bool unplug; }; static void tb_handle_hotplug(struct work_struct *work); static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug) { struct tb_hotplug_event *ev; ev = kmalloc(sizeof(*ev), GFP_KERNEL); if (!ev) return; ev->tb = tb; ev->route = route; ev->port = port; ev->unplug = unplug; INIT_WORK(&ev->work, tb_handle_hotplug); queue_work(tb->wq, &ev->work); } /* enumeration & hot plug handling */ static void tb_add_dp_resources(struct tb_switch *sw) { struct tb_cm *tcm = tb_priv(sw->tb); struct tb_port *port; tb_switch_for_each_port(sw, port) { if (!tb_port_is_dpin(port)) continue; if (!tb_switch_query_dp_resource(sw, port)) continue; /* * If DP IN on device router exist, position it at the * beginning of the DP resources list, so that it is used * before DP IN of the host router. This way external GPU(s) * will be prioritized when pairing DP IN to a DP OUT. */ if (tb_route(sw)) list_add(&port->list, &tcm->dp_resources); else list_add_tail(&port->list, &tcm->dp_resources); tb_port_dbg(port, "DP IN resource available\n"); } } static void tb_remove_dp_resources(struct tb_switch *sw) { struct tb_cm *tcm = tb_priv(sw->tb); struct tb_port *port, *tmp; /* Clear children resources first */ tb_switch_for_each_port(sw, port) { if (tb_port_has_remote(port)) tb_remove_dp_resources(port->remote->sw); } list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) { if (port->sw == sw) { tb_port_dbg(port, "DP OUT resource unavailable\n"); list_del_init(&port->list); } } } static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port) { struct tb_cm *tcm = tb_priv(tb); struct tb_port *p; list_for_each_entry(p, &tcm->dp_resources, list) { if (p == port) return; } tb_port_dbg(port, "DP %s resource available discovered\n", tb_port_is_dpin(port) ? "IN" : "OUT"); list_add_tail(&port->list, &tcm->dp_resources); } static void tb_discover_dp_resources(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); struct tb_tunnel *tunnel; list_for_each_entry(tunnel, &tcm->tunnel_list, list) { if (tb_tunnel_is_dp(tunnel)) tb_discover_dp_resource(tb, tunnel->dst_port); } } /* Enables CL states up to host router */ static int tb_enable_clx(struct tb_switch *sw) { struct tb_cm *tcm = tb_priv(sw->tb); unsigned int clx = TB_CL0S | TB_CL1; const struct tb_tunnel *tunnel; int ret; /* * Currently only enable CLx for the first link. This is enough * to allow the CPU to save energy at least on Intel hardware * and makes it slightly simpler to implement. We may change * this in the future to cover the whole topology if it turns * out to be beneficial. */ while (sw && tb_switch_depth(sw) > 1) sw = tb_switch_parent(sw); if (!sw) return 0; if (tb_switch_depth(sw) != 1) return 0; /* * If we are re-enabling then check if there is an active DMA * tunnel and in that case bail out. */ list_for_each_entry(tunnel, &tcm->tunnel_list, list) { if (tb_tunnel_is_dma(tunnel)) { if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw))) return 0; } } /* * Initially try with CL2. If that's not supported by the * topology try with CL0s and CL1 and then give up. */ ret = tb_switch_clx_enable(sw, clx | TB_CL2); if (ret == -EOPNOTSUPP) ret = tb_switch_clx_enable(sw, clx); return ret == -EOPNOTSUPP ? 0 : ret; } /** * tb_disable_clx() - Disable CL states up to host router * @sw: Router to start * * Disables CL states from @sw up to the host router. Returns true if * any CL state were disabled. This can be used to figure out whether * the link was setup by us or the boot firmware so we don't * accidentally enable them if they were not enabled during discovery. */ static bool tb_disable_clx(struct tb_switch *sw) { bool disabled = false; do { int ret; ret = tb_switch_clx_disable(sw); if (ret > 0) disabled = true; else if (ret < 0) tb_sw_warn(sw, "failed to disable CL states\n"); sw = tb_switch_parent(sw); } while (sw); return disabled; } static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data) { struct tb_switch *sw; sw = tb_to_switch(dev); if (!sw) return 0; if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) { enum tb_switch_tmu_mode mode; int ret; if (tb_switch_clx_is_enabled(sw, TB_CL1)) mode = TB_SWITCH_TMU_MODE_HIFI_UNI; else mode = TB_SWITCH_TMU_MODE_HIFI_BI; ret = tb_switch_tmu_configure(sw, mode); if (ret) return ret; return tb_switch_tmu_enable(sw); } return 0; } static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel) { struct tb_switch *sw; if (!tunnel) return; /* * Once first DP tunnel is established we change the TMU * accuracy of first depth child routers (and the host router) * to the highest. This is needed for the DP tunneling to work * but also allows CL0s. * * If both routers are v2 then we don't need to do anything as * they are using enhanced TMU mode that allows all CLx. */ sw = tunnel->tb->root_switch; device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy); } static int tb_switch_tmu_hifi_uni_required(struct device *dev, void *not_used) { struct tb_switch *sw = tb_to_switch(dev); if (sw && tb_switch_tmu_is_enabled(sw) && tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_HIFI_UNI)) return 1; return device_for_each_child(dev, NULL, tb_switch_tmu_hifi_uni_required); } static bool tb_tmu_hifi_uni_required(struct tb *tb) { return device_for_each_child(&tb->dev, NULL, tb_switch_tmu_hifi_uni_required) == 1; } static int tb_enable_tmu(struct tb_switch *sw) { int ret; /* * If both routers at the end of the link are v2 we simply * enable the enhanched uni-directional mode. That covers all * the CL states. For v1 and before we need to use the normal * rate to allow CL1 (when supported). Otherwise we keep the TMU * running at the highest accuracy. */ ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI); if (ret == -EOPNOTSUPP) { if (tb_switch_clx_is_enabled(sw, TB_CL1)) { /* * Figure out uni-directional HiFi TMU requirements * currently in the domain. If there are no * uni-directional HiFi requirements we can put the TMU * into LowRes mode. * * Deliberately skip bi-directional HiFi links * as these work independently of other links * (and they do not allow any CL states anyway). */ if (tb_tmu_hifi_uni_required(sw->tb)) ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_UNI); else ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_LOWRES); } else { ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI); } /* If not supported, fallback to bi-directional HiFi */ if (ret == -EOPNOTSUPP) ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI); } if (ret) return ret; /* If it is already enabled in correct mode, don't touch it */ if (tb_switch_tmu_is_enabled(sw)) return 0; ret = tb_switch_tmu_disable(sw); if (ret) return ret; ret = tb_switch_tmu_post_time(sw); if (ret) return ret; return tb_switch_tmu_enable(sw); } static void tb_switch_discover_tunnels(struct tb_switch *sw, struct list_head *list, bool alloc_hopids) { struct tb *tb = sw->tb; struct tb_port *port; tb_switch_for_each_port(sw, port) { struct tb_tunnel *tunnel = NULL; switch (port->config.type) { case TB_TYPE_DP_HDMI_IN: tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids); tb_increase_tmu_accuracy(tunnel); break; case TB_TYPE_PCIE_DOWN: tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids); break; case TB_TYPE_USB3_DOWN: tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids); break; default: break; } if (tunnel) list_add_tail(&tunnel->list, list); } tb_switch_for_each_port(sw, port) { if (tb_port_has_remote(port)) { tb_switch_discover_tunnels(port->remote->sw, list, alloc_hopids); } } } static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd) { if (tb_switch_is_usb4(port->sw)) return usb4_port_configure_xdomain(port, xd); return tb_lc_configure_xdomain(port); } static void tb_port_unconfigure_xdomain(struct tb_port *port) { if (tb_switch_is_usb4(port->sw)) usb4_port_unconfigure_xdomain(port); else tb_lc_unconfigure_xdomain(port); } static void tb_scan_xdomain(struct tb_port *port) { struct tb_switch *sw = port->sw; struct tb *tb = sw->tb; struct tb_xdomain *xd; u64 route; if (!tb_is_xdomain_enabled()) return; route = tb_downstream_route(port); xd = tb_xdomain_find_by_route(tb, route); if (xd) { tb_xdomain_put(xd); return; } xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid, NULL); if (xd) { tb_port_at(route, sw)->xdomain = xd; tb_port_configure_xdomain(port, xd); tb_xdomain_add(xd); } } /** * tb_find_unused_port() - return the first inactive port on @sw * @sw: Switch to find the port on * @type: Port type to look for */ static struct tb_port *tb_find_unused_port(struct tb_switch *sw, enum tb_port_type type) { struct tb_port *port; tb_switch_for_each_port(sw, port) { if (tb_is_upstream_port(port)) continue; if (port->config.type != type) continue; if (!port->cap_adap) continue; if (tb_port_is_enabled(port)) continue; return port; } return NULL; } static struct tb_port *tb_find_usb3_down(struct tb_switch *sw, const struct tb_port *port) { struct tb_port *down; down = usb4_switch_map_usb3_down(sw, port); if (down && !tb_usb3_port_is_enabled(down)) return down; return NULL; } static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type, struct tb_port *src_port, struct tb_port *dst_port) { struct tb_cm *tcm = tb_priv(tb); struct tb_tunnel *tunnel; list_for_each_entry(tunnel, &tcm->tunnel_list, list) { if (tunnel->type == type && ((src_port && src_port == tunnel->src_port) || (dst_port && dst_port == tunnel->dst_port))) { return tunnel; } } return NULL; } static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb, struct tb_port *src_port, struct tb_port *dst_port) { struct tb_port *port, *usb3_down; struct tb_switch *sw; /* Pick the router that is deepest in the topology */ if (tb_port_path_direction_downstream(src_port, dst_port)) sw = dst_port->sw; else sw = src_port->sw; /* Can't be the host router */ if (sw == tb->root_switch) return NULL; /* Find the downstream USB4 port that leads to this router */ port = tb_port_at(tb_route(sw), tb->root_switch); /* Find the corresponding host router USB3 downstream port */ usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port); if (!usb3_down) return NULL; return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL); } /** * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link * @tb: Domain structure * @src_port: Source protocol adapter * @dst_port: Destination protocol adapter * @port: USB4 port the consumed bandwidth is calculated * @consumed_up: Consumed upsream bandwidth (Mb/s) * @consumed_down: Consumed downstream bandwidth (Mb/s) * * Calculates consumed USB3 and PCIe bandwidth at @port between path * from @src_port to @dst_port. Does not take USB3 tunnel starting from * @src_port and ending on @src_port into account because that bandwidth is * already included in as part of the "first hop" USB3 tunnel. */ static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb, struct tb_port *src_port, struct tb_port *dst_port, struct tb_port *port, int *consumed_up, int *consumed_down) { int pci_consumed_up, pci_consumed_down; struct tb_tunnel *tunnel; *consumed_up = *consumed_down = 0; tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); if (tunnel && !tb_port_is_usb3_down(src_port) && !tb_port_is_usb3_up(dst_port)) { int ret; ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up, consumed_down); if (ret) return ret; } /* * If there is anything reserved for PCIe bulk traffic take it * into account here too. */ if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) { *consumed_up += pci_consumed_up; *consumed_down += pci_consumed_down; } return 0; } /** * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link * @tb: Domain structure * @src_port: Source protocol adapter * @dst_port: Destination protocol adapter * @port: USB4 port the consumed bandwidth is calculated * @consumed_up: Consumed upsream bandwidth (Mb/s) * @consumed_down: Consumed downstream bandwidth (Mb/s) * * Calculates consumed DP bandwidth at @port between path from @src_port * to @dst_port. Does not take tunnel starting from @src_port and ending * from @src_port into account. * * If there is bandwidth reserved for any of the groups between * @src_port and @dst_port (but not yet used) that is also taken into * account in the returned consumed bandwidth. */ static int tb_consumed_dp_bandwidth(struct tb *tb, struct tb_port *src_port, struct tb_port *dst_port, struct tb_port *port, int *consumed_up, int *consumed_down) { int group_reserved[MAX_GROUPS] = {}; struct tb_cm *tcm = tb_priv(tb); struct tb_tunnel *tunnel; bool downstream; int i, ret; *consumed_up = *consumed_down = 0; /* * Find all DP tunnels that cross the port and reduce * their consumed bandwidth from the available. */ list_for_each_entry(tunnel, &tcm->tunnel_list, list) { const struct tb_bandwidth_group *group; int dp_consumed_up, dp_consumed_down; if (tb_tunnel_is_invalid(tunnel)) continue; if (!tb_tunnel_is_dp(tunnel)) continue; if (!tb_tunnel_port_on_path(tunnel, port)) continue; /* * Calculate what is reserved for groups crossing the * same ports only once (as that is reserved for all the * tunnels in the group). */ group = tunnel->src_port->group; if (group && group->reserved && !group_reserved[group->index]) group_reserved[group->index] = group->reserved; /* * Ignore the DP tunnel between src_port and dst_port * because it is the same tunnel and we may be * re-calculating estimated bandwidth. */ if (tunnel->src_port == src_port && tunnel->dst_port == dst_port) continue; ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up, &dp_consumed_down); if (ret) return ret; *consumed_up += dp_consumed_up; *consumed_down += dp_consumed_down; } downstream = tb_port_path_direction_downstream(src_port, dst_port); for (i = 0; i < ARRAY_SIZE(group_reserved); i++) { if (downstream) *consumed_down += group_reserved[i]; else *consumed_up += group_reserved[i]; } return 0; } static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port, struct tb_port *port) { bool downstream = tb_port_path_direction_downstream(src_port, dst_port); enum tb_link_width width; if (tb_is_upstream_port(port)) width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX; else width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX; return tb_port_width_supported(port, width); } /** * tb_maximum_bandwidth() - Maximum bandwidth over a single link * @tb: Domain structure * @src_port: Source protocol adapter * @dst_port: Destination protocol adapter * @port: USB4 port the total bandwidth is calculated * @max_up: Maximum upstream bandwidth (Mb/s) * @max_down: Maximum downstream bandwidth (Mb/s) * @include_asym: Include bandwidth if the link is switched from * symmetric to asymmetric * * Returns maximum possible bandwidth in @max_up and @max_down over a * single link at @port. If @include_asym is set then includes the * additional banwdith if the links are transitioned into asymmetric to * direction from @src_port to @dst_port. */ static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port, struct tb_port *dst_port, struct tb_port *port, int *max_up, int *max_down, bool include_asym) { bool downstream = tb_port_path_direction_downstream(src_port, dst_port); int link_speed, link_width, up_bw, down_bw; /* * Can include asymmetric, only if it is actually supported by * the lane adapter. */ if (!tb_asym_supported(src_port, dst_port, port)) include_asym = false; if (tb_is_upstream_port(port)) { link_speed = port->sw->link_speed; /* * sw->link_width is from upstream perspective so we use * the opposite for downstream of the host router. */ if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) { up_bw = link_speed * 3 * 1000; down_bw = link_speed * 1 * 1000; } else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) { up_bw = link_speed * 1 * 1000; down_bw = link_speed * 3 * 1000; } else if (include_asym) { /* * The link is symmetric at the moment but we * can switch it to asymmetric as needed. Report * this bandwidth as available (even though it * is not yet enabled). */ if (downstream) { up_bw = link_speed * 1 * 1000; down_bw = link_speed * 3 * 1000; } else { up_bw = link_speed * 3 * 1000; down_bw = link_speed * 1 * 1000; } } else { up_bw = link_speed * port->sw->link_width * 1000; down_bw = up_bw; } } else { link_speed = tb_port_get_link_speed(port); if (link_speed < 0) return link_speed; link_width = tb_port_get_link_width(port); if (link_width < 0) return link_width; if (link_width == TB_LINK_WIDTH_ASYM_TX) { up_bw = link_speed * 1 * 1000; down_bw = link_speed * 3 * 1000; } else if (link_width == TB_LINK_WIDTH_ASYM_RX) { up_bw = link_speed * 3 * 1000; down_bw = link_speed * 1 * 1000; } else if (include_asym) { /* * The link is symmetric at the moment but we * can switch it to asymmetric as needed. Report * this bandwidth as available (even though it * is not yet enabled). */ if (downstream) { up_bw = link_speed * 1 * 1000; down_bw = link_speed * 3 * 1000; } else { up_bw = link_speed * 3 * 1000; down_bw = link_speed * 1 * 1000; } } else { up_bw = link_speed * link_width * 1000; down_bw = up_bw; } } /* Leave 10% guard band */ *max_up = up_bw - up_bw / 10; *max_down = down_bw - down_bw / 10; tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down); return 0; } /** * tb_available_bandwidth() - Available bandwidth for tunneling * @tb: Domain structure * @src_port: Source protocol adapter * @dst_port: Destination protocol adapter * @available_up: Available bandwidth upstream (Mb/s) * @available_down: Available bandwidth downstream (Mb/s) * @include_asym: Include bandwidth if the link is switched from * symmetric to asymmetric * * Calculates maximum available bandwidth for protocol tunneling between * @src_port and @dst_port at the moment. This is minimum of maximum * link bandwidth across all links reduced by currently consumed * bandwidth on that link. * * If @include_asym is true then includes also bandwidth that can be * added when the links are transitioned into asymmetric (but does not * transition the links). */ static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port, struct tb_port *dst_port, int *available_up, int *available_down, bool include_asym) { struct tb_port *port; int ret; /* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */ *available_up = *available_down = 120000; /* Find the minimum available bandwidth over all links */ tb_for_each_port_on_path(src_port, dst_port, port) { int max_up, max_down, consumed_up, consumed_down; if (!tb_port_is_null(port)) continue; ret = tb_maximum_bandwidth(tb, src_port, dst_port, port, &max_up, &max_down, include_asym); if (ret) return ret; ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port, port, &consumed_up, &consumed_down); if (ret) return ret; max_up -= consumed_up; max_down -= consumed_down; ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port, &consumed_up, &consumed_down); if (ret) return ret; max_up -= consumed_up; max_down -= consumed_down; if (max_up < *available_up) *available_up = max_up; if (max_down < *available_down) *available_down = max_down; } if (*available_up < 0) *available_up = 0; if (*available_down < 0) *available_down = 0; return 0; } static int tb_release_unused_usb3_bandwidth(struct tb *tb, struct tb_port *src_port, struct tb_port *dst_port) { struct tb_tunnel *tunnel; tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0; } static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port, struct tb_port *dst_port) { int ret, available_up, available_down; struct tb_tunnel *tunnel; tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); if (!tunnel) return; tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n"); /* * Calculate available bandwidth for the first hop USB3 tunnel. * That determines the whole USB3 bandwidth for this branch. */ ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port, &available_up, &available_down, false); if (ret) { tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n"); return; } tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up, available_down); tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down); } static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw) { struct tb_switch *parent = tb_switch_parent(sw); int ret, available_up, available_down; struct tb_port *up, *down, *port; struct tb_cm *tcm = tb_priv(tb); struct tb_tunnel *tunnel; if (!tb_acpi_may_tunnel_usb3()) { tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n"); return 0; } up = tb_switch_find_port(sw, TB_TYPE_USB3_UP); if (!up) return 0; if (!sw->link_usb4) return 0; /* * Look up available down port. Since we are chaining it should * be found right above this switch. */ port = tb_switch_downstream_port(sw); down = tb_find_usb3_down(parent, port); if (!down) return 0; if (tb_route(parent)) { struct tb_port *parent_up; /* * Check first that the parent switch has its upstream USB3 * port enabled. Otherwise the chain is not complete and * there is no point setting up a new tunnel. */ parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP); if (!parent_up || !tb_port_is_enabled(parent_up)) return 0; /* Make all unused bandwidth available for the new tunnel */ ret = tb_release_unused_usb3_bandwidth(tb, down, up); if (ret) return ret; } ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down, false); if (ret) goto err_reclaim; tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n", available_up, available_down); tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up, available_down); if (!tunnel) { ret = -ENOMEM; goto err_reclaim; } if (tb_tunnel_activate(tunnel)) { tb_port_info(up, "USB3 tunnel activation failed, aborting\n"); ret = -EIO; goto err_free; } list_add_tail(&tunnel->list, &tcm->tunnel_list); if (tb_route(parent)) tb_reclaim_usb3_bandwidth(tb, down, up); return 0; err_free: tb_tunnel_free(tunnel); err_reclaim: if (tb_route(parent)) tb_reclaim_usb3_bandwidth(tb, down, up); return ret; } static int tb_create_usb3_tunnels(struct tb_switch *sw) { struct tb_port *port; int ret; if (!tb_acpi_may_tunnel_usb3()) return 0; if (tb_route(sw)) { ret = tb_tunnel_usb3(sw->tb, sw); if (ret) return ret; } tb_switch_for_each_port(sw, port) { if (!tb_port_has_remote(port)) continue; ret = tb_create_usb3_tunnels(port->remote->sw); if (ret) return ret; } return 0; } /** * tb_configure_asym() - Transition links to asymmetric if needed * @tb: Domain structure * @src_port: Source adapter to start the transition * @dst_port: Destination adapter * @requested_up: Additional bandwidth (Mb/s) required upstream * @requested_down: Additional bandwidth (Mb/s) required downstream * * Transition links between @src_port and @dst_port into asymmetric, with * three lanes in the direction from @src_port towards @dst_port and one lane * in the opposite direction, if the bandwidth requirements * (requested + currently consumed) on that link exceed @asym_threshold. * * Must be called with available >= requested over all links. */ static int tb_configure_asym(struct tb *tb, struct tb_port *src_port, struct tb_port *dst_port, int requested_up, int requested_down) { bool clx = false, clx_disabled = false, downstream; struct tb_switch *sw; struct tb_port *up; int ret = 0; if (!asym_threshold) return 0; downstream = tb_port_path_direction_downstream(src_port, dst_port); /* Pick up router deepest in the hierarchy */ if (downstream) sw = dst_port->sw; else sw = src_port->sw; tb_for_each_upstream_port_on_path(src_port, dst_port, up) { struct tb_port *down = tb_switch_downstream_port(up->sw); enum tb_link_width width_up, width_down; int consumed_up, consumed_down; ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up, &consumed_up, &consumed_down); if (ret) break; if (downstream) { /* * Downstream so make sure upstream is within the 36G * (40G - guard band 10%), and the requested is above * what the threshold is. */ if (consumed_up + requested_up >= TB_ASYM_MIN) { ret = -ENOBUFS; break; } /* Does consumed + requested exceed the threshold */ if (consumed_down + requested_down < asym_threshold) continue; width_up = TB_LINK_WIDTH_ASYM_RX; width_down = TB_LINK_WIDTH_ASYM_TX; } else { /* Upstream, the opposite of above */ if (consumed_down + requested_down >= TB_ASYM_MIN) { ret = -ENOBUFS; break; } if (consumed_up + requested_up < asym_threshold) continue; width_up = TB_LINK_WIDTH_ASYM_TX; width_down = TB_LINK_WIDTH_ASYM_RX; } if (up->sw->link_width == width_up) continue; if (!tb_port_width_supported(up, width_up) || !tb_port_width_supported(down, width_down)) continue; /* * Disable CL states before doing any transitions. We * delayed it until now that we know there is a real * transition taking place. */ if (!clx_disabled) { clx = tb_disable_clx(sw); clx_disabled = true; } tb_sw_dbg(up->sw, "configuring asymmetric link\n"); /* * Here requested + consumed > threshold so we need to * transtion the link into asymmetric now. */ ret = tb_switch_set_link_width(up->sw, width_up); if (ret) { tb_sw_warn(up->sw, "failed to set link width\n"); break; } } /* Re-enable CL states if they were previosly enabled */ if (clx) tb_enable_clx(sw); return ret; } /** * tb_configure_sym() - Transition links to symmetric if possible * @tb: Domain structure * @src_port: Source adapter to start the transition * @dst_port: Destination adapter * @keep_asym: Keep asymmetric link if preferred * * Goes over each link from @src_port to @dst_port and tries to * transition the link to symmetric if the currently consumed bandwidth * allows and link asymmetric preference is ignored (if @keep_asym is %false). */ static int tb_configure_sym(struct tb *tb, struct tb_port *src_port, struct tb_port *dst_port, bool keep_asym) { bool clx = false, clx_disabled = false, downstream; struct tb_switch *sw; struct tb_port *up; int ret = 0; if (!asym_threshold) return 0; downstream = tb_port_path_direction_downstream(src_port, dst_port); /* Pick up router deepest in the hierarchy */ if (downstream) sw = dst_port->sw; else sw = src_port->sw; tb_for_each_upstream_port_on_path(src_port, dst_port, up) { int consumed_up, consumed_down; /* Already symmetric */ if (up->sw->link_width <= TB_LINK_WIDTH_DUAL) continue; /* Unplugged, no need to switch */ if (up->sw->is_unplugged) continue; ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up, &consumed_up, &consumed_down); if (ret) break; if (downstream) { /* * Downstream so we want the consumed_down < threshold. * Upstream traffic should be less than 36G (40G * guard band 10%) as the link was configured asymmetric * already. */ if (consumed_down >= asym_threshold) continue; } else { if (consumed_up >= asym_threshold) continue; } if (up->sw->link_width == TB_LINK_WIDTH_DUAL) continue; /* * Here consumed < threshold so we can transition the * link to symmetric. * * However, if the router prefers asymmetric link we * honor that (unless @keep_asym is %false). */ if (keep_asym && up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) { tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n"); continue; } /* Disable CL states before doing any transitions */ if (!clx_disabled) { clx = tb_disable_clx(sw); clx_disabled = true; } tb_sw_dbg(up->sw, "configuring symmetric link\n"); ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL); if (ret) { tb_sw_warn(up->sw, "failed to set link width\n"); break; } } /* Re-enable CL states if they were previosly enabled */ if (clx) tb_enable_clx(sw); return ret; } static void tb_configure_link(struct tb_port *down, struct tb_port *up, struct tb_switch *sw) { struct tb *tb = sw->tb; /* Link the routers using both links if available */ down->remote = up; up->remote = down; if (down->dual_link_port && up->dual_link_port) { down->dual_link_port->remote = up->dual_link_port; up->dual_link_port->remote = down->dual_link_port; } /* * Enable lane bonding if the link is currently two single lane * links. */ if (sw->link_width < TB_LINK_WIDTH_DUAL) tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL); /* * Device router that comes up as symmetric link is * connected deeper in the hierarchy, we transition the links * above into symmetric if bandwidth allows. */ if (tb_switch_depth(sw) > 1 && tb_port_get_link_generation(up) >= 4 && up->sw->link_width == TB_LINK_WIDTH_DUAL) { struct tb_port *host_port; host_port = tb_port_at(tb_route(sw), tb->root_switch); tb_configure_sym(tb, host_port, up, false); } /* Set the link configured */ tb_switch_configure_link(sw); } static void tb_scan_port(struct tb_port *port); /* * tb_scan_switch() - scan for and initialize downstream switches */ static void tb_scan_switch(struct tb_switch *sw) { struct tb_port *port; pm_runtime_get_sync(&sw->dev); tb_switch_for_each_port(sw, port) tb_scan_port(port); pm_runtime_mark_last_busy(&sw->dev); pm_runtime_put_autosuspend(&sw->dev); } /* * tb_scan_port() - check for and initialize switches below port */ static void tb_scan_port(struct tb_port *port) { struct tb_cm *tcm = tb_priv(port->sw->tb); struct tb_port *upstream_port; bool discovery = false; struct tb_switch *sw; if (tb_is_upstream_port(port)) return; if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 && !tb_dp_port_is_enabled(port)) { tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n"); tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port, false); return; } if (port->config.type != TB_TYPE_PORT) return; if (port->dual_link_port && port->link_nr) return; /* * Downstream switch is reachable through two ports. * Only scan on the primary port (link_nr == 0). */ if (port->usb4) pm_runtime_get_sync(&port->usb4->dev); if (tb_wait_for_port(port, false) <= 0) goto out_rpm_put; if (port->remote) { tb_port_dbg(port, "port already has a remote\n"); goto out_rpm_put; } tb_retimer_scan(port, true); sw = tb_switch_alloc(port->sw->tb, &port->sw->dev, tb_downstream_route(port)); if (IS_ERR(sw)) { /* * If there is an error accessing the connected switch * it may be connected to another domain. Also we allow * the other domain to be connected to a max depth switch. */ if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL) tb_scan_xdomain(port); goto out_rpm_put; } if (tb_switch_configure(sw)) { tb_switch_put(sw); goto out_rpm_put; } /* * If there was previously another domain connected remove it * first. */ if (port->xdomain) { tb_xdomain_remove(port->xdomain); tb_port_unconfigure_xdomain(port); port->xdomain = NULL; } /* * Do not send uevents until we have discovered all existing * tunnels and know which switches were authorized already by * the boot firmware. */ if (!tcm->hotplug_active) { dev_set_uevent_suppress(&sw->dev, true); discovery = true; } /* * At the moment Thunderbolt 2 and beyond (devices with LC) we * can support runtime PM. */ sw->rpm = sw->generation > 1; if (tb_switch_add(sw)) { tb_switch_put(sw); goto out_rpm_put; } upstream_port = tb_upstream_port(sw); tb_configure_link(port, upstream_port, sw); /* * CL0s and CL1 are enabled and supported together. * Silently ignore CLx enabling in case CLx is not supported. */ if (discovery) tb_sw_dbg(sw, "discovery, not touching CL states\n"); else if (tb_enable_clx(sw)) tb_sw_warn(sw, "failed to enable CL states\n"); if (tb_enable_tmu(sw)) tb_sw_warn(sw, "failed to enable TMU\n"); /* * Configuration valid needs to be set after the TMU has been * enabled for the upstream port of the router so we do it here. */ tb_switch_configuration_valid(sw); /* Scan upstream retimers */ tb_retimer_scan(upstream_port, true); /* * Create USB 3.x tunnels only when the switch is plugged to the * domain. This is because we scan the domain also during discovery * and want to discover existing USB 3.x tunnels before we create * any new. */ if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw)) tb_sw_warn(sw, "USB3 tunnel creation failed\n"); tb_add_dp_resources(sw); tb_scan_switch(sw); out_rpm_put: if (port->usb4) { pm_runtime_mark_last_busy(&port->usb4->dev); pm_runtime_put_autosuspend(&port->usb4->dev); } } static void tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group) { struct tb_tunnel *first_tunnel; struct tb *tb = group->tb; struct tb_port *in; int ret; tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n", group->index); first_tunnel = NULL; list_for_each_entry(in, &group->ports, group_list) { int estimated_bw, estimated_up, estimated_down; struct tb_tunnel *tunnel; struct tb_port *out; if (!usb4_dp_port_bandwidth_mode_enabled(in)) continue; tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL); if (WARN_ON(!tunnel)) break; if (!first_tunnel) { /* * Since USB3 bandwidth is shared by all DP * tunnels under the host router USB4 port, even * if they do not begin from the host router, we * can release USB3 bandwidth just once and not * for each tunnel separately. */ first_tunnel = tunnel; ret = tb_release_unused_usb3_bandwidth(tb, first_tunnel->src_port, first_tunnel->dst_port); if (ret) { tb_tunnel_warn(tunnel, "failed to release unused bandwidth\n"); break; } } out = tunnel->dst_port; ret = tb_available_bandwidth(tb, in, out, &estimated_up, &estimated_down, true); if (ret) { tb_tunnel_warn(tunnel, "failed to re-calculate estimated bandwidth\n"); break; } /* * Estimated bandwidth includes: * - already allocated bandwidth for the DP tunnel * - available bandwidth along the path * - bandwidth allocated for USB 3.x but not used. */ if (tb_tunnel_direction_downstream(tunnel)) estimated_bw = estimated_down; else estimated_bw = estimated_up; /* * If there is reserved bandwidth for the group that is * not yet released we report that too. */ tb_tunnel_dbg(tunnel, "re-calculated estimated bandwidth %u (+ %u reserved) = %u Mb/s\n", estimated_bw, group->reserved, estimated_bw + group->reserved); if (usb4_dp_port_set_estimated_bandwidth(in, estimated_bw + group->reserved)) tb_tunnel_warn(tunnel, "failed to update estimated bandwidth\n"); } if (first_tunnel) tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port, first_tunnel->dst_port); tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index); } static void tb_recalc_estimated_bandwidth(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); int i; tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n"); for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { struct tb_bandwidth_group *group = &tcm->groups[i]; if (!list_empty(&group->ports)) tb_recalc_estimated_bandwidth_for_group(group); } tb_dbg(tb, "bandwidth re-calculation done\n"); } static bool __release_group_bandwidth(struct tb_bandwidth_group *group) { if (group->reserved) { tb_dbg(group->tb, "group %d released total %d Mb/s\n", group->index, group->reserved); group->reserved = 0; return true; } return false; } static void __configure_group_sym(struct tb_bandwidth_group *group) { struct tb_tunnel *tunnel; struct tb_port *in; if (list_empty(&group->ports)) return; /* * All the tunnels in the group go through the same USB4 links * so we find the first one here and pass the IN and OUT * adapters to tb_configure_sym() which now transitions the * links back to symmetric if bandwidth requirement < asym_threshold. * * We do this here to avoid unnecessary transitions (for example * if the graphics released bandwidth for other tunnel in the * same group). */ in = list_first_entry(&group->ports, struct tb_port, group_list); tunnel = tb_find_tunnel(group->tb, TB_TUNNEL_DP, in, NULL); if (tunnel) tb_configure_sym(group->tb, in, tunnel->dst_port, true); } static void tb_bandwidth_group_release_work(struct work_struct *work) { struct tb_bandwidth_group *group = container_of(work, typeof(*group), release_work.work); struct tb *tb = group->tb; mutex_lock(&tb->lock); if (__release_group_bandwidth(group)) tb_recalc_estimated_bandwidth(tb); __configure_group_sym(group); mutex_unlock(&tb->lock); } static void tb_init_bandwidth_groups(struct tb_cm *tcm) { int i; for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { struct tb_bandwidth_group *group = &tcm->groups[i]; group->tb = tcm_to_tb(tcm); group->index = i + 1; INIT_LIST_HEAD(&group->ports); INIT_DELAYED_WORK(&group->release_work, tb_bandwidth_group_release_work); } } static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group, struct tb_port *in) { if (!group || WARN_ON(in->group)) return; in->group = group; list_add_tail(&in->group_list, &group->ports); tb_port_dbg(in, "attached to bandwidth group %d\n", group->index); } static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm) { int i; for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { struct tb_bandwidth_group *group = &tcm->groups[i]; if (list_empty(&group->ports)) return group; } return NULL; } static struct tb_bandwidth_group * tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, struct tb_port *out) { struct tb_bandwidth_group *group; struct tb_tunnel *tunnel; /* * Find all DP tunnels that go through all the same USB4 links * as this one. Because we always setup tunnels the same way we * can just check for the routers at both ends of the tunnels * and if they are the same we have a match. */ list_for_each_entry(tunnel, &tcm->tunnel_list, list) { if (!tb_tunnel_is_dp(tunnel)) continue; if (tunnel->src_port->sw == in->sw && tunnel->dst_port->sw == out->sw) { group = tunnel->src_port->group; if (group) { tb_bandwidth_group_attach_port(group, in); return group; } } } /* Pick up next available group then */ group = tb_find_free_bandwidth_group(tcm); if (group) tb_bandwidth_group_attach_port(group, in); else tb_port_warn(in, "no available bandwidth groups\n"); return group; } static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, struct tb_port *out) { if (usb4_dp_port_bandwidth_mode_enabled(in)) { int index, i; index = usb4_dp_port_group_id(in); for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { if (tcm->groups[i].index == index) { tb_bandwidth_group_attach_port(&tcm->groups[i], in); return; } } } tb_attach_bandwidth_group(tcm, in, out); } static void tb_detach_bandwidth_group(struct tb_port *in) { struct tb_bandwidth_group *group = in->group; if (group) { in->group = NULL; list_del_init(&in->group_list); tb_port_dbg(in, "detached from bandwidth group %d\n", group->index); /* No more tunnels so release the reserved bandwidth if any */ if (list_empty(&group->ports)) { cancel_delayed_work(&group->release_work); __release_group_bandwidth(group); } } } static void tb_discover_tunnels(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); struct tb_tunnel *tunnel; tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true); list_for_each_entry(tunnel, &tcm->tunnel_list, list) { if (tb_tunnel_is_pci(tunnel)) { struct tb_switch *parent = tunnel->dst_port->sw; while (parent != tunnel->src_port->sw) { parent->boot = true; parent = tb_switch_parent(parent); } } else if (tb_tunnel_is_dp(tunnel)) { struct tb_port *in = tunnel->src_port; struct tb_port *out = tunnel->dst_port; /* Keep the domain from powering down */ pm_runtime_get_sync(&in->sw->dev); pm_runtime_get_sync(&out->sw->dev); tb_discover_bandwidth_group(tcm, in, out); } } } static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel) { struct tb_port *src_port, *dst_port; struct tb *tb; if (!tunnel) return; tb_tunnel_deactivate(tunnel); list_del(&tunnel->list); tb = tunnel->tb; src_port = tunnel->src_port; dst_port = tunnel->dst_port; switch (tunnel->type) { case TB_TUNNEL_DP: tb_detach_bandwidth_group(src_port); /* * In case of DP tunnel make sure the DP IN resource is * deallocated properly. */ tb_switch_dealloc_dp_resource(src_port->sw, src_port); /* * If bandwidth on a link is < asym_threshold * transition the link to symmetric. */ tb_configure_sym(tb, src_port, dst_port, true); /* Now we can allow the domain to runtime suspend again */ pm_runtime_mark_last_busy(&dst_port->sw->dev); pm_runtime_put_autosuspend(&dst_port->sw->dev); pm_runtime_mark_last_busy(&src_port->sw->dev); pm_runtime_put_autosuspend(&src_port->sw->dev); fallthrough; case TB_TUNNEL_USB3: tb_reclaim_usb3_bandwidth(tb, src_port, dst_port); break; default: /* * PCIe and DMA tunnels do not consume guaranteed * bandwidth. */ break; } tb_tunnel_free(tunnel); } /* * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away */ static void tb_free_invalid_tunnels(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); struct tb_tunnel *tunnel; struct tb_tunnel *n; list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { if (tb_tunnel_is_invalid(tunnel)) tb_deactivate_and_free_tunnel(tunnel); } } /* * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches */ static void tb_free_unplugged_children(struct tb_switch *sw) { struct tb_port *port; tb_switch_for_each_port(sw, port) { if (!tb_port_has_remote(port)) continue; if (port->remote->sw->is_unplugged) { tb_retimer_remove_all(port); tb_remove_dp_resources(port->remote->sw); tb_switch_unconfigure_link(port->remote->sw); tb_switch_set_link_width(port->remote->sw, TB_LINK_WIDTH_SINGLE); tb_switch_remove(port->remote->sw); port->remote = NULL; if (port->dual_link_port) port->dual_link_port->remote = NULL; } else { tb_free_unplugged_children(port->remote->sw); } } } static struct tb_port *tb_find_pcie_down(struct tb_switch *sw, const struct tb_port *port) { struct tb_port *down = NULL; /* * To keep plugging devices consistently in the same PCIe * hierarchy, do mapping here for switch downstream PCIe ports. */ if (tb_switch_is_usb4(sw)) { down = usb4_switch_map_pcie_down(sw, port); } else if (!tb_route(sw)) { int phy_port = tb_phy_port_from_link(port->port); int index; /* * Hard-coded Thunderbolt port to PCIe down port mapping * per controller. */ if (tb_switch_is_cactus_ridge(sw) || tb_switch_is_alpine_ridge(sw)) index = !phy_port ? 6 : 7; else if (tb_switch_is_falcon_ridge(sw)) index = !phy_port ? 6 : 8; else if (tb_switch_is_titan_ridge(sw)) index = !phy_port ? 8 : 9; else goto out; /* Validate the hard-coding */ if (WARN_ON(index > sw->config.max_port_number)) goto out; down = &sw->ports[index]; } if (down) { if (WARN_ON(!tb_port_is_pcie_down(down))) goto out; if (tb_pci_port_is_enabled(down)) goto out; return down; } out: return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN); } static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in) { struct tb_port *host_port, *port; struct tb_cm *tcm = tb_priv(tb); host_port = tb_route(in->sw) ? tb_port_at(tb_route(in->sw), tb->root_switch) : NULL; list_for_each_entry(port, &tcm->dp_resources, list) { if (!tb_port_is_dpout(port)) continue; if (tb_port_is_enabled(port)) { tb_port_dbg(port, "DP OUT in use\n"); continue; } /* Needs to be on different routers */ if (in->sw == port->sw) { tb_port_dbg(port, "skipping DP OUT on same router\n"); continue; } tb_port_dbg(port, "DP OUT available\n"); /* * Keep the DP tunnel under the topology starting from * the same host router downstream port. */ if (host_port && tb_route(port->sw)) { struct tb_port *p; p = tb_port_at(tb_route(port->sw), tb->root_switch); if (p != host_port) continue; } return port; } return NULL; } static bool tb_tunnel_one_dp(struct tb *tb, struct tb_port *in, struct tb_port *out) { int available_up, available_down, ret, link_nr; struct tb_cm *tcm = tb_priv(tb); int consumed_up, consumed_down; struct tb_tunnel *tunnel; /* * This is only applicable to links that are not bonded (so * when Thunderbolt 1 hardware is involved somewhere in the * topology). For these try to share the DP bandwidth between * the two lanes. */ link_nr = 1; list_for_each_entry(tunnel, &tcm->tunnel_list, list) { if (tb_tunnel_is_dp(tunnel)) { link_nr = 0; break; } } /* * DP stream needs the domain to be active so runtime resume * both ends of the tunnel. * * This should bring the routers in the middle active as well * and keeps the domain from runtime suspending while the DP * tunnel is active. */ pm_runtime_get_sync(&in->sw->dev); pm_runtime_get_sync(&out->sw->dev); if (tb_switch_alloc_dp_resource(in->sw, in)) { tb_port_dbg(in, "no resource available for DP IN, not tunneling\n"); goto err_rpm_put; } if (!tb_attach_bandwidth_group(tcm, in, out)) goto err_dealloc_dp; /* Make all unused USB3 bandwidth available for the new DP tunnel */ ret = tb_release_unused_usb3_bandwidth(tb, in, out); if (ret) { tb_warn(tb, "failed to release unused bandwidth\n"); goto err_detach_group; } ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down, true); if (ret) goto err_reclaim_usb; tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n", available_up, available_down); tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up, available_down); if (!tunnel) { tb_port_dbg(out, "could not allocate DP tunnel\n"); goto err_reclaim_usb; } if (tb_tunnel_activate(tunnel)) { tb_port_info(out, "DP tunnel activation failed, aborting\n"); goto err_free; } /* If fail reading tunnel's consumed bandwidth, tear it down */ ret = tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, &consumed_down); if (ret) goto err_deactivate; list_add_tail(&tunnel->list, &tcm->tunnel_list); tb_reclaim_usb3_bandwidth(tb, in, out); /* * Transition the links to asymmetric if the consumption exceeds * the threshold. */ tb_configure_asym(tb, in, out, consumed_up, consumed_down); /* Update the domain with the new bandwidth estimation */ tb_recalc_estimated_bandwidth(tb); /* * In case of DP tunnel exists, change host router's 1st children * TMU mode to HiFi for CL0s to work. */ tb_increase_tmu_accuracy(tunnel); return true; err_deactivate: tb_tunnel_deactivate(tunnel); err_free: tb_tunnel_free(tunnel); err_reclaim_usb: tb_reclaim_usb3_bandwidth(tb, in, out); err_detach_group: tb_detach_bandwidth_group(in); err_dealloc_dp: tb_switch_dealloc_dp_resource(in->sw, in); err_rpm_put: pm_runtime_mark_last_busy(&out->sw->dev); pm_runtime_put_autosuspend(&out->sw->dev); pm_runtime_mark_last_busy(&in->sw->dev); pm_runtime_put_autosuspend(&in->sw->dev); return false; } static void tb_tunnel_dp(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); struct tb_port *port, *in, *out; if (!tb_acpi_may_tunnel_dp()) { tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n"); return; } /* * Find pair of inactive DP IN and DP OUT adapters and then * establish a DP tunnel between them. */ tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n"); in = NULL; out = NULL; list_for_each_entry(port, &tcm->dp_resources, list) { if (!tb_port_is_dpin(port)) continue; if (tb_port_is_enabled(port)) { tb_port_dbg(port, "DP IN in use\n"); continue; } in = port; tb_port_dbg(in, "DP IN available\n"); out = tb_find_dp_out(tb, port); if (out) tb_tunnel_one_dp(tb, in, out); else tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n"); } if (!in) tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n"); } static void tb_enter_redrive(struct tb_port *port) { struct tb_switch *sw = port->sw; if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) return; /* * If we get hot-unplug for the DP IN port of the host router * and the DP resource is not available anymore it means there * is a monitor connected directly to the Type-C port and we are * in "redrive" mode. For this to work we cannot enter RTD3 so * we bump up the runtime PM reference count here. */ if (!tb_port_is_dpin(port)) return; if (tb_route(sw)) return; if (!tb_switch_query_dp_resource(sw, port)) { port->redrive = true; pm_runtime_get(&sw->dev); tb_port_dbg(port, "enter redrive mode, keeping powered\n"); } } static void tb_exit_redrive(struct tb_port *port) { struct tb_switch *sw = port->sw; if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) return; if (!tb_port_is_dpin(port)) return; if (tb_route(sw)) return; if (port->redrive && tb_switch_query_dp_resource(sw, port)) { port->redrive = false; pm_runtime_put(&sw->dev); tb_port_dbg(port, "exit redrive mode\n"); } } static void tb_switch_enter_redrive(struct tb_switch *sw) { struct tb_port *port; tb_switch_for_each_port(sw, port) tb_enter_redrive(port); } /* * Called during system and runtime suspend to forcefully exit redrive * mode without querying whether the resource is available. */ static void tb_switch_exit_redrive(struct tb_switch *sw) { struct tb_port *port; if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) return; tb_switch_for_each_port(sw, port) { if (!tb_port_is_dpin(port)) continue; if (port->redrive) { port->redrive = false; pm_runtime_put(&sw->dev); tb_port_dbg(port, "exit redrive mode\n"); } } } static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port) { struct tb_port *in, *out; struct tb_tunnel *tunnel; if (tb_port_is_dpin(port)) { tb_port_dbg(port, "DP IN resource unavailable\n"); in = port; out = NULL; } else { tb_port_dbg(port, "DP OUT resource unavailable\n"); in = NULL; out = port; } tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out); if (tunnel) tb_deactivate_and_free_tunnel(tunnel); else tb_enter_redrive(port); list_del_init(&port->list); /* * See if there is another DP OUT port that can be used for * to create another tunnel. */ tb_recalc_estimated_bandwidth(tb); tb_tunnel_dp(tb); } static void tb_dp_resource_available(struct tb *tb, struct tb_port *port) { struct tb_cm *tcm = tb_priv(tb); struct tb_port *p; if (tb_port_is_enabled(port)) return; list_for_each_entry(p, &tcm->dp_resources, list) { if (p == port) return; } tb_port_dbg(port, "DP %s resource available after hotplug\n", tb_port_is_dpin(port) ? "IN" : "OUT"); list_add_tail(&port->list, &tcm->dp_resources); tb_exit_redrive(port); /* Look for suitable DP IN <-> DP OUT pairs now */ tb_tunnel_dp(tb); } static void tb_disconnect_and_release_dp(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); struct tb_tunnel *tunnel, *n; /* * Tear down all DP tunnels and release their resources. They * will be re-established after resume based on plug events. */ list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) { if (tb_tunnel_is_dp(tunnel)) tb_deactivate_and_free_tunnel(tunnel); } while (!list_empty(&tcm->dp_resources)) { struct tb_port *port; port = list_first_entry(&tcm->dp_resources, struct tb_port, list); list_del_init(&port->list); } } static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw) { struct tb_tunnel *tunnel; struct tb_port *up; up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP); if (WARN_ON(!up)) return -ENODEV; tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up); if (WARN_ON(!tunnel)) return -ENODEV; tb_switch_xhci_disconnect(sw); tb_tunnel_deactivate(tunnel); list_del(&tunnel->list); tb_tunnel_free(tunnel); return 0; } static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw) { struct tb_port *up, *down, *port; struct tb_cm *tcm = tb_priv(tb); struct tb_tunnel *tunnel; up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP); if (!up) return 0; /* * Look up available down port. Since we are chaining it should * be found right above this switch. */ port = tb_switch_downstream_port(sw); down = tb_find_pcie_down(tb_switch_parent(sw), port); if (!down) return 0; tunnel = tb_tunnel_alloc_pci(tb, up, down); if (!tunnel) return -ENOMEM; if (tb_tunnel_activate(tunnel)) { tb_port_info(up, "PCIe tunnel activation failed, aborting\n"); tb_tunnel_free(tunnel); return -EIO; } /* * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it * here. */ if (tb_switch_pcie_l1_enable(sw)) tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n"); if (tb_switch_xhci_connect(sw)) tb_sw_warn(sw, "failed to connect xHCI\n"); list_add_tail(&tunnel->list, &tcm->tunnel_list); return 0; } static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, int transmit_path, int transmit_ring, int receive_path, int receive_ring) { struct tb_cm *tcm = tb_priv(tb); struct tb_port *nhi_port, *dst_port; struct tb_tunnel *tunnel; struct tb_switch *sw; int ret; sw = tb_to_switch(xd->dev.parent); dst_port = tb_port_at(xd->route, sw); nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI); mutex_lock(&tb->lock); /* * When tunneling DMA paths the link should not enter CL states * so disable them now. */ tb_disable_clx(sw); tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path, transmit_ring, receive_path, receive_ring); if (!tunnel) { ret = -ENOMEM; goto err_clx; } if (tb_tunnel_activate(tunnel)) { tb_port_info(nhi_port, "DMA tunnel activation failed, aborting\n"); ret = -EIO; goto err_free; } list_add_tail(&tunnel->list, &tcm->tunnel_list); mutex_unlock(&tb->lock); return 0; err_free: tb_tunnel_free(tunnel); err_clx: tb_enable_clx(sw); mutex_unlock(&tb->lock); return ret; } static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, int transmit_path, int transmit_ring, int receive_path, int receive_ring) { struct tb_cm *tcm = tb_priv(tb); struct tb_port *nhi_port, *dst_port; struct tb_tunnel *tunnel, *n; struct tb_switch *sw; sw = tb_to_switch(xd->dev.parent); dst_port = tb_port_at(xd->route, sw); nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI); list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { if (!tb_tunnel_is_dma(tunnel)) continue; if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port) continue; if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring, receive_path, receive_ring)) tb_deactivate_and_free_tunnel(tunnel); } /* * Try to re-enable CL states now, it is OK if this fails * because we may still have another DMA tunnel active through * the same host router USB4 downstream port. */ tb_enable_clx(sw); } static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, int transmit_path, int transmit_ring, int receive_path, int receive_ring) { if (!xd->is_unplugged) { mutex_lock(&tb->lock); __tb_disconnect_xdomain_paths(tb, xd, transmit_path, transmit_ring, receive_path, receive_ring); mutex_unlock(&tb->lock); } return 0; } /* hotplug handling */ /* * tb_handle_hotplug() - handle hotplug event * * Executes on tb->wq. */ static void tb_handle_hotplug(struct work_struct *work) { struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work); struct tb *tb = ev->tb; struct tb_cm *tcm = tb_priv(tb); struct tb_switch *sw; struct tb_port *port; /* Bring the domain back from sleep if it was suspended */ pm_runtime_get_sync(&tb->dev); mutex_lock(&tb->lock); if (!tcm->hotplug_active) goto out; /* during init, suspend or shutdown */ sw = tb_switch_find_by_route(tb, ev->route); if (!sw) { tb_warn(tb, "hotplug event from non existent switch %llx:%x (unplug: %d)\n", ev->route, ev->port, ev->unplug); goto out; } if (ev->port > sw->config.max_port_number) { tb_warn(tb, "hotplug event from non existent port %llx:%x (unplug: %d)\n", ev->route, ev->port, ev->unplug); goto put_sw; } port = &sw->ports[ev->port]; if (tb_is_upstream_port(port)) { tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n", ev->route, ev->port, ev->unplug); goto put_sw; } pm_runtime_get_sync(&sw->dev); if (ev->unplug) { tb_retimer_remove_all(port); if (tb_port_has_remote(port)) { tb_port_dbg(port, "switch unplugged\n"); tb_sw_set_unplugged(port->remote->sw); tb_free_invalid_tunnels(tb); tb_remove_dp_resources(port->remote->sw); tb_switch_tmu_disable(port->remote->sw); tb_switch_unconfigure_link(port->remote->sw); tb_switch_set_link_width(port->remote->sw, TB_LINK_WIDTH_SINGLE); tb_switch_remove(port->remote->sw); port->remote = NULL; if (port->dual_link_port) port->dual_link_port->remote = NULL; /* Maybe we can create another DP tunnel */ tb_recalc_estimated_bandwidth(tb); tb_tunnel_dp(tb); } else if (port->xdomain) { struct tb_xdomain *xd = tb_xdomain_get(port->xdomain); tb_port_dbg(port, "xdomain unplugged\n"); /* * Service drivers are unbound during * tb_xdomain_remove() so setting XDomain as * unplugged here prevents deadlock if they call * tb_xdomain_disable_paths(). We will tear down * all the tunnels below. */ xd->is_unplugged = true; tb_xdomain_remove(xd); port->xdomain = NULL; __tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1); tb_xdomain_put(xd); tb_port_unconfigure_xdomain(port); } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { tb_dp_resource_unavailable(tb, port); } else if (!port->port) { tb_sw_dbg(sw, "xHCI disconnect request\n"); tb_switch_xhci_disconnect(sw); } else { tb_port_dbg(port, "got unplug event for disconnected port, ignoring\n"); } } else if (port->remote) { tb_port_dbg(port, "got plug event for connected port, ignoring\n"); } else if (!port->port && sw->authorized) { tb_sw_dbg(sw, "xHCI connect request\n"); tb_switch_xhci_connect(sw); } else { if (tb_port_is_null(port)) { tb_port_dbg(port, "hotplug: scanning\n"); tb_scan_port(port); if (!port->remote) tb_port_dbg(port, "hotplug: no switch found\n"); } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { tb_dp_resource_available(tb, port); } } pm_runtime_mark_last_busy(&sw->dev); pm_runtime_put_autosuspend(&sw->dev); put_sw: tb_switch_put(sw); out: mutex_unlock(&tb->lock); pm_runtime_mark_last_busy(&tb->dev); pm_runtime_put_autosuspend(&tb->dev); kfree(ev); } static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up, int *requested_down) { int allocated_up, allocated_down, available_up, available_down, ret; int requested_up_corrected, requested_down_corrected, granularity; int max_up, max_down, max_up_rounded, max_down_rounded; struct tb_bandwidth_group *group; struct tb *tb = tunnel->tb; struct tb_port *in, *out; bool downstream; ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down); if (ret) return ret; in = tunnel->src_port; out = tunnel->dst_port; tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n", allocated_up, allocated_down); /* * If we get rounded up request from graphics side, say HBR2 x 4 * that is 17500 instead of 17280 (this is because of the * granularity), we allow it too. Here the graphics has already * negotiated with the DPRX the maximum possible rates (which is * 17280 in this case). * * Since the link cannot go higher than 17280 we use that in our * calculations but the DP IN adapter Allocated BW write must be * the same value (17500) otherwise the adapter will mark it as * failed for graphics. */ ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down); if (ret) goto fail; ret = usb4_dp_port_granularity(in); if (ret < 0) goto fail; granularity = ret; max_up_rounded = roundup(max_up, granularity); max_down_rounded = roundup(max_down, granularity); /* * This will "fix" the request down to the maximum supported * rate * lanes if it is at the maximum rounded up level. */ requested_up_corrected = *requested_up; if (requested_up_corrected == max_up_rounded) requested_up_corrected = max_up; else if (requested_up_corrected < 0) requested_up_corrected = 0; requested_down_corrected = *requested_down; if (requested_down_corrected == max_down_rounded) requested_down_corrected = max_down; else if (requested_down_corrected < 0) requested_down_corrected = 0; tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n", requested_up_corrected, requested_down_corrected); if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) || (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) { tb_tunnel_dbg(tunnel, "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n", requested_up_corrected, requested_down_corrected, max_up_rounded, max_down_rounded); ret = -ENOBUFS; goto fail; } downstream = tb_tunnel_direction_downstream(tunnel); group = in->group; if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) || (*requested_down >= 0 && requested_down_corrected <= allocated_down)) { if (tunnel->bw_mode) { int reserved; /* * If requested bandwidth is less or equal than * what is currently allocated to that tunnel we * simply change the reservation of the tunnel * and add the released bandwidth for the group * for the next 10s. Then we release it for * others to use. */ if (downstream) reserved = allocated_down - *requested_down; else reserved = allocated_up - *requested_up; if (reserved > 0) { group->reserved += reserved; tb_dbg(tb, "group %d reserved %d total %d Mb/s\n", group->index, reserved, group->reserved); /* * If it was not already pending, * schedule release now. If it is then * postpone it for the next 10s (unless * it is already running in which case * the 10s already expired and we should * give the reserved back to others). */ mod_delayed_work(system_wq, &group->release_work, msecs_to_jiffies(TB_RELEASE_BW_TIMEOUT)); } } return tb_tunnel_alloc_bandwidth(tunnel, requested_up, requested_down); } /* * More bandwidth is requested. Release all the potential * bandwidth from USB3 first. */ ret = tb_release_unused_usb3_bandwidth(tb, in, out); if (ret) goto fail; /* * Then go over all tunnels that cross the same USB4 ports (they * are also in the same group but we use the same function here * that we use with the normal bandwidth allocation). */ ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down, true); if (ret) goto reclaim; tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d (+ %u reserved) Mb/s\n", available_up, available_down, group->reserved); if ((*requested_up >= 0 && available_up + group->reserved >= requested_up_corrected) || (*requested_down >= 0 && available_down + group->reserved >= requested_down_corrected)) { int released = 0; /* * If bandwidth on a link is >= asym_threshold * transition the link to asymmetric. */ ret = tb_configure_asym(tb, in, out, *requested_up, *requested_down); if (ret) { tb_configure_sym(tb, in, out, true); goto fail; } ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up, requested_down); if (ret) { tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n"); tb_configure_sym(tb, in, out, true); } if (downstream) { if (*requested_down > available_down) released = *requested_down - available_down; } else { if (*requested_up > available_up) released = *requested_up - available_up; } if (released) { group->reserved -= released; tb_dbg(tb, "group %d released %d total %d Mb/s\n", group->index, released, group->reserved); } } else { ret = -ENOBUFS; } reclaim: tb_reclaim_usb3_bandwidth(tb, in, out); fail: if (ret && ret != -ENODEV) { /* * Write back the same allocated (so no change), this * makes the DPTX request fail on graphics side. */ tb_tunnel_dbg(tunnel, "failing the request by rewriting allocated %d/%d Mb/s\n", allocated_up, allocated_down); tb_tunnel_alloc_bandwidth(tunnel, &allocated_up, &allocated_down); } return ret; } static void tb_handle_dp_bandwidth_request(struct work_struct *work) { struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work); int requested_bw, requested_up, requested_down, ret; struct tb_tunnel *tunnel; struct tb *tb = ev->tb; struct tb_cm *tcm = tb_priv(tb); struct tb_switch *sw; struct tb_port *in; pm_runtime_get_sync(&tb->dev); mutex_lock(&tb->lock); if (!tcm->hotplug_active) goto unlock; sw = tb_switch_find_by_route(tb, ev->route); if (!sw) { tb_warn(tb, "bandwidth request from non-existent router %llx\n", ev->route); goto unlock; } in = &sw->ports[ev->port]; if (!tb_port_is_dpin(in)) { tb_port_warn(in, "bandwidth request to non-DP IN adapter\n"); goto put_sw; } tb_port_dbg(in, "handling bandwidth allocation request\n"); tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL); if (!tunnel) { tb_port_warn(in, "failed to find tunnel\n"); goto put_sw; } if (!usb4_dp_port_bandwidth_mode_enabled(in)) { if (tunnel->bw_mode) { /* * Reset the tunnel back to use the legacy * allocation. */ tunnel->bw_mode = false; tb_port_dbg(in, "DPTX disabled bandwidth allocation mode\n"); } else { tb_port_warn(in, "bandwidth allocation mode not enabled\n"); } goto put_sw; } ret = usb4_dp_port_requested_bandwidth(in); if (ret < 0) { if (ret == -ENODATA) { /* * There is no request active so this means the * BW allocation mode was enabled from graphics * side. At this point we know that the graphics * driver has read the DRPX capabilities so we * can offer an better bandwidth estimatation. */ tb_port_dbg(in, "DPTX enabled bandwidth allocation mode, updating estimated bandwidth\n"); tb_recalc_estimated_bandwidth(tb); } else { tb_port_warn(in, "failed to read requested bandwidth\n"); } goto put_sw; } requested_bw = ret; tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw); if (tb_tunnel_direction_downstream(tunnel)) { requested_up = -1; requested_down = requested_bw; } else { requested_up = requested_bw; requested_down = -1; } ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down); if (ret) { if (ret == -ENOBUFS) tb_tunnel_warn(tunnel, "not enough bandwidth available\n"); else tb_tunnel_warn(tunnel, "failed to change bandwidth allocation\n"); } else { tb_tunnel_dbg(tunnel, "bandwidth allocation changed to %d/%d Mb/s\n", requested_up, requested_down); /* Update other clients about the allocation change */ tb_recalc_estimated_bandwidth(tb); } put_sw: tb_switch_put(sw); unlock: mutex_unlock(&tb->lock); pm_runtime_mark_last_busy(&tb->dev); pm_runtime_put_autosuspend(&tb->dev); kfree(ev); } static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port) { struct tb_hotplug_event *ev; ev = kmalloc(sizeof(*ev), GFP_KERNEL); if (!ev) return; ev->tb = tb; ev->route = route; ev->port = port; INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request); queue_work(tb->wq, &ev->work); } static void tb_handle_notification(struct tb *tb, u64 route, const struct cfg_error_pkg *error) { switch (error->error) { case TB_CFG_ERROR_PCIE_WAKE: case TB_CFG_ERROR_DP_CON_CHANGE: case TB_CFG_ERROR_DPTX_DISCOVERY: if (tb_cfg_ack_notification(tb->ctl, route, error)) tb_warn(tb, "could not ack notification on %llx\n", route); break; case TB_CFG_ERROR_DP_BW: if (tb_cfg_ack_notification(tb->ctl, route, error)) tb_warn(tb, "could not ack notification on %llx\n", route); tb_queue_dp_bandwidth_request(tb, route, error->port); break; default: /* Ignore for now */ break; } } /* * tb_schedule_hotplug_handler() - callback function for the control channel * * Delegates to tb_handle_hotplug. */ static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type, const void *buf, size_t size) { const struct cfg_event_pkg *pkg = buf; u64 route = tb_cfg_get_route(&pkg->header); switch (type) { case TB_CFG_PKG_ERROR: tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf); return; case TB_CFG_PKG_EVENT: break; default: tb_warn(tb, "unexpected event %#x, ignoring\n", type); return; } if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) { tb_warn(tb, "could not ack plug event on %llx:%x\n", route, pkg->port); } tb_queue_hotplug(tb, route, pkg->port, pkg->unplug); } static void tb_stop(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); struct tb_tunnel *tunnel; struct tb_tunnel *n; cancel_delayed_work(&tcm->remove_work); /* tunnels are only present after everything has been initialized */ list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { /* * DMA tunnels require the driver to be functional so we * tear them down. Other protocol tunnels can be left * intact. */ if (tb_tunnel_is_dma(tunnel)) tb_tunnel_deactivate(tunnel); tb_tunnel_free(tunnel); } tb_switch_remove(tb->root_switch); tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ } static void tb_deinit(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); int i; /* Cancel all the release bandwidth workers */ for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) cancel_delayed_work_sync(&tcm->groups[i].release_work); } static int tb_scan_finalize_switch(struct device *dev, void *data) { if (tb_is_switch(dev)) { struct tb_switch *sw = tb_to_switch(dev); /* * If we found that the switch was already setup by the * boot firmware, mark it as authorized now before we * send uevent to userspace. */ if (sw->boot) sw->authorized = 1; dev_set_uevent_suppress(dev, false); kobject_uevent(&dev->kobj, KOBJ_ADD); device_for_each_child(dev, NULL, tb_scan_finalize_switch); } return 0; } static int tb_start(struct tb *tb, bool reset) { struct tb_cm *tcm = tb_priv(tb); bool discover = true; int ret; tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0); if (IS_ERR(tb->root_switch)) return PTR_ERR(tb->root_switch); /* * ICM firmware upgrade needs running firmware and in native * mode that is not available so disable firmware upgrade of the * root switch. * * However, USB4 routers support NVM firmware upgrade if they * implement the necessary router operations. */ tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch); /* All USB4 routers support runtime PM */ tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch); ret = tb_switch_configure(tb->root_switch); if (ret) { tb_switch_put(tb->root_switch); return ret; } /* Announce the switch to the world */ ret = tb_switch_add(tb->root_switch); if (ret) { tb_switch_put(tb->root_switch); return ret; } /* * To support highest CLx state, we set host router's TMU to * Normal mode. */ tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES); /* Enable TMU if it is off */ tb_switch_tmu_enable(tb->root_switch); /* * Boot firmware might have created tunnels of its own. Since we * cannot be sure they are usable for us, tear them down and * reset the ports to handle it as new hotplug for USB4 v1 * routers (for USB4 v2 and beyond we already do host reset). */ if (reset && tb_switch_is_usb4(tb->root_switch)) { discover = false; if (usb4_switch_version(tb->root_switch) == 1) tb_switch_reset(tb->root_switch); } if (discover) { /* Full scan to discover devices added before the driver was loaded. */ tb_scan_switch(tb->root_switch); /* Find out tunnels created by the boot firmware */ tb_discover_tunnels(tb); /* Add DP resources from the DP tunnels created by the boot firmware */ tb_discover_dp_resources(tb); } /* * If the boot firmware did not create USB 3.x tunnels create them * now for the whole topology. */ tb_create_usb3_tunnels(tb->root_switch); /* Add DP IN resources for the root switch */ tb_add_dp_resources(tb->root_switch); tb_switch_enter_redrive(tb->root_switch); /* Make the discovered switches available to the userspace */ device_for_each_child(&tb->root_switch->dev, NULL, tb_scan_finalize_switch); /* Allow tb_handle_hotplug to progress events */ tcm->hotplug_active = true; return 0; } static int tb_suspend_noirq(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); tb_dbg(tb, "suspending...\n"); tb_disconnect_and_release_dp(tb); tb_switch_exit_redrive(tb->root_switch); tb_switch_suspend(tb->root_switch, false); tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ tb_dbg(tb, "suspend finished\n"); return 0; } static void tb_restore_children(struct tb_switch *sw) { struct tb_port *port; /* No need to restore if the router is already unplugged */ if (sw->is_unplugged) return; if (tb_enable_clx(sw)) tb_sw_warn(sw, "failed to re-enable CL states\n"); if (tb_enable_tmu(sw)) tb_sw_warn(sw, "failed to restore TMU configuration\n"); tb_switch_configuration_valid(sw); tb_switch_for_each_port(sw, port) { if (!tb_port_has_remote(port) && !port->xdomain) continue; if (port->remote) { tb_switch_set_link_width(port->remote->sw, port->remote->sw->link_width); tb_switch_configure_link(port->remote->sw); tb_restore_children(port->remote->sw); } else if (port->xdomain) { tb_port_configure_xdomain(port, port->xdomain); } } } static int tb_resume_noirq(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); struct tb_tunnel *tunnel, *n; unsigned int usb3_delay = 0; LIST_HEAD(tunnels); tb_dbg(tb, "resuming...\n"); /* * For non-USB4 hosts (Apple systems) remove any PCIe devices * the firmware might have setup. */ if (!tb_switch_is_usb4(tb->root_switch)) tb_switch_reset(tb->root_switch); tb_switch_resume(tb->root_switch, false); tb_free_invalid_tunnels(tb); tb_free_unplugged_children(tb->root_switch); tb_restore_children(tb->root_switch); /* * If we get here from suspend to disk the boot firmware or the * restore kernel might have created tunnels of its own. Since * we cannot be sure they are usable for us we find and tear * them down. */ tb_switch_discover_tunnels(tb->root_switch, &tunnels, false); list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) { if (tb_tunnel_is_usb3(tunnel)) usb3_delay = 500; tb_tunnel_deactivate(tunnel); tb_tunnel_free(tunnel); } /* Re-create our tunnels now */ list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { /* USB3 requires delay before it can be re-activated */ if (tb_tunnel_is_usb3(tunnel)) { msleep(usb3_delay); /* Only need to do it once */ usb3_delay = 0; } tb_tunnel_restart(tunnel); } if (!list_empty(&tcm->tunnel_list)) { /* * the pcie links need some time to get going. * 100ms works for me... */ tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n"); msleep(100); } tb_switch_enter_redrive(tb->root_switch); /* Allow tb_handle_hotplug to progress events */ tcm->hotplug_active = true; tb_dbg(tb, "resume finished\n"); return 0; } static int tb_free_unplugged_xdomains(struct tb_switch *sw) { struct tb_port *port; int ret = 0; tb_switch_for_each_port(sw, port) { if (tb_is_upstream_port(port)) continue; if (port->xdomain && port->xdomain->is_unplugged) { tb_retimer_remove_all(port); tb_xdomain_remove(port->xdomain); tb_port_unconfigure_xdomain(port); port->xdomain = NULL; ret++; } else if (port->remote) { ret += tb_free_unplugged_xdomains(port->remote->sw); } } return ret; } static int tb_freeze_noirq(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); tcm->hotplug_active = false; return 0; } static int tb_thaw_noirq(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); tcm->hotplug_active = true; return 0; } static void tb_complete(struct tb *tb) { /* * Release any unplugged XDomains and if there is a case where * another domain is swapped in place of unplugged XDomain we * need to run another rescan. */ mutex_lock(&tb->lock); if (tb_free_unplugged_xdomains(tb->root_switch)) tb_scan_switch(tb->root_switch); mutex_unlock(&tb->lock); } static int tb_runtime_suspend(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); mutex_lock(&tb->lock); /* * The below call only releases DP resources to allow exiting and * re-entering redrive mode. */ tb_disconnect_and_release_dp(tb); tb_switch_exit_redrive(tb->root_switch); tb_switch_suspend(tb->root_switch, true); tcm->hotplug_active = false; mutex_unlock(&tb->lock); return 0; } static void tb_remove_work(struct work_struct *work) { struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work); struct tb *tb = tcm_to_tb(tcm); mutex_lock(&tb->lock); if (tb->root_switch) { tb_free_unplugged_children(tb->root_switch); tb_free_unplugged_xdomains(tb->root_switch); } mutex_unlock(&tb->lock); } static int tb_runtime_resume(struct tb *tb) { struct tb_cm *tcm = tb_priv(tb); struct tb_tunnel *tunnel, *n; mutex_lock(&tb->lock); tb_switch_resume(tb->root_switch, true); tb_free_invalid_tunnels(tb); tb_restore_children(tb->root_switch); list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) tb_tunnel_restart(tunnel); tb_switch_enter_redrive(tb->root_switch); tcm->hotplug_active = true; mutex_unlock(&tb->lock); /* * Schedule cleanup of any unplugged devices. Run this in a * separate thread to avoid possible deadlock if the device * removal runtime resumes the unplugged device. */ queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50)); return 0; } static const struct tb_cm_ops tb_cm_ops = { .start = tb_start, .stop = tb_stop, .deinit = tb_deinit, .suspend_noirq = tb_suspend_noirq, .resume_noirq = tb_resume_noirq, .freeze_noirq = tb_freeze_noirq, .thaw_noirq = tb_thaw_noirq, .complete = tb_complete, .runtime_suspend = tb_runtime_suspend, .runtime_resume = tb_runtime_resume, .handle_event = tb_handle_event, .disapprove_switch = tb_disconnect_pci, .approve_switch = tb_tunnel_pci, .approve_xdomain_paths = tb_approve_xdomain_paths, .disconnect_xdomain_paths = tb_disconnect_xdomain_paths, }; /* * During suspend the Thunderbolt controller is reset and all PCIe * tunnels are lost. The NHI driver will try to reestablish all tunnels * during resume. This adds device links between the tunneled PCIe * downstream ports and the NHI so that the device core will make sure * NHI is resumed first before the rest. */ static bool tb_apple_add_links(struct tb_nhi *nhi) { struct pci_dev *upstream, *pdev; bool ret; if (!x86_apple_machine) return false; switch (nhi->pdev->device) { case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: break; default: return false; } upstream = pci_upstream_bridge(nhi->pdev); while (upstream) { if (!pci_is_pcie(upstream)) return false; if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM) break; upstream = pci_upstream_bridge(upstream); } if (!upstream) return false; /* * For each hotplug downstream port, create add device link * back to NHI so that PCIe tunnels can be re-established after * sleep. */ ret = false; for_each_pci_bridge(pdev, upstream->subordinate) { const struct device_link *link; if (!pci_is_pcie(pdev)) continue; if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM || !pdev->is_hotplug_bridge) continue; link = device_link_add(&pdev->dev, &nhi->pdev->dev, DL_FLAG_AUTOREMOVE_SUPPLIER | DL_FLAG_PM_RUNTIME); if (link) { dev_dbg(&nhi->pdev->dev, "created link from %s\n", dev_name(&pdev->dev)); ret = true; } else { dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n", dev_name(&pdev->dev)); } } return ret; } struct tb *tb_probe(struct tb_nhi *nhi) { struct tb_cm *tcm; struct tb *tb; tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm)); if (!tb) return NULL; if (tb_acpi_may_tunnel_pcie()) tb->security_level = TB_SECURITY_USER; else tb->security_level = TB_SECURITY_NOPCIE; tb->cm_ops = &tb_cm_ops; tcm = tb_priv(tb); INIT_LIST_HEAD(&tcm->tunnel_list); INIT_LIST_HEAD(&tcm->dp_resources); INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work); tb_init_bandwidth_groups(tcm); tb_dbg(tb, "using software connection manager\n"); /* * Device links are needed to make sure we establish tunnels * before the PCIe/USB stack is resumed so complain here if we * found them missing. */ if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi)) tb_warn(tb, "device links to tunneled native ports are missing!\n"); return tb; }