// SPDX-License-Identifier: GPL-2.0-only /* * kernel/sched/syscalls.c * * Core kernel scheduler syscalls related code * * Copyright (C) 1991-2002 Linus Torvalds * Copyright (C) 1998-2024 Ingo Molnar, Red Hat */ #include #include #include #include #include "sched.h" #include "autogroup.h" static inline int __normal_prio(int policy, int rt_prio, int nice) { int prio; if (dl_policy(policy)) prio = MAX_DL_PRIO - 1; else if (rt_policy(policy)) prio = MAX_RT_PRIO - 1 - rt_prio; else prio = NICE_TO_PRIO(nice); return prio; } /* * Calculate the expected normal priority: i.e. priority * without taking RT-inheritance into account. Might be * boosted by interactivity modifiers. Changes upon fork, * setprio syscalls, and whenever the interactivity * estimator recalculates. */ static inline int normal_prio(struct task_struct *p) { return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); } /* * Calculate the current priority, i.e. the priority * taken into account by the scheduler. This value might * be boosted by RT tasks, or might be boosted by * interactivity modifiers. Will be RT if the task got * RT-boosted. If not then it returns p->normal_prio. */ static int effective_prio(struct task_struct *p) { p->normal_prio = normal_prio(p); /* * If we are RT tasks or we were boosted to RT priority, * keep the priority unchanged. Otherwise, update priority * to the normal priority: */ if (!rt_or_dl_prio(p->prio)) return p->normal_prio; return p->prio; } void set_user_nice(struct task_struct *p, long nice) { bool queued, running; struct rq *rq; int old_prio; if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) return; /* * We have to be careful, if called from sys_setpriority(), * the task might be in the middle of scheduling on another CPU. */ CLASS(task_rq_lock, rq_guard)(p); rq = rq_guard.rq; update_rq_clock(rq); /* * The RT priorities are set via sched_setscheduler(), but we still * allow the 'normal' nice value to be set - but as expected * it won't have any effect on scheduling until the task is * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: */ if (task_has_dl_policy(p) || task_has_rt_policy(p)) { p->static_prio = NICE_TO_PRIO(nice); return; } queued = task_on_rq_queued(p); running = task_current_donor(rq, p); if (queued) dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); if (running) put_prev_task(rq, p); p->static_prio = NICE_TO_PRIO(nice); set_load_weight(p, true); old_prio = p->prio; p->prio = effective_prio(p); if (queued) enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); if (running) set_next_task(rq, p); /* * If the task increased its priority or is running and * lowered its priority, then reschedule its CPU: */ p->sched_class->prio_changed(rq, p, old_prio); } EXPORT_SYMBOL(set_user_nice); /* * is_nice_reduction - check if nice value is an actual reduction * * Similar to can_nice() but does not perform a capability check. * * @p: task * @nice: nice value */ static bool is_nice_reduction(const struct task_struct *p, const int nice) { /* Convert nice value [19,-20] to rlimit style value [1,40]: */ int nice_rlim = nice_to_rlimit(nice); return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); } /* * can_nice - check if a task can reduce its nice value * @p: task * @nice: nice value */ int can_nice(const struct task_struct *p, const int nice) { return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); } #ifdef __ARCH_WANT_SYS_NICE /* * sys_nice - change the priority of the current process. * @increment: priority increment * * sys_setpriority is a more generic, but much slower function that * does similar things. */ SYSCALL_DEFINE1(nice, int, increment) { long nice, retval; /* * Setpriority might change our priority at the same moment. * We don't have to worry. Conceptually one call occurs first * and we have a single winner. */ increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); nice = task_nice(current) + increment; nice = clamp_val(nice, MIN_NICE, MAX_NICE); if (increment < 0 && !can_nice(current, nice)) return -EPERM; retval = security_task_setnice(current, nice); if (retval) return retval; set_user_nice(current, nice); return 0; } #endif /** * task_prio - return the priority value of a given task. * @p: the task in question. * * Return: The priority value as seen by users in /proc. * * sched policy return value kernel prio user prio/nice * * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] * deadline -101 -1 0 */ int task_prio(const struct task_struct *p) { return p->prio - MAX_RT_PRIO; } /** * idle_cpu - is a given CPU idle currently? * @cpu: the processor in question. * * Return: 1 if the CPU is currently idle. 0 otherwise. */ int idle_cpu(int cpu) { struct rq *rq = cpu_rq(cpu); if (rq->curr != rq->idle) return 0; if (rq->nr_running) return 0; #ifdef CONFIG_SMP if (rq->ttwu_pending) return 0; #endif return 1; } /** * available_idle_cpu - is a given CPU idle for enqueuing work. * @cpu: the CPU in question. * * Return: 1 if the CPU is currently idle. 0 otherwise. */ int available_idle_cpu(int cpu) { if (!idle_cpu(cpu)) return 0; if (vcpu_is_preempted(cpu)) return 0; return 1; } /** * idle_task - return the idle task for a given CPU. * @cpu: the processor in question. * * Return: The idle task for the CPU @cpu. */ struct task_struct *idle_task(int cpu) { return cpu_rq(cpu)->idle; } #ifdef CONFIG_SCHED_CORE int sched_core_idle_cpu(int cpu) { struct rq *rq = cpu_rq(cpu); if (sched_core_enabled(rq) && rq->curr == rq->idle) return 1; return idle_cpu(cpu); } #endif /** * find_process_by_pid - find a process with a matching PID value. * @pid: the pid in question. * * The task of @pid, if found. %NULL otherwise. */ static struct task_struct *find_process_by_pid(pid_t pid) { return pid ? find_task_by_vpid(pid) : current; } static struct task_struct *find_get_task(pid_t pid) { struct task_struct *p; guard(rcu)(); p = find_process_by_pid(pid); if (likely(p)) get_task_struct(p); return p; } DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), find_get_task(pid), pid_t pid) /* * sched_setparam() passes in -1 for its policy, to let the functions * it calls know not to change it. */ #define SETPARAM_POLICY -1 static void __setscheduler_params(struct task_struct *p, const struct sched_attr *attr) { int policy = attr->sched_policy; if (policy == SETPARAM_POLICY) policy = p->policy; p->policy = policy; if (dl_policy(policy)) __setparam_dl(p, attr); else if (fair_policy(policy)) __setparam_fair(p, attr); /* rt-policy tasks do not have a timerslack */ if (rt_or_dl_task_policy(p)) { p->timer_slack_ns = 0; } else if (p->timer_slack_ns == 0) { /* when switching back to non-rt policy, restore timerslack */ p->timer_slack_ns = p->default_timer_slack_ns; } /* * __sched_setscheduler() ensures attr->sched_priority == 0 when * !rt_policy. Always setting this ensures that things like * getparam()/getattr() don't report silly values for !rt tasks. */ p->rt_priority = attr->sched_priority; p->normal_prio = normal_prio(p); set_load_weight(p, true); } /* * Check the target process has a UID that matches the current process's: */ static bool check_same_owner(struct task_struct *p) { const struct cred *cred = current_cred(), *pcred; guard(rcu)(); pcred = __task_cred(p); return (uid_eq(cred->euid, pcred->euid) || uid_eq(cred->euid, pcred->uid)); } #ifdef CONFIG_UCLAMP_TASK static int uclamp_validate(struct task_struct *p, const struct sched_attr *attr) { int util_min = p->uclamp_req[UCLAMP_MIN].value; int util_max = p->uclamp_req[UCLAMP_MAX].value; if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { util_min = attr->sched_util_min; if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) return -EINVAL; } if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { util_max = attr->sched_util_max; if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) return -EINVAL; } if (util_min != -1 && util_max != -1 && util_min > util_max) return -EINVAL; /* * We have valid uclamp attributes; make sure uclamp is enabled. * * We need to do that here, because enabling static branches is a * blocking operation which obviously cannot be done while holding * scheduler locks. */ static_branch_enable(&sched_uclamp_used); return 0; } static bool uclamp_reset(const struct sched_attr *attr, enum uclamp_id clamp_id, struct uclamp_se *uc_se) { /* Reset on sched class change for a non user-defined clamp value. */ if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && !uc_se->user_defined) return true; /* Reset on sched_util_{min,max} == -1. */ if (clamp_id == UCLAMP_MIN && attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && attr->sched_util_min == -1) { return true; } if (clamp_id == UCLAMP_MAX && attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && attr->sched_util_max == -1) { return true; } return false; } static void __setscheduler_uclamp(struct task_struct *p, const struct sched_attr *attr) { enum uclamp_id clamp_id; for_each_clamp_id(clamp_id) { struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; unsigned int value; if (!uclamp_reset(attr, clamp_id, uc_se)) continue; /* * RT by default have a 100% boost value that could be modified * at runtime. */ if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) value = sysctl_sched_uclamp_util_min_rt_default; else value = uclamp_none(clamp_id); uclamp_se_set(uc_se, value, false); } if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) return; if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && attr->sched_util_min != -1) { uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], attr->sched_util_min, true); } if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && attr->sched_util_max != -1) { uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], attr->sched_util_max, true); } } #else /* !CONFIG_UCLAMP_TASK: */ static inline int uclamp_validate(struct task_struct *p, const struct sched_attr *attr) { return -EOPNOTSUPP; } static void __setscheduler_uclamp(struct task_struct *p, const struct sched_attr *attr) { } #endif /* * Allow unprivileged RT tasks to decrease priority. * Only issue a capable test if needed and only once to avoid an audit * event on permitted non-privileged operations: */ static int user_check_sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, int policy, int reset_on_fork) { if (fair_policy(policy)) { if (attr->sched_nice < task_nice(p) && !is_nice_reduction(p, attr->sched_nice)) goto req_priv; } if (rt_policy(policy)) { unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); /* Can't set/change the rt policy: */ if (policy != p->policy && !rlim_rtprio) goto req_priv; /* Can't increase priority: */ if (attr->sched_priority > p->rt_priority && attr->sched_priority > rlim_rtprio) goto req_priv; } /* * Can't set/change SCHED_DEADLINE policy at all for now * (safest behavior); in the future we would like to allow * unprivileged DL tasks to increase their relative deadline * or reduce their runtime (both ways reducing utilization) */ if (dl_policy(policy)) goto req_priv; /* * Treat SCHED_IDLE as nice 20. Only allow a switch to * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. */ if (task_has_idle_policy(p) && !idle_policy(policy)) { if (!is_nice_reduction(p, task_nice(p))) goto req_priv; } /* Can't change other user's priorities: */ if (!check_same_owner(p)) goto req_priv; /* Normal users shall not reset the sched_reset_on_fork flag: */ if (p->sched_reset_on_fork && !reset_on_fork) goto req_priv; return 0; req_priv: if (!capable(CAP_SYS_NICE)) return -EPERM; return 0; } int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi) { int oldpolicy = -1, policy = attr->sched_policy; int retval, oldprio, newprio, queued, running; const struct sched_class *prev_class, *next_class; struct balance_callback *head; struct rq_flags rf; int reset_on_fork; int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; struct rq *rq; bool cpuset_locked = false; /* The pi code expects interrupts enabled */ BUG_ON(pi && in_interrupt()); recheck: /* Double check policy once rq lock held: */ if (policy < 0) { reset_on_fork = p->sched_reset_on_fork; policy = oldpolicy = p->policy; } else { reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); if (!valid_policy(policy)) return -EINVAL; } if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) return -EINVAL; /* * Valid priorities for SCHED_FIFO and SCHED_RR are * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, * SCHED_BATCH and SCHED_IDLE is 0. */ if (attr->sched_priority > MAX_RT_PRIO-1) return -EINVAL; if ((dl_policy(policy) && !__checkparam_dl(attr)) || (rt_policy(policy) != (attr->sched_priority != 0))) return -EINVAL; if (user) { retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); if (retval) return retval; if (attr->sched_flags & SCHED_FLAG_SUGOV) return -EINVAL; retval = security_task_setscheduler(p); if (retval) return retval; } /* Update task specific "requested" clamps */ if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { retval = uclamp_validate(p, attr); if (retval) return retval; } /* * SCHED_DEADLINE bandwidth accounting relies on stable cpusets * information. */ if (dl_policy(policy) || dl_policy(p->policy)) { cpuset_locked = true; cpuset_lock(); } /* * Make sure no PI-waiters arrive (or leave) while we are * changing the priority of the task: * * To be able to change p->policy safely, the appropriate * runqueue lock must be held. */ rq = task_rq_lock(p, &rf); update_rq_clock(rq); /* * Changing the policy of the stop threads its a very bad idea: */ if (p == rq->stop) { retval = -EINVAL; goto unlock; } retval = scx_check_setscheduler(p, policy); if (retval) goto unlock; /* * If not changing anything there's no need to proceed further, * but store a possible modification of reset_on_fork. */ if (unlikely(policy == p->policy)) { if (fair_policy(policy) && (attr->sched_nice != task_nice(p) || (attr->sched_runtime != p->se.slice))) goto change; if (rt_policy(policy) && attr->sched_priority != p->rt_priority) goto change; if (dl_policy(policy) && dl_param_changed(p, attr)) goto change; if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) goto change; p->sched_reset_on_fork = reset_on_fork; retval = 0; goto unlock; } change: if (user) { #ifdef CONFIG_RT_GROUP_SCHED /* * Do not allow real-time tasks into groups that have no runtime * assigned. */ if (rt_bandwidth_enabled() && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0 && !task_group_is_autogroup(task_group(p))) { retval = -EPERM; goto unlock; } #endif #ifdef CONFIG_SMP if (dl_bandwidth_enabled() && dl_policy(policy) && !(attr->sched_flags & SCHED_FLAG_SUGOV)) { cpumask_t *span = rq->rd->span; /* * Don't allow tasks with an affinity mask smaller than * the entire root_domain to become SCHED_DEADLINE. We * will also fail if there's no bandwidth available. */ if (!cpumask_subset(span, p->cpus_ptr) || rq->rd->dl_bw.bw == 0) { retval = -EPERM; goto unlock; } } #endif } /* Re-check policy now with rq lock held: */ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { policy = oldpolicy = -1; task_rq_unlock(rq, p, &rf); if (cpuset_locked) cpuset_unlock(); goto recheck; } /* * If setscheduling to SCHED_DEADLINE (or changing the parameters * of a SCHED_DEADLINE task) we need to check if enough bandwidth * is available. */ if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { retval = -EBUSY; goto unlock; } p->sched_reset_on_fork = reset_on_fork; oldprio = p->prio; newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); if (pi) { /* * Take priority boosted tasks into account. If the new * effective priority is unchanged, we just store the new * normal parameters and do not touch the scheduler class and * the runqueue. This will be done when the task deboost * itself. */ newprio = rt_effective_prio(p, newprio); if (newprio == oldprio) queue_flags &= ~DEQUEUE_MOVE; } prev_class = p->sched_class; next_class = __setscheduler_class(policy, newprio); if (prev_class != next_class && p->se.sched_delayed) dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); queued = task_on_rq_queued(p); running = task_current_donor(rq, p); if (queued) dequeue_task(rq, p, queue_flags); if (running) put_prev_task(rq, p); if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { __setscheduler_params(p, attr); p->sched_class = next_class; p->prio = newprio; } __setscheduler_uclamp(p, attr); check_class_changing(rq, p, prev_class); if (queued) { /* * We enqueue to tail when the priority of a task is * increased (user space view). */ if (oldprio < p->prio) queue_flags |= ENQUEUE_HEAD; enqueue_task(rq, p, queue_flags); } if (running) set_next_task(rq, p); check_class_changed(rq, p, prev_class, oldprio); /* Avoid rq from going away on us: */ preempt_disable(); head = splice_balance_callbacks(rq); task_rq_unlock(rq, p, &rf); if (pi) { if (cpuset_locked) cpuset_unlock(); rt_mutex_adjust_pi(p); } /* Run balance callbacks after we've adjusted the PI chain: */ balance_callbacks(rq, head); preempt_enable(); return 0; unlock: task_rq_unlock(rq, p, &rf); if (cpuset_locked) cpuset_unlock(); return retval; } static int _sched_setscheduler(struct task_struct *p, int policy, const struct sched_param *param, bool check) { struct sched_attr attr = { .sched_policy = policy, .sched_priority = param->sched_priority, .sched_nice = PRIO_TO_NICE(p->static_prio), }; if (p->se.custom_slice) attr.sched_runtime = p->se.slice; /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; policy &= ~SCHED_RESET_ON_FORK; attr.sched_policy = policy; } return __sched_setscheduler(p, &attr, check, true); } /** * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. * @p: the task in question. * @policy: new policy. * @param: structure containing the new RT priority. * * Use sched_set_fifo(), read its comment. * * Return: 0 on success. An error code otherwise. * * NOTE that the task may be already dead. */ int sched_setscheduler(struct task_struct *p, int policy, const struct sched_param *param) { return _sched_setscheduler(p, policy, param, true); } int sched_setattr(struct task_struct *p, const struct sched_attr *attr) { return __sched_setscheduler(p, attr, true, true); } int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) { return __sched_setscheduler(p, attr, false, true); } EXPORT_SYMBOL_GPL(sched_setattr_nocheck); /** * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space. * @p: the task in question. * @policy: new policy. * @param: structure containing the new RT priority. * * Just like sched_setscheduler, only don't bother checking if the * current context has permission. For example, this is needed in * stop_machine(): we create temporary high priority worker threads, * but our caller might not have that capability. * * Return: 0 on success. An error code otherwise. */ int sched_setscheduler_nocheck(struct task_struct *p, int policy, const struct sched_param *param) { return _sched_setscheduler(p, policy, param, false); } /* * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally * incapable of resource management, which is the one thing an OS really should * be doing. * * This is of course the reason it is limited to privileged users only. * * Worse still; it is fundamentally impossible to compose static priority * workloads. You cannot take two correctly working static prio workloads * and smash them together and still expect them to work. * * For this reason 'all' FIFO tasks the kernel creates are basically at: * * MAX_RT_PRIO / 2 * * The administrator _MUST_ configure the system, the kernel simply doesn't * know enough information to make a sensible choice. */ void sched_set_fifo(struct task_struct *p) { struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); } EXPORT_SYMBOL_GPL(sched_set_fifo); /* * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. */ void sched_set_fifo_low(struct task_struct *p) { struct sched_param sp = { .sched_priority = 1 }; WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); } EXPORT_SYMBOL_GPL(sched_set_fifo_low); void sched_set_normal(struct task_struct *p, int nice) { struct sched_attr attr = { .sched_policy = SCHED_NORMAL, .sched_nice = nice, }; WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); } EXPORT_SYMBOL_GPL(sched_set_normal); static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) { struct sched_param lparam; if (!param || pid < 0) return -EINVAL; if (copy_from_user(&lparam, param, sizeof(struct sched_param))) return -EFAULT; CLASS(find_get_task, p)(pid); if (!p) return -ESRCH; return sched_setscheduler(p, policy, &lparam); } /* * Mimics kernel/events/core.c perf_copy_attr(). */ static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) { u32 size; int ret; /* Zero the full structure, so that a short copy will be nice: */ memset(attr, 0, sizeof(*attr)); ret = get_user(size, &uattr->size); if (ret) return ret; /* ABI compatibility quirk: */ if (!size) size = SCHED_ATTR_SIZE_VER0; if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) goto err_size; ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); if (ret) { if (ret == -E2BIG) goto err_size; return ret; } if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && size < SCHED_ATTR_SIZE_VER1) return -EINVAL; /* * XXX: Do we want to be lenient like existing syscalls; or do we want * to be strict and return an error on out-of-bounds values? */ attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); return 0; err_size: put_user(sizeof(*attr), &uattr->size); return -E2BIG; } static void get_params(struct task_struct *p, struct sched_attr *attr) { if (task_has_dl_policy(p)) { __getparam_dl(p, attr); } else if (task_has_rt_policy(p)) { attr->sched_priority = p->rt_priority; } else { attr->sched_nice = task_nice(p); attr->sched_runtime = p->se.slice; } } /** * sys_sched_setscheduler - set/change the scheduler policy and RT priority * @pid: the pid in question. * @policy: new policy. * @param: structure containing the new RT priority. * * Return: 0 on success. An error code otherwise. */ SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) { if (policy < 0) return -EINVAL; return do_sched_setscheduler(pid, policy, param); } /** * sys_sched_setparam - set/change the RT priority of a thread * @pid: the pid in question. * @param: structure containing the new RT priority. * * Return: 0 on success. An error code otherwise. */ SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) { return do_sched_setscheduler(pid, SETPARAM_POLICY, param); } /** * sys_sched_setattr - same as above, but with extended sched_attr * @pid: the pid in question. * @uattr: structure containing the extended parameters. * @flags: for future extension. */ SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, unsigned int, flags) { struct sched_attr attr; int retval; if (!uattr || pid < 0 || flags) return -EINVAL; retval = sched_copy_attr(uattr, &attr); if (retval) return retval; if ((int)attr.sched_policy < 0) return -EINVAL; if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) attr.sched_policy = SETPARAM_POLICY; CLASS(find_get_task, p)(pid); if (!p) return -ESRCH; if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) get_params(p, &attr); return sched_setattr(p, &attr); } /** * sys_sched_getscheduler - get the policy (scheduling class) of a thread * @pid: the pid in question. * * Return: On success, the policy of the thread. Otherwise, a negative error * code. */ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) { struct task_struct *p; int retval; if (pid < 0) return -EINVAL; guard(rcu)(); p = find_process_by_pid(pid); if (!p) return -ESRCH; retval = security_task_getscheduler(p); if (!retval) { retval = p->policy; if (p->sched_reset_on_fork) retval |= SCHED_RESET_ON_FORK; } return retval; } /** * sys_sched_getparam - get the RT priority of a thread * @pid: the pid in question. * @param: structure containing the RT priority. * * Return: On success, 0 and the RT priority is in @param. Otherwise, an error * code. */ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) { struct sched_param lp = { .sched_priority = 0 }; struct task_struct *p; int retval; if (!param || pid < 0) return -EINVAL; scoped_guard (rcu) { p = find_process_by_pid(pid); if (!p) return -ESRCH; retval = security_task_getscheduler(p); if (retval) return retval; if (task_has_rt_policy(p)) lp.sched_priority = p->rt_priority; } /* * This one might sleep, we cannot do it with a spinlock held ... */ return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; } /** * sys_sched_getattr - similar to sched_getparam, but with sched_attr * @pid: the pid in question. * @uattr: structure containing the extended parameters. * @usize: sizeof(attr) for fwd/bwd comp. * @flags: for future extension. */ SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, unsigned int, usize, unsigned int, flags) { struct sched_attr kattr = { }; struct task_struct *p; int retval; if (!uattr || pid < 0 || usize > PAGE_SIZE || usize < SCHED_ATTR_SIZE_VER0 || flags) return -EINVAL; scoped_guard (rcu) { p = find_process_by_pid(pid); if (!p) return -ESRCH; retval = security_task_getscheduler(p); if (retval) return retval; kattr.sched_policy = p->policy; if (p->sched_reset_on_fork) kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; get_params(p, &kattr); kattr.sched_flags &= SCHED_FLAG_ALL; #ifdef CONFIG_UCLAMP_TASK /* * This could race with another potential updater, but this is fine * because it'll correctly read the old or the new value. We don't need * to guarantee who wins the race as long as it doesn't return garbage. */ kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; #endif } kattr.size = min(usize, sizeof(kattr)); return copy_struct_to_user(uattr, usize, &kattr, sizeof(kattr), NULL); } #ifdef CONFIG_SMP int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) { /* * If the task isn't a deadline task or admission control is * disabled then we don't care about affinity changes. */ if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) return 0; /* * Since bandwidth control happens on root_domain basis, * if admission test is enabled, we only admit -deadline * tasks allowed to run on all the CPUs in the task's * root_domain. */ guard(rcu)(); if (!cpumask_subset(task_rq(p)->rd->span, mask)) return -EBUSY; return 0; } #endif /* CONFIG_SMP */ int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) { int retval; cpumask_var_t cpus_allowed, new_mask; if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) return -ENOMEM; if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { retval = -ENOMEM; goto out_free_cpus_allowed; } cpuset_cpus_allowed(p, cpus_allowed); cpumask_and(new_mask, ctx->new_mask, cpus_allowed); ctx->new_mask = new_mask; ctx->flags |= SCA_CHECK; retval = dl_task_check_affinity(p, new_mask); if (retval) goto out_free_new_mask; retval = __set_cpus_allowed_ptr(p, ctx); if (retval) goto out_free_new_mask; cpuset_cpus_allowed(p, cpus_allowed); if (!cpumask_subset(new_mask, cpus_allowed)) { /* * We must have raced with a concurrent cpuset update. * Just reset the cpumask to the cpuset's cpus_allowed. */ cpumask_copy(new_mask, cpus_allowed); /* * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() * will restore the previous user_cpus_ptr value. * * In the unlikely event a previous user_cpus_ptr exists, * we need to further restrict the mask to what is allowed * by that old user_cpus_ptr. */ if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { bool empty = !cpumask_and(new_mask, new_mask, ctx->user_mask); if (empty) cpumask_copy(new_mask, cpus_allowed); } __set_cpus_allowed_ptr(p, ctx); retval = -EINVAL; } out_free_new_mask: free_cpumask_var(new_mask); out_free_cpus_allowed: free_cpumask_var(cpus_allowed); return retval; } long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) { struct affinity_context ac; struct cpumask *user_mask; int retval; CLASS(find_get_task, p)(pid); if (!p) return -ESRCH; if (p->flags & PF_NO_SETAFFINITY) return -EINVAL; if (!check_same_owner(p)) { guard(rcu)(); if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) return -EPERM; } retval = security_task_setscheduler(p); if (retval) return retval; /* * With non-SMP configs, user_cpus_ptr/user_mask isn't used and * alloc_user_cpus_ptr() returns NULL. */ user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); if (user_mask) { cpumask_copy(user_mask, in_mask); } else if (IS_ENABLED(CONFIG_SMP)) { return -ENOMEM; } ac = (struct affinity_context){ .new_mask = in_mask, .user_mask = user_mask, .flags = SCA_USER, }; retval = __sched_setaffinity(p, &ac); kfree(ac.user_mask); return retval; } static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, struct cpumask *new_mask) { if (len < cpumask_size()) cpumask_clear(new_mask); else if (len > cpumask_size()) len = cpumask_size(); return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; } /** * sys_sched_setaffinity - set the CPU affinity of a process * @pid: pid of the process * @len: length in bytes of the bitmask pointed to by user_mask_ptr * @user_mask_ptr: user-space pointer to the new CPU mask * * Return: 0 on success. An error code otherwise. */ SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, unsigned long __user *, user_mask_ptr) { cpumask_var_t new_mask; int retval; if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) return -ENOMEM; retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); if (retval == 0) retval = sched_setaffinity(pid, new_mask); free_cpumask_var(new_mask); return retval; } long sched_getaffinity(pid_t pid, struct cpumask *mask) { struct task_struct *p; int retval; guard(rcu)(); p = find_process_by_pid(pid); if (!p) return -ESRCH; retval = security_task_getscheduler(p); if (retval) return retval; guard(raw_spinlock_irqsave)(&p->pi_lock); cpumask_and(mask, &p->cpus_mask, cpu_active_mask); return 0; } /** * sys_sched_getaffinity - get the CPU affinity of a process * @pid: pid of the process * @len: length in bytes of the bitmask pointed to by user_mask_ptr * @user_mask_ptr: user-space pointer to hold the current CPU mask * * Return: size of CPU mask copied to user_mask_ptr on success. An * error code otherwise. */ SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, unsigned long __user *, user_mask_ptr) { int ret; cpumask_var_t mask; if ((len * BITS_PER_BYTE) < nr_cpu_ids) return -EINVAL; if (len & (sizeof(unsigned long)-1)) return -EINVAL; if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; ret = sched_getaffinity(pid, mask); if (ret == 0) { unsigned int retlen = min(len, cpumask_size()); if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) ret = -EFAULT; else ret = retlen; } free_cpumask_var(mask); return ret; } static void do_sched_yield(void) { struct rq_flags rf; struct rq *rq; rq = this_rq_lock_irq(&rf); schedstat_inc(rq->yld_count); current->sched_class->yield_task(rq); preempt_disable(); rq_unlock_irq(rq, &rf); sched_preempt_enable_no_resched(); schedule(); } /** * sys_sched_yield - yield the current processor to other threads. * * This function yields the current CPU to other tasks. If there are no * other threads running on this CPU then this function will return. * * Return: 0. */ SYSCALL_DEFINE0(sched_yield) { do_sched_yield(); return 0; } /** * yield - yield the current processor to other threads. * * Do not ever use this function, there's a 99% chance you're doing it wrong. * * The scheduler is at all times free to pick the calling task as the most * eligible task to run, if removing the yield() call from your code breaks * it, it's already broken. * * Typical broken usage is: * * while (!event) * yield(); * * where one assumes that yield() will let 'the other' process run that will * make event true. If the current task is a SCHED_FIFO task that will never * happen. Never use yield() as a progress guarantee!! * * If you want to use yield() to wait for something, use wait_event(). * If you want to use yield() to be 'nice' for others, use cond_resched(). * If you still want to use yield(), do not! */ void __sched yield(void) { set_current_state(TASK_RUNNING); do_sched_yield(); } EXPORT_SYMBOL(yield); /** * yield_to - yield the current processor to another thread in * your thread group, or accelerate that thread toward the * processor it's on. * @p: target task * @preempt: whether task preemption is allowed or not * * It's the caller's job to ensure that the target task struct * can't go away on us before we can do any checks. * * Return: * true (>0) if we indeed boosted the target task. * false (0) if we failed to boost the target. * -ESRCH if there's no task to yield to. */ int __sched yield_to(struct task_struct *p, bool preempt) { struct task_struct *curr = current; struct rq *rq, *p_rq; int yielded = 0; scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { rq = this_rq(); again: p_rq = task_rq(p); /* * If we're the only runnable task on the rq and target rq also * has only one task, there's absolutely no point in yielding. */ if (rq->nr_running == 1 && p_rq->nr_running == 1) return -ESRCH; guard(double_rq_lock)(rq, p_rq); if (task_rq(p) != p_rq) goto again; if (!curr->sched_class->yield_to_task) return 0; if (curr->sched_class != p->sched_class) return 0; if (task_on_cpu(p_rq, p) || !task_is_running(p)) return 0; yielded = curr->sched_class->yield_to_task(rq, p); if (yielded) { schedstat_inc(rq->yld_count); /* * Make p's CPU reschedule; pick_next_entity * takes care of fairness. */ if (preempt && rq != p_rq) resched_curr(p_rq); } } if (yielded) schedule(); return yielded; } EXPORT_SYMBOL_GPL(yield_to); /** * sys_sched_get_priority_max - return maximum RT priority. * @policy: scheduling class. * * Return: On success, this syscall returns the maximum * rt_priority that can be used by a given scheduling class. * On failure, a negative error code is returned. */ SYSCALL_DEFINE1(sched_get_priority_max, int, policy) { int ret = -EINVAL; switch (policy) { case SCHED_FIFO: case SCHED_RR: ret = MAX_RT_PRIO-1; break; case SCHED_DEADLINE: case SCHED_NORMAL: case SCHED_BATCH: case SCHED_IDLE: case SCHED_EXT: ret = 0; break; } return ret; } /** * sys_sched_get_priority_min - return minimum RT priority. * @policy: scheduling class. * * Return: On success, this syscall returns the minimum * rt_priority that can be used by a given scheduling class. * On failure, a negative error code is returned. */ SYSCALL_DEFINE1(sched_get_priority_min, int, policy) { int ret = -EINVAL; switch (policy) { case SCHED_FIFO: case SCHED_RR: ret = 1; break; case SCHED_DEADLINE: case SCHED_NORMAL: case SCHED_BATCH: case SCHED_IDLE: case SCHED_EXT: ret = 0; } return ret; } static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) { unsigned int time_slice = 0; int retval; if (pid < 0) return -EINVAL; scoped_guard (rcu) { struct task_struct *p = find_process_by_pid(pid); if (!p) return -ESRCH; retval = security_task_getscheduler(p); if (retval) return retval; scoped_guard (task_rq_lock, p) { struct rq *rq = scope.rq; if (p->sched_class->get_rr_interval) time_slice = p->sched_class->get_rr_interval(rq, p); } } jiffies_to_timespec64(time_slice, t); return 0; } /** * sys_sched_rr_get_interval - return the default time-slice of a process. * @pid: pid of the process. * @interval: userspace pointer to the time-slice value. * * this syscall writes the default time-slice value of a given process * into the user-space timespec buffer. A value of '0' means infinity. * * Return: On success, 0 and the time-slice is in @interval. Otherwise, * an error code. */ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, struct __kernel_timespec __user *, interval) { struct timespec64 t; int retval = sched_rr_get_interval(pid, &t); if (retval == 0) retval = put_timespec64(&t, interval); return retval; } #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, struct old_timespec32 __user *, interval) { struct timespec64 t; int retval = sched_rr_get_interval(pid, &t); if (retval == 0) retval = put_old_timespec32(&t, interval); return retval; } #endif