// SPDX-License-Identifier: GPL-2.0 /* * Code for manipulating bucket marks for garbage collection. * * Copyright 2014 Datera, Inc. */ #include "bcachefs.h" #include "alloc_background.h" #include "bset.h" #include "btree_gc.h" #include "btree_update.h" #include "buckets.h" #include "buckets_waiting_for_journal.h" #include "ec.h" #include "error.h" #include "inode.h" #include "movinggc.h" #include "recovery.h" #include "reflink.h" #include "replicas.h" #include "subvolume.h" #include "trace.h" #include static inline void fs_usage_data_type_to_base(struct bch_fs_usage *fs_usage, enum bch_data_type data_type, s64 sectors) { switch (data_type) { case BCH_DATA_btree: fs_usage->btree += sectors; break; case BCH_DATA_user: case BCH_DATA_parity: fs_usage->data += sectors; break; case BCH_DATA_cached: fs_usage->cached += sectors; break; default: break; } } void bch2_fs_usage_initialize(struct bch_fs *c) { struct bch_fs_usage *usage; struct bch_dev *ca; unsigned i; percpu_down_write(&c->mark_lock); usage = c->usage_base; for (i = 0; i < ARRAY_SIZE(c->usage); i++) bch2_fs_usage_acc_to_base(c, i); for (i = 0; i < BCH_REPLICAS_MAX; i++) usage->reserved += usage->persistent_reserved[i]; for (i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry *e = cpu_replicas_entry(&c->replicas, i); fs_usage_data_type_to_base(usage, e->data_type, usage->replicas[i]); } for_each_member_device(ca, c, i) { struct bch_dev_usage dev = bch2_dev_usage_read(ca); usage->hidden += (dev.d[BCH_DATA_sb].buckets + dev.d[BCH_DATA_journal].buckets) * ca->mi.bucket_size; } percpu_up_write(&c->mark_lock); } static inline struct bch_dev_usage *dev_usage_ptr(struct bch_dev *ca, unsigned journal_seq, bool gc) { BUG_ON(!gc && !journal_seq); return this_cpu_ptr(gc ? ca->usage_gc : ca->usage[journal_seq & JOURNAL_BUF_MASK]); } struct bch_dev_usage bch2_dev_usage_read(struct bch_dev *ca) { struct bch_fs *c = ca->fs; struct bch_dev_usage ret; unsigned seq, i, u64s = dev_usage_u64s(); do { seq = read_seqcount_begin(&c->usage_lock); memcpy(&ret, ca->usage_base, u64s * sizeof(u64)); for (i = 0; i < ARRAY_SIZE(ca->usage); i++) acc_u64s_percpu((u64 *) &ret, (u64 __percpu *) ca->usage[i], u64s); } while (read_seqcount_retry(&c->usage_lock, seq)); return ret; } static inline struct bch_fs_usage *fs_usage_ptr(struct bch_fs *c, unsigned journal_seq, bool gc) { percpu_rwsem_assert_held(&c->mark_lock); BUG_ON(!gc && !journal_seq); return this_cpu_ptr(gc ? c->usage_gc : c->usage[journal_seq & JOURNAL_BUF_MASK]); } u64 bch2_fs_usage_read_one(struct bch_fs *c, u64 *v) { ssize_t offset = v - (u64 *) c->usage_base; unsigned i, seq; u64 ret; BUG_ON(offset < 0 || offset >= fs_usage_u64s(c)); percpu_rwsem_assert_held(&c->mark_lock); do { seq = read_seqcount_begin(&c->usage_lock); ret = *v; for (i = 0; i < ARRAY_SIZE(c->usage); i++) ret += percpu_u64_get((u64 __percpu *) c->usage[i] + offset); } while (read_seqcount_retry(&c->usage_lock, seq)); return ret; } struct bch_fs_usage_online *bch2_fs_usage_read(struct bch_fs *c) { struct bch_fs_usage_online *ret; unsigned seq, i, v, u64s = fs_usage_u64s(c) + 1; retry: ret = kmalloc(u64s * sizeof(u64), GFP_NOFS); if (unlikely(!ret)) return NULL; percpu_down_read(&c->mark_lock); v = fs_usage_u64s(c) + 1; if (unlikely(u64s != v)) { u64s = v; percpu_up_read(&c->mark_lock); kfree(ret); goto retry; } ret->online_reserved = percpu_u64_get(c->online_reserved); do { seq = read_seqcount_begin(&c->usage_lock); memcpy(&ret->u, c->usage_base, u64s * sizeof(u64)); for (i = 0; i < ARRAY_SIZE(c->usage); i++) acc_u64s_percpu((u64 *) &ret->u, (u64 __percpu *) c->usage[i], u64s); } while (read_seqcount_retry(&c->usage_lock, seq)); return ret; } void bch2_fs_usage_acc_to_base(struct bch_fs *c, unsigned idx) { struct bch_dev *ca; unsigned i, u64s = fs_usage_u64s(c); BUG_ON(idx >= ARRAY_SIZE(c->usage)); preempt_disable(); write_seqcount_begin(&c->usage_lock); acc_u64s_percpu((u64 *) c->usage_base, (u64 __percpu *) c->usage[idx], u64s); percpu_memset(c->usage[idx], 0, u64s * sizeof(u64)); rcu_read_lock(); for_each_member_device_rcu(ca, c, i, NULL) { u64s = dev_usage_u64s(); acc_u64s_percpu((u64 *) ca->usage_base, (u64 __percpu *) ca->usage[idx], u64s); percpu_memset(ca->usage[idx], 0, u64s * sizeof(u64)); } rcu_read_unlock(); write_seqcount_end(&c->usage_lock); preempt_enable(); } void bch2_fs_usage_to_text(struct printbuf *out, struct bch_fs *c, struct bch_fs_usage_online *fs_usage) { unsigned i; prt_printf(out, "capacity:\t\t\t%llu\n", c->capacity); prt_printf(out, "hidden:\t\t\t\t%llu\n", fs_usage->u.hidden); prt_printf(out, "data:\t\t\t\t%llu\n", fs_usage->u.data); prt_printf(out, "cached:\t\t\t\t%llu\n", fs_usage->u.cached); prt_printf(out, "reserved:\t\t\t%llu\n", fs_usage->u.reserved); prt_printf(out, "nr_inodes:\t\t\t%llu\n", fs_usage->u.nr_inodes); prt_printf(out, "online reserved:\t\t%llu\n", fs_usage->online_reserved); for (i = 0; i < ARRAY_SIZE(fs_usage->u.persistent_reserved); i++) { prt_printf(out, "%u replicas:\n", i + 1); prt_printf(out, "\treserved:\t\t%llu\n", fs_usage->u.persistent_reserved[i]); } for (i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry *e = cpu_replicas_entry(&c->replicas, i); prt_printf(out, "\t"); bch2_replicas_entry_to_text(out, e); prt_printf(out, ":\t%llu\n", fs_usage->u.replicas[i]); } } static u64 reserve_factor(u64 r) { return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR); } u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage_online *fs_usage) { return min(fs_usage->u.hidden + fs_usage->u.btree + fs_usage->u.data + reserve_factor(fs_usage->u.reserved + fs_usage->online_reserved), c->capacity); } static struct bch_fs_usage_short __bch2_fs_usage_read_short(struct bch_fs *c) { struct bch_fs_usage_short ret; u64 data, reserved; ret.capacity = c->capacity - bch2_fs_usage_read_one(c, &c->usage_base->hidden); data = bch2_fs_usage_read_one(c, &c->usage_base->data) + bch2_fs_usage_read_one(c, &c->usage_base->btree); reserved = bch2_fs_usage_read_one(c, &c->usage_base->reserved) + percpu_u64_get(c->online_reserved); ret.used = min(ret.capacity, data + reserve_factor(reserved)); ret.free = ret.capacity - ret.used; ret.nr_inodes = bch2_fs_usage_read_one(c, &c->usage_base->nr_inodes); return ret; } struct bch_fs_usage_short bch2_fs_usage_read_short(struct bch_fs *c) { struct bch_fs_usage_short ret; percpu_down_read(&c->mark_lock); ret = __bch2_fs_usage_read_short(c); percpu_up_read(&c->mark_lock); return ret; } void bch2_dev_usage_init(struct bch_dev *ca) { ca->usage_base->d[BCH_DATA_free].buckets = ca->mi.nbuckets - ca->mi.first_bucket; } static inline int bucket_sectors_fragmented(struct bch_dev *ca, struct bch_alloc_v4 a) { return a.dirty_sectors ? max(0, (int) ca->mi.bucket_size - (int) a.dirty_sectors) : 0; } static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca, struct bch_alloc_v4 old, struct bch_alloc_v4 new, u64 journal_seq, bool gc) { struct bch_fs_usage *fs_usage; struct bch_dev_usage *u; preempt_disable(); fs_usage = fs_usage_ptr(c, journal_seq, gc); if (data_type_is_hidden(old.data_type)) fs_usage->hidden -= ca->mi.bucket_size; if (data_type_is_hidden(new.data_type)) fs_usage->hidden += ca->mi.bucket_size; u = dev_usage_ptr(ca, journal_seq, gc); u->d[old.data_type].buckets--; u->d[new.data_type].buckets++; u->buckets_ec -= (int) !!old.stripe; u->buckets_ec += (int) !!new.stripe; u->d[old.data_type].sectors -= old.dirty_sectors; u->d[new.data_type].sectors += new.dirty_sectors; u->d[BCH_DATA_cached].sectors += new.cached_sectors; u->d[BCH_DATA_cached].sectors -= old.cached_sectors; u->d[old.data_type].fragmented -= bucket_sectors_fragmented(ca, old); u->d[new.data_type].fragmented += bucket_sectors_fragmented(ca, new); preempt_enable(); } static void bch2_dev_usage_update_m(struct bch_fs *c, struct bch_dev *ca, struct bucket old, struct bucket new, u64 journal_seq, bool gc) { struct bch_alloc_v4 old_a = { .gen = old.gen, .data_type = old.data_type, .dirty_sectors = old.dirty_sectors, .cached_sectors = old.cached_sectors, .stripe = old.stripe, }; struct bch_alloc_v4 new_a = { .gen = new.gen, .data_type = new.data_type, .dirty_sectors = new.dirty_sectors, .cached_sectors = new.cached_sectors, .stripe = new.stripe, }; bch2_dev_usage_update(c, ca, old_a, new_a, journal_seq, gc); } static inline int __update_replicas(struct bch_fs *c, struct bch_fs_usage *fs_usage, struct bch_replicas_entry *r, s64 sectors) { int idx = bch2_replicas_entry_idx(c, r); if (idx < 0) return -1; fs_usage_data_type_to_base(fs_usage, r->data_type, sectors); fs_usage->replicas[idx] += sectors; return 0; } static inline int update_replicas(struct bch_fs *c, struct bkey_s_c k, struct bch_replicas_entry *r, s64 sectors, unsigned journal_seq, bool gc) { struct bch_fs_usage __percpu *fs_usage; int idx, ret = 0; struct printbuf buf = PRINTBUF; percpu_down_read(&c->mark_lock); buf.atomic++; idx = bch2_replicas_entry_idx(c, r); if (idx < 0 && fsck_err(c, "no replicas entry\n" " while marking %s", (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { percpu_up_read(&c->mark_lock); ret = bch2_mark_replicas(c, r); percpu_down_read(&c->mark_lock); if (ret) goto err; idx = bch2_replicas_entry_idx(c, r); } if (idx < 0) { ret = -1; goto err; } preempt_disable(); fs_usage = fs_usage_ptr(c, journal_seq, gc); fs_usage_data_type_to_base(fs_usage, r->data_type, sectors); fs_usage->replicas[idx] += sectors; preempt_enable(); err: fsck_err: percpu_up_read(&c->mark_lock); printbuf_exit(&buf); return ret; } static inline int update_cached_sectors(struct bch_fs *c, struct bkey_s_c k, unsigned dev, s64 sectors, unsigned journal_seq, bool gc) { struct bch_replicas_padded r; bch2_replicas_entry_cached(&r.e, dev); return update_replicas(c, k, &r.e, sectors, journal_seq, gc); } static struct replicas_delta_list * replicas_deltas_realloc(struct btree_trans *trans, unsigned more) { struct replicas_delta_list *d = trans->fs_usage_deltas; unsigned new_size = d ? (d->size + more) * 2 : 128; unsigned alloc_size = sizeof(*d) + new_size; WARN_ON_ONCE(alloc_size > REPLICAS_DELTA_LIST_MAX); if (!d || d->used + more > d->size) { d = krealloc(d, alloc_size, GFP_NOIO|__GFP_ZERO); BUG_ON(!d && alloc_size > REPLICAS_DELTA_LIST_MAX); if (!d) { d = mempool_alloc(&trans->c->replicas_delta_pool, GFP_NOIO); memset(d, 0, REPLICAS_DELTA_LIST_MAX); if (trans->fs_usage_deltas) memcpy(d, trans->fs_usage_deltas, trans->fs_usage_deltas->size + sizeof(*d)); new_size = REPLICAS_DELTA_LIST_MAX - sizeof(*d); kfree(trans->fs_usage_deltas); } d->size = new_size; trans->fs_usage_deltas = d; } return d; } static inline void update_replicas_list(struct btree_trans *trans, struct bch_replicas_entry *r, s64 sectors) { struct replicas_delta_list *d; struct replicas_delta *n; unsigned b; if (!sectors) return; b = replicas_entry_bytes(r) + 8; d = replicas_deltas_realloc(trans, b); n = (void *) d->d + d->used; n->delta = sectors; memcpy((void *) n + offsetof(struct replicas_delta, r), r, replicas_entry_bytes(r)); bch2_replicas_entry_sort(&n->r); d->used += b; } static inline void update_cached_sectors_list(struct btree_trans *trans, unsigned dev, s64 sectors) { struct bch_replicas_padded r; bch2_replicas_entry_cached(&r.e, dev); update_replicas_list(trans, &r.e, sectors); } int bch2_mark_alloc(struct btree_trans *trans, struct bkey_s_c old, struct bkey_s_c new, unsigned flags) { bool gc = flags & BTREE_TRIGGER_GC; u64 journal_seq = trans->journal_res.seq; struct bch_fs *c = trans->c; struct bch_alloc_v4 old_a, new_a; struct bch_dev *ca; int ret = 0; /* * alloc btree is read in by bch2_alloc_read, not gc: */ if ((flags & BTREE_TRIGGER_GC) && !(flags & BTREE_TRIGGER_BUCKET_INVALIDATE)) return 0; if (bch2_trans_inconsistent_on(!bch2_dev_bucket_exists(c, new.k->p), trans, "alloc key for invalid device or bucket")) return -EIO; ca = bch_dev_bkey_exists(c, new.k->p.inode); bch2_alloc_to_v4(old, &old_a); bch2_alloc_to_v4(new, &new_a); if ((flags & BTREE_TRIGGER_INSERT) && data_type_is_empty(old_a.data_type) != data_type_is_empty(new_a.data_type) && new.k->type == KEY_TYPE_alloc_v4) { struct bch_alloc_v4 *v = (struct bch_alloc_v4 *) new.v; BUG_ON(!journal_seq); /* * If the btree updates referring to a bucket weren't flushed * before the bucket became empty again, then the we don't have * to wait on a journal flush before we can reuse the bucket: */ new_a.journal_seq = data_type_is_empty(new_a.data_type) && (journal_seq == v->journal_seq || bch2_journal_noflush_seq(&c->journal, v->journal_seq)) ? 0 : journal_seq; v->journal_seq = new_a.journal_seq; } if (!data_type_is_empty(old_a.data_type) && data_type_is_empty(new_a.data_type) && new_a.journal_seq) { ret = bch2_set_bucket_needs_journal_commit(&c->buckets_waiting_for_journal, c->journal.flushed_seq_ondisk, new.k->p.inode, new.k->p.offset, new_a.journal_seq); if (ret) { bch2_fs_fatal_error(c, "error setting bucket_needs_journal_commit: %i", ret); return ret; } } percpu_down_read(&c->mark_lock); if (!gc && new_a.gen != old_a.gen) *bucket_gen(ca, new.k->p.offset) = new_a.gen; bch2_dev_usage_update(c, ca, old_a, new_a, journal_seq, gc); if (gc) { struct bucket *g = gc_bucket(ca, new.k->p.offset); bucket_lock(g); g->gen_valid = 1; g->gen = new_a.gen; g->data_type = new_a.data_type; g->stripe = new_a.stripe; g->stripe_redundancy = new_a.stripe_redundancy; g->dirty_sectors = new_a.dirty_sectors; g->cached_sectors = new_a.cached_sectors; bucket_unlock(g); } percpu_up_read(&c->mark_lock); /* * need to know if we're getting called from the invalidate path or * not: */ if ((flags & BTREE_TRIGGER_BUCKET_INVALIDATE) && old_a.cached_sectors) { ret = update_cached_sectors(c, new, ca->dev_idx, -old_a.cached_sectors, journal_seq, gc); if (ret) { bch2_fs_fatal_error(c, "bch2_mark_alloc(): no replicas entry while updating cached sectors"); return ret; } } if (new_a.data_type == BCH_DATA_free && (!new_a.journal_seq || new_a.journal_seq < c->journal.flushed_seq_ondisk)) closure_wake_up(&c->freelist_wait); if (new_a.data_type == BCH_DATA_need_discard && (!new_a.journal_seq || new_a.journal_seq < c->journal.flushed_seq_ondisk)) bch2_do_discards(c); if (old_a.data_type != BCH_DATA_cached && new_a.data_type == BCH_DATA_cached && should_invalidate_buckets(ca, bch2_dev_usage_read(ca))) bch2_do_invalidates(c); if (new_a.data_type == BCH_DATA_need_gc_gens) bch2_do_gc_gens(c); return 0; } int bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, enum bch_data_type data_type, unsigned sectors, struct gc_pos pos, unsigned flags) { struct bucket old, new, *g; int ret = 0; BUG_ON(!(flags & BTREE_TRIGGER_GC)); BUG_ON(data_type != BCH_DATA_sb && data_type != BCH_DATA_journal); /* * Backup superblock might be past the end of our normal usable space: */ if (b >= ca->mi.nbuckets) return 0; percpu_down_read(&c->mark_lock); g = gc_bucket(ca, b); bucket_lock(g); old = *g; if (bch2_fs_inconsistent_on(g->data_type && g->data_type != data_type, c, "different types of data in same bucket: %s, %s", bch2_data_types[g->data_type], bch2_data_types[data_type])) { ret = -EIO; goto err; } if (bch2_fs_inconsistent_on((u64) g->dirty_sectors + sectors > ca->mi.bucket_size, c, "bucket %u:%zu gen %u data type %s sector count overflow: %u + %u > bucket size", ca->dev_idx, b, g->gen, bch2_data_types[g->data_type ?: data_type], g->dirty_sectors, sectors)) { ret = -EIO; goto err; } g->data_type = data_type; g->dirty_sectors += sectors; new = *g; err: bucket_unlock(g); if (!ret) bch2_dev_usage_update_m(c, ca, old, new, 0, true); percpu_up_read(&c->mark_lock); return ret; } static s64 ptr_disk_sectors(s64 sectors, struct extent_ptr_decoded p) { EBUG_ON(sectors < 0); return crc_is_compressed(p.crc) ? DIV_ROUND_UP_ULL(sectors * p.crc.compressed_size, p.crc.uncompressed_size) : sectors; } static int check_bucket_ref(struct bch_fs *c, struct bkey_s_c k, const struct bch_extent_ptr *ptr, s64 sectors, enum bch_data_type ptr_data_type, u8 b_gen, u8 bucket_data_type, u32 dirty_sectors, u32 cached_sectors) { struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); size_t bucket_nr = PTR_BUCKET_NR(ca, ptr); u16 bucket_sectors = !ptr->cached ? dirty_sectors : cached_sectors; struct printbuf buf = PRINTBUF; int ret = 0; if (bucket_data_type == BCH_DATA_cached) bucket_data_type = BCH_DATA_user; if (gen_after(ptr->gen, b_gen)) { bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "bucket %u:%zu gen %u data type %s: ptr gen %u newer than bucket gen\n" "while marking %s", ptr->dev, bucket_nr, b_gen, bch2_data_types[bucket_data_type ?: ptr_data_type], ptr->gen, (bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ret = -EIO; goto err; } if (gen_cmp(b_gen, ptr->gen) > BUCKET_GC_GEN_MAX) { bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "bucket %u:%zu gen %u data type %s: ptr gen %u too stale\n" "while marking %s", ptr->dev, bucket_nr, b_gen, bch2_data_types[bucket_data_type ?: ptr_data_type], ptr->gen, (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ret = -EIO; goto err; } if (b_gen != ptr->gen && !ptr->cached) { bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "bucket %u:%zu gen %u (mem gen %u) data type %s: stale dirty ptr (gen %u)\n" "while marking %s", ptr->dev, bucket_nr, b_gen, *bucket_gen(ca, bucket_nr), bch2_data_types[bucket_data_type ?: ptr_data_type], ptr->gen, (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ret = -EIO; goto err; } if (b_gen != ptr->gen) { ret = 1; goto err; } if (!data_type_is_empty(bucket_data_type) && ptr_data_type && bucket_data_type != ptr_data_type) { bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "bucket %u:%zu gen %u different types of data in same bucket: %s, %s\n" "while marking %s", ptr->dev, bucket_nr, b_gen, bch2_data_types[bucket_data_type], bch2_data_types[ptr_data_type], (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ret = -EIO; goto err; } if ((unsigned) (bucket_sectors + sectors) > U32_MAX) { bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "bucket %u:%zu gen %u data type %s sector count overflow: %u + %lli > U16_MAX\n" "while marking %s", ptr->dev, bucket_nr, b_gen, bch2_data_types[bucket_data_type ?: ptr_data_type], bucket_sectors, sectors, (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ret = -EIO; goto err; } err: printbuf_exit(&buf); return ret; } static int mark_stripe_bucket(struct btree_trans *trans, struct bkey_s_c k, unsigned ptr_idx, unsigned flags) { struct bch_fs *c = trans->c; u64 journal_seq = trans->journal_res.seq; const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; unsigned nr_data = s->nr_blocks - s->nr_redundant; bool parity = ptr_idx >= nr_data; enum bch_data_type data_type = parity ? BCH_DATA_parity : 0; s64 sectors = parity ? le16_to_cpu(s->sectors) : 0; const struct bch_extent_ptr *ptr = s->ptrs + ptr_idx; struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); struct bucket old, new, *g; struct printbuf buf = PRINTBUF; int ret = 0; BUG_ON(!(flags & BTREE_TRIGGER_GC)); /* * XXX doesn't handle deletion */ percpu_down_read(&c->mark_lock); buf.atomic++; g = PTR_GC_BUCKET(ca, ptr); if (g->dirty_sectors || (g->stripe && g->stripe != k.k->p.offset)) { bch2_fs_inconsistent(c, "bucket %u:%zu gen %u: multiple stripes using same bucket\n%s", ptr->dev, PTR_BUCKET_NR(ca, ptr), g->gen, (bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ret = -EINVAL; goto err; } bucket_lock(g); old = *g; ret = check_bucket_ref(c, k, ptr, sectors, data_type, g->gen, g->data_type, g->dirty_sectors, g->cached_sectors); if (ret) goto err; if (data_type) g->data_type = data_type; g->dirty_sectors += sectors; g->stripe = k.k->p.offset; g->stripe_redundancy = s->nr_redundant; new = *g; err: bucket_unlock(g); if (!ret) bch2_dev_usage_update_m(c, ca, old, new, journal_seq, true); percpu_up_read(&c->mark_lock); printbuf_exit(&buf); return ret; } static int __mark_pointer(struct btree_trans *trans, struct bkey_s_c k, const struct bch_extent_ptr *ptr, s64 sectors, enum bch_data_type ptr_data_type, u8 bucket_gen, u8 *bucket_data_type, u32 *dirty_sectors, u32 *cached_sectors) { u32 *dst_sectors = !ptr->cached ? dirty_sectors : cached_sectors; int ret = check_bucket_ref(trans->c, k, ptr, sectors, ptr_data_type, bucket_gen, *bucket_data_type, *dirty_sectors, *cached_sectors); if (ret) return ret; *dst_sectors += sectors; *bucket_data_type = *dirty_sectors || *cached_sectors ? ptr_data_type : 0; return 0; } static int bch2_mark_pointer(struct btree_trans *trans, struct bkey_s_c k, struct extent_ptr_decoded p, s64 sectors, enum bch_data_type data_type, unsigned flags) { u64 journal_seq = trans->journal_res.seq; struct bch_fs *c = trans->c; struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); struct bucket old, new, *g; u8 bucket_data_type; int ret = 0; BUG_ON(!(flags & BTREE_TRIGGER_GC)); percpu_down_read(&c->mark_lock); g = PTR_GC_BUCKET(ca, &p.ptr); bucket_lock(g); old = *g; bucket_data_type = g->data_type; ret = __mark_pointer(trans, k, &p.ptr, sectors, data_type, g->gen, &bucket_data_type, &g->dirty_sectors, &g->cached_sectors); if (!ret) g->data_type = bucket_data_type; new = *g; bucket_unlock(g); if (!ret) bch2_dev_usage_update_m(c, ca, old, new, journal_seq, true); percpu_up_read(&c->mark_lock); return ret; } static int bch2_mark_stripe_ptr(struct btree_trans *trans, struct bkey_s_c k, struct bch_extent_stripe_ptr p, enum bch_data_type data_type, s64 sectors, unsigned flags) { struct bch_fs *c = trans->c; struct bch_replicas_padded r; struct gc_stripe *m; BUG_ON(!(flags & BTREE_TRIGGER_GC)); m = genradix_ptr_alloc(&c->gc_stripes, p.idx, GFP_KERNEL); if (!m) { bch_err(c, "error allocating memory for gc_stripes, idx %llu", (u64) p.idx); return -ENOMEM; } spin_lock(&c->ec_stripes_heap_lock); if (!m || !m->alive) { spin_unlock(&c->ec_stripes_heap_lock); bch_err_ratelimited(c, "pointer to nonexistent stripe %llu", (u64) p.idx); bch2_inconsistent_error(c); return -EIO; } m->block_sectors[p.block] += sectors; r = m->r; spin_unlock(&c->ec_stripes_heap_lock); r.e.data_type = data_type; update_replicas(c, k, &r.e, sectors, trans->journal_res.seq, true); return 0; } int bch2_mark_extent(struct btree_trans *trans, struct bkey_s_c old, struct bkey_s_c new, unsigned flags) { u64 journal_seq = trans->journal_res.seq; struct bch_fs *c = trans->c; struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ? old: new; struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; struct bch_replicas_padded r; enum bch_data_type data_type = bkey_is_btree_ptr(k.k) ? BCH_DATA_btree : BCH_DATA_user; s64 sectors = bkey_is_btree_ptr(k.k) ? btree_sectors(c) : k.k->size; s64 dirty_sectors = 0; bool stale; int ret; BUG_ON(!(flags & BTREE_TRIGGER_GC)); r.e.data_type = data_type; r.e.nr_devs = 0; r.e.nr_required = 1; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { s64 disk_sectors = ptr_disk_sectors(sectors, p); if (flags & BTREE_TRIGGER_OVERWRITE) disk_sectors = -disk_sectors; ret = bch2_mark_pointer(trans, k, p, disk_sectors, data_type, flags); if (ret < 0) return ret; stale = ret > 0; if (p.ptr.cached) { if (!stale) { ret = update_cached_sectors(c, k, p.ptr.dev, disk_sectors, journal_seq, true); if (ret) { bch2_fs_fatal_error(c, "bch2_mark_extent(): no replicas entry while updating cached sectors"); return ret; } } } else if (!p.has_ec) { dirty_sectors += disk_sectors; r.e.devs[r.e.nr_devs++] = p.ptr.dev; } else { ret = bch2_mark_stripe_ptr(trans, k, p.ec, data_type, disk_sectors, flags); if (ret) return ret; /* * There may be other dirty pointers in this extent, but * if so they're not required for mounting if we have an * erasure coded pointer in this extent: */ r.e.nr_required = 0; } } if (r.e.nr_devs) { ret = update_replicas(c, k, &r.e, dirty_sectors, journal_seq, true); if (ret) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, k); bch2_fs_fatal_error(c, "no replicas entry for %s", buf.buf); printbuf_exit(&buf); return ret; } } return 0; } int bch2_mark_stripe(struct btree_trans *trans, struct bkey_s_c old, struct bkey_s_c new, unsigned flags) { bool gc = flags & BTREE_TRIGGER_GC; u64 journal_seq = trans->journal_res.seq; struct bch_fs *c = trans->c; u64 idx = new.k->p.offset; const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe ? bkey_s_c_to_stripe(old).v : NULL; const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe ? bkey_s_c_to_stripe(new).v : NULL; unsigned i; int ret; BUG_ON(gc && old_s); if (!gc) { struct stripe *m = genradix_ptr(&c->stripes, idx); if (!m || (old_s && !m->alive)) { struct printbuf buf1 = PRINTBUF; struct printbuf buf2 = PRINTBUF; bch2_bkey_val_to_text(&buf1, c, old); bch2_bkey_val_to_text(&buf2, c, new); bch_err_ratelimited(c, "error marking nonexistent stripe %llu while marking\n" "old %s\n" "new %s", idx, buf1.buf, buf2.buf); printbuf_exit(&buf2); printbuf_exit(&buf1); bch2_inconsistent_error(c); return -1; } if (!new_s) { spin_lock(&c->ec_stripes_heap_lock); bch2_stripes_heap_del(c, m, idx); spin_unlock(&c->ec_stripes_heap_lock); memset(m, 0, sizeof(*m)); } else { m->alive = true; m->sectors = le16_to_cpu(new_s->sectors); m->algorithm = new_s->algorithm; m->nr_blocks = new_s->nr_blocks; m->nr_redundant = new_s->nr_redundant; m->blocks_nonempty = 0; for (i = 0; i < new_s->nr_blocks; i++) m->blocks_nonempty += !!stripe_blockcount_get(new_s, i); spin_lock(&c->ec_stripes_heap_lock); bch2_stripes_heap_update(c, m, idx); spin_unlock(&c->ec_stripes_heap_lock); } } else { struct gc_stripe *m = genradix_ptr_alloc(&c->gc_stripes, idx, GFP_KERNEL); if (!m) { bch_err(c, "error allocating memory for gc_stripes, idx %llu", idx); return -ENOMEM; } /* * This will be wrong when we bring back runtime gc: we should * be unmarking the old key and then marking the new key */ m->alive = true; m->sectors = le16_to_cpu(new_s->sectors); m->nr_blocks = new_s->nr_blocks; m->nr_redundant = new_s->nr_redundant; for (i = 0; i < new_s->nr_blocks; i++) m->ptrs[i] = new_s->ptrs[i]; bch2_bkey_to_replicas(&m->r.e, new); /* * gc recalculates this field from stripe ptr * references: */ memset(m->block_sectors, 0, sizeof(m->block_sectors)); for (i = 0; i < new_s->nr_blocks; i++) { ret = mark_stripe_bucket(trans, new, i, flags); if (ret) return ret; } ret = update_replicas(c, new, &m->r.e, ((s64) m->sectors * m->nr_redundant), journal_seq, gc); if (ret) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, new); bch2_fs_fatal_error(c, "no replicas entry for %s", buf.buf); printbuf_exit(&buf); return ret; } } return 0; } int bch2_mark_inode(struct btree_trans *trans, struct bkey_s_c old, struct bkey_s_c new, unsigned flags) { struct bch_fs *c = trans->c; struct bch_fs_usage __percpu *fs_usage; u64 journal_seq = trans->journal_res.seq; if (flags & BTREE_TRIGGER_INSERT) { struct bch_inode_v2 *v = (struct bch_inode_v2 *) new.v; BUG_ON(!journal_seq); BUG_ON(new.k->type != KEY_TYPE_inode_v2); v->bi_journal_seq = cpu_to_le64(journal_seq); } if (flags & BTREE_TRIGGER_GC) { percpu_down_read(&c->mark_lock); preempt_disable(); fs_usage = fs_usage_ptr(c, journal_seq, flags & BTREE_TRIGGER_GC); fs_usage->nr_inodes += bkey_is_inode(new.k); fs_usage->nr_inodes -= bkey_is_inode(old.k); preempt_enable(); percpu_up_read(&c->mark_lock); } return 0; } int bch2_mark_reservation(struct btree_trans *trans, struct bkey_s_c old, struct bkey_s_c new, unsigned flags) { struct bch_fs *c = trans->c; struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ? old: new; struct bch_fs_usage __percpu *fs_usage; unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas; s64 sectors = (s64) k.k->size; BUG_ON(!(flags & BTREE_TRIGGER_GC)); if (flags & BTREE_TRIGGER_OVERWRITE) sectors = -sectors; sectors *= replicas; percpu_down_read(&c->mark_lock); preempt_disable(); fs_usage = fs_usage_ptr(c, trans->journal_res.seq, flags & BTREE_TRIGGER_GC); replicas = clamp_t(unsigned, replicas, 1, ARRAY_SIZE(fs_usage->persistent_reserved)); fs_usage->reserved += sectors; fs_usage->persistent_reserved[replicas - 1] += sectors; preempt_enable(); percpu_up_read(&c->mark_lock); return 0; } static s64 __bch2_mark_reflink_p(struct btree_trans *trans, struct bkey_s_c_reflink_p p, u64 start, u64 end, u64 *idx, unsigned flags, size_t r_idx) { struct bch_fs *c = trans->c; struct reflink_gc *r; int add = !(flags & BTREE_TRIGGER_OVERWRITE) ? 1 : -1; u64 next_idx = end; s64 ret = 0; struct printbuf buf = PRINTBUF; if (r_idx >= c->reflink_gc_nr) goto not_found; r = genradix_ptr(&c->reflink_gc_table, r_idx); next_idx = min(next_idx, r->offset - r->size); if (*idx < next_idx) goto not_found; BUG_ON((s64) r->refcount + add < 0); r->refcount += add; *idx = r->offset; return 0; not_found: if (fsck_err(c, "pointer to missing indirect extent\n" " %s\n" " missing range %llu-%llu", (bch2_bkey_val_to_text(&buf, c, p.s_c), buf.buf), *idx, next_idx)) { struct bkey_i_error new; bkey_init(&new.k); new.k.type = KEY_TYPE_error; new.k.p = bkey_start_pos(p.k); new.k.p.offset += *idx - start; bch2_key_resize(&new.k, next_idx - *idx); ret = __bch2_btree_insert(trans, BTREE_ID_extents, &new.k_i); } *idx = next_idx; fsck_err: printbuf_exit(&buf); return ret; } int bch2_mark_reflink_p(struct btree_trans *trans, struct bkey_s_c old, struct bkey_s_c new, unsigned flags) { struct bch_fs *c = trans->c; struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ? old: new; struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k); struct reflink_gc *ref; size_t l, r, m; u64 idx = le64_to_cpu(p.v->idx), start = idx; u64 end = le64_to_cpu(p.v->idx) + p.k->size; int ret = 0; BUG_ON(!(flags & BTREE_TRIGGER_GC)); if (c->sb.version >= bcachefs_metadata_version_reflink_p_fix) { idx -= le32_to_cpu(p.v->front_pad); end += le32_to_cpu(p.v->back_pad); } l = 0; r = c->reflink_gc_nr; while (l < r) { m = l + (r - l) / 2; ref = genradix_ptr(&c->reflink_gc_table, m); if (ref->offset <= idx) l = m + 1; else r = m; } while (idx < end && !ret) ret = __bch2_mark_reflink_p(trans, p, start, end, &idx, flags, l++); return ret; } static noinline __cold void fs_usage_apply_warn(struct btree_trans *trans, unsigned disk_res_sectors, s64 should_not_have_added) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; struct printbuf buf = PRINTBUF; bch_err(c, "disk usage increased %lli more than %u sectors reserved", should_not_have_added, disk_res_sectors); trans_for_each_update(trans, i) { struct bkey_s_c old = { &i->old_k, i->old_v }; pr_err("while inserting"); printbuf_reset(&buf); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(i->k)); pr_err(" %s", buf.buf); pr_err("overlapping with"); printbuf_reset(&buf); bch2_bkey_val_to_text(&buf, c, old); pr_err(" %s", buf.buf); } __WARN(); printbuf_exit(&buf); } int bch2_trans_fs_usage_apply(struct btree_trans *trans, struct replicas_delta_list *deltas) { struct bch_fs *c = trans->c; static int warned_disk_usage = 0; bool warn = false; unsigned disk_res_sectors = trans->disk_res ? trans->disk_res->sectors : 0; struct replicas_delta *d = deltas->d, *d2; struct replicas_delta *top = (void *) deltas->d + deltas->used; struct bch_fs_usage *dst; s64 added = 0, should_not_have_added; unsigned i; percpu_down_read(&c->mark_lock); preempt_disable(); dst = fs_usage_ptr(c, trans->journal_res.seq, false); for (d = deltas->d; d != top; d = replicas_delta_next(d)) { switch (d->r.data_type) { case BCH_DATA_btree: case BCH_DATA_user: case BCH_DATA_parity: added += d->delta; } if (__update_replicas(c, dst, &d->r, d->delta)) goto need_mark; } dst->nr_inodes += deltas->nr_inodes; for (i = 0; i < BCH_REPLICAS_MAX; i++) { added += deltas->persistent_reserved[i]; dst->reserved += deltas->persistent_reserved[i]; dst->persistent_reserved[i] += deltas->persistent_reserved[i]; } /* * Not allowed to reduce sectors_available except by getting a * reservation: */ should_not_have_added = added - (s64) disk_res_sectors; if (unlikely(should_not_have_added > 0)) { u64 old, new, v = atomic64_read(&c->sectors_available); do { old = v; new = max_t(s64, 0, old - should_not_have_added); } while ((v = atomic64_cmpxchg(&c->sectors_available, old, new)) != old); added -= should_not_have_added; warn = true; } if (added > 0) { trans->disk_res->sectors -= added; this_cpu_sub(*c->online_reserved, added); } preempt_enable(); percpu_up_read(&c->mark_lock); if (unlikely(warn) && !xchg(&warned_disk_usage, 1)) fs_usage_apply_warn(trans, disk_res_sectors, should_not_have_added); return 0; need_mark: /* revert changes: */ for (d2 = deltas->d; d2 != d; d2 = replicas_delta_next(d2)) BUG_ON(__update_replicas(c, dst, &d2->r, -d2->delta)); preempt_enable(); percpu_up_read(&c->mark_lock); return -1; } /* trans_mark: */ static int bch2_trans_mark_pointer(struct btree_trans *trans, struct bkey_s_c k, struct extent_ptr_decoded p, s64 sectors, enum bch_data_type data_type) { struct btree_iter iter; struct bkey_i_alloc_v4 *a; int ret; a = bch2_trans_start_alloc_update(trans, &iter, PTR_BUCKET_POS(trans->c, &p.ptr)); if (IS_ERR(a)) return PTR_ERR(a); ret = __mark_pointer(trans, k, &p.ptr, sectors, data_type, a->v.gen, &a->v.data_type, &a->v.dirty_sectors, &a->v.cached_sectors) ?: bch2_trans_update(trans, &iter, &a->k_i, 0); bch2_trans_iter_exit(trans, &iter); return ret; } static int bch2_trans_mark_stripe_ptr(struct btree_trans *trans, struct extent_ptr_decoded p, s64 sectors, enum bch_data_type data_type) { struct btree_iter iter; struct bkey_s_c k; struct bkey_i_stripe *s; struct bch_replicas_padded r; int ret = 0; bch2_trans_iter_init(trans, &iter, BTREE_ID_stripes, POS(0, p.ec.idx), BTREE_ITER_INTENT| BTREE_ITER_WITH_UPDATES); k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) goto err; if (k.k->type != KEY_TYPE_stripe) { bch2_trans_inconsistent(trans, "pointer to nonexistent stripe %llu", (u64) p.ec.idx); ret = -EIO; goto err; } if (!bch2_ptr_matches_stripe(bkey_s_c_to_stripe(k).v, p)) { bch2_trans_inconsistent(trans, "stripe pointer doesn't match stripe %llu", (u64) p.ec.idx); ret = -EIO; goto err; } s = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ret = PTR_ERR_OR_ZERO(s); if (ret) goto err; bkey_reassemble(&s->k_i, k); stripe_blockcount_set(&s->v, p.ec.block, stripe_blockcount_get(&s->v, p.ec.block) + sectors); ret = bch2_trans_update(trans, &iter, &s->k_i, 0); if (ret) goto err; bch2_bkey_to_replicas(&r.e, bkey_i_to_s_c(&s->k_i)); r.e.data_type = data_type; update_replicas_list(trans, &r.e, sectors); err: bch2_trans_iter_exit(trans, &iter); return ret; } int bch2_trans_mark_extent(struct btree_trans *trans, enum btree_id btree_id, unsigned level, struct bkey_s_c old, struct bkey_i *new, unsigned flags) { struct bch_fs *c = trans->c; struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ? old : bkey_i_to_s_c(new); struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; struct bch_replicas_padded r; enum bch_data_type data_type = bkey_is_btree_ptr(k.k) ? BCH_DATA_btree : BCH_DATA_user; s64 sectors = bkey_is_btree_ptr(k.k) ? btree_sectors(c) : k.k->size; s64 dirty_sectors = 0; bool stale; int ret; r.e.data_type = data_type; r.e.nr_devs = 0; r.e.nr_required = 1; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { s64 disk_sectors = ptr_disk_sectors(sectors, p); if (flags & BTREE_TRIGGER_OVERWRITE) disk_sectors = -disk_sectors; ret = bch2_trans_mark_pointer(trans, k, p, disk_sectors, data_type); if (ret < 0) return ret; stale = ret > 0; if (p.ptr.cached) { if (!stale) update_cached_sectors_list(trans, p.ptr.dev, disk_sectors); } else if (!p.has_ec) { dirty_sectors += disk_sectors; r.e.devs[r.e.nr_devs++] = p.ptr.dev; } else { ret = bch2_trans_mark_stripe_ptr(trans, p, disk_sectors, data_type); if (ret) return ret; r.e.nr_required = 0; } } if (r.e.nr_devs) update_replicas_list(trans, &r.e, dirty_sectors); return 0; } static int bch2_trans_mark_stripe_bucket(struct btree_trans *trans, struct bkey_s_c_stripe s, unsigned idx, bool deleting) { struct bch_fs *c = trans->c; const struct bch_extent_ptr *ptr = &s.v->ptrs[idx]; struct btree_iter iter; struct bkey_i_alloc_v4 *a; enum bch_data_type data_type = idx >= s.v->nr_blocks - s.v->nr_redundant ? BCH_DATA_parity : 0; s64 sectors = data_type ? le16_to_cpu(s.v->sectors) : 0; int ret = 0; if (deleting) sectors = -sectors; a = bch2_trans_start_alloc_update(trans, &iter, PTR_BUCKET_POS(c, ptr)); if (IS_ERR(a)) return PTR_ERR(a); ret = check_bucket_ref(c, s.s_c, ptr, sectors, data_type, a->v.gen, a->v.data_type, a->v.dirty_sectors, a->v.cached_sectors); if (ret) goto err; if (!deleting) { if (bch2_trans_inconsistent_on(a->v.stripe || a->v.stripe_redundancy, trans, "bucket %llu:%llu gen %u data type %s dirty_sectors %u: multiple stripes using same bucket (%u, %llu)", iter.pos.inode, iter.pos.offset, a->v.gen, bch2_data_types[a->v.data_type], a->v.dirty_sectors, a->v.stripe, s.k->p.offset)) { ret = -EIO; goto err; } if (bch2_trans_inconsistent_on(data_type && a->v.dirty_sectors, trans, "bucket %llu:%llu gen %u data type %s dirty_sectors %u: data already in stripe bucket %llu", iter.pos.inode, iter.pos.offset, a->v.gen, bch2_data_types[a->v.data_type], a->v.dirty_sectors, s.k->p.offset)) { ret = -EIO; goto err; } a->v.stripe = s.k->p.offset; a->v.stripe_redundancy = s.v->nr_redundant; } else { if (bch2_trans_inconsistent_on(a->v.stripe != s.k->p.offset || a->v.stripe_redundancy != s.v->nr_redundant, trans, "bucket %llu:%llu gen %u: not marked as stripe when deleting stripe %llu (got %u)", iter.pos.inode, iter.pos.offset, a->v.gen, s.k->p.offset, a->v.stripe)) { ret = -EIO; goto err; } a->v.stripe = 0; a->v.stripe_redundancy = 0; } a->v.dirty_sectors += sectors; if (data_type) a->v.data_type = !deleting ? data_type : 0; ret = bch2_trans_update(trans, &iter, &a->k_i, 0); if (ret) goto err; err: bch2_trans_iter_exit(trans, &iter); return ret; } int bch2_trans_mark_stripe(struct btree_trans *trans, enum btree_id btree_id, unsigned level, struct bkey_s_c old, struct bkey_i *new, unsigned flags) { const struct bch_stripe *old_s = NULL; struct bch_stripe *new_s = NULL; struct bch_replicas_padded r; unsigned i, nr_blocks; int ret = 0; if (old.k->type == KEY_TYPE_stripe) old_s = bkey_s_c_to_stripe(old).v; if (new->k.type == KEY_TYPE_stripe) new_s = &bkey_i_to_stripe(new)->v; /* * If the pointers aren't changing, we don't need to do anything: */ if (new_s && old_s && new_s->nr_blocks == old_s->nr_blocks && new_s->nr_redundant == old_s->nr_redundant && !memcmp(old_s->ptrs, new_s->ptrs, new_s->nr_blocks * sizeof(struct bch_extent_ptr))) return 0; BUG_ON(new_s && old_s && (new_s->nr_blocks != old_s->nr_blocks || new_s->nr_redundant != old_s->nr_redundant)); nr_blocks = new_s ? new_s->nr_blocks : old_s->nr_blocks; if (new_s) { s64 sectors = le16_to_cpu(new_s->sectors); bch2_bkey_to_replicas(&r.e, bkey_i_to_s_c(new)); update_replicas_list(trans, &r.e, sectors * new_s->nr_redundant); } if (old_s) { s64 sectors = -((s64) le16_to_cpu(old_s->sectors)); bch2_bkey_to_replicas(&r.e, old); update_replicas_list(trans, &r.e, sectors * old_s->nr_redundant); } for (i = 0; i < nr_blocks; i++) { if (new_s && old_s && !memcmp(&new_s->ptrs[i], &old_s->ptrs[i], sizeof(new_s->ptrs[i]))) continue; if (new_s) { ret = bch2_trans_mark_stripe_bucket(trans, bkey_i_to_s_c_stripe(new), i, false); if (ret) break; } if (old_s) { ret = bch2_trans_mark_stripe_bucket(trans, bkey_s_c_to_stripe(old), i, true); if (ret) break; } } return ret; } int bch2_trans_mark_inode(struct btree_trans *trans, enum btree_id btree_id, unsigned level, struct bkey_s_c old, struct bkey_i *new, unsigned flags) { int nr = bkey_is_inode(&new->k) - bkey_is_inode(old.k); if (nr) { struct replicas_delta_list *d = replicas_deltas_realloc(trans, 0); d->nr_inodes += nr; } return 0; } int bch2_trans_mark_reservation(struct btree_trans *trans, enum btree_id btree_id, unsigned level, struct bkey_s_c old, struct bkey_i *new, unsigned flags) { struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ? old : bkey_i_to_s_c(new); unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas; s64 sectors = (s64) k.k->size; struct replicas_delta_list *d; if (flags & BTREE_TRIGGER_OVERWRITE) sectors = -sectors; sectors *= replicas; d = replicas_deltas_realloc(trans, 0); replicas = clamp_t(unsigned, replicas, 1, ARRAY_SIZE(d->persistent_reserved)); d->persistent_reserved[replicas - 1] += sectors; return 0; } static int __bch2_trans_mark_reflink_p(struct btree_trans *trans, struct bkey_s_c_reflink_p p, u64 *idx, unsigned flags) { struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_s_c k; struct bkey_i *n; __le64 *refcount; int add = !(flags & BTREE_TRIGGER_OVERWRITE) ? 1 : -1; struct printbuf buf = PRINTBUF; int ret; bch2_trans_iter_init(trans, &iter, BTREE_ID_reflink, POS(0, *idx), BTREE_ITER_INTENT| BTREE_ITER_WITH_UPDATES); k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) goto err; n = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ret = PTR_ERR_OR_ZERO(n); if (ret) goto err; bkey_reassemble(n, k); refcount = bkey_refcount(n); if (!refcount) { bch2_bkey_val_to_text(&buf, c, p.s_c); bch2_trans_inconsistent(trans, "nonexistent indirect extent at %llu while marking\n %s", *idx, buf.buf); ret = -EIO; goto err; } if (!*refcount && (flags & BTREE_TRIGGER_OVERWRITE)) { bch2_bkey_val_to_text(&buf, c, p.s_c); bch2_trans_inconsistent(trans, "indirect extent refcount underflow at %llu while marking\n %s", *idx, buf.buf); ret = -EIO; goto err; } if (flags & BTREE_TRIGGER_INSERT) { struct bch_reflink_p *v = (struct bch_reflink_p *) p.v; u64 pad; pad = max_t(s64, le32_to_cpu(v->front_pad), le64_to_cpu(v->idx) - bkey_start_offset(k.k)); BUG_ON(pad > U32_MAX); v->front_pad = cpu_to_le32(pad); pad = max_t(s64, le32_to_cpu(v->back_pad), k.k->p.offset - p.k->size - le64_to_cpu(v->idx)); BUG_ON(pad > U32_MAX); v->back_pad = cpu_to_le32(pad); } le64_add_cpu(refcount, add); bch2_btree_iter_set_pos_to_extent_start(&iter); ret = bch2_trans_update(trans, &iter, n, 0); if (ret) goto err; *idx = k.k->p.offset; err: bch2_trans_iter_exit(trans, &iter); printbuf_exit(&buf); return ret; } int bch2_trans_mark_reflink_p(struct btree_trans *trans, enum btree_id btree_id, unsigned level, struct bkey_s_c old, struct bkey_i *new, unsigned flags) { struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ? old : bkey_i_to_s_c(new); struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k); u64 idx, end_idx; int ret = 0; if (flags & BTREE_TRIGGER_INSERT) { struct bch_reflink_p *v = (struct bch_reflink_p *) p.v; v->front_pad = v->back_pad = 0; } idx = le64_to_cpu(p.v->idx) - le32_to_cpu(p.v->front_pad); end_idx = le64_to_cpu(p.v->idx) + p.k->size + le32_to_cpu(p.v->back_pad); while (idx < end_idx && !ret) ret = __bch2_trans_mark_reflink_p(trans, p, &idx, flags); return ret; } static int __bch2_trans_mark_metadata_bucket(struct btree_trans *trans, struct bch_dev *ca, size_t b, enum bch_data_type type, unsigned sectors) { struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_i_alloc_v4 *a; int ret = 0; /* * Backup superblock might be past the end of our normal usable space: */ if (b >= ca->mi.nbuckets) return 0; a = bch2_trans_start_alloc_update(trans, &iter, POS(ca->dev_idx, b)); if (IS_ERR(a)) return PTR_ERR(a); if (a->v.data_type && a->v.data_type != type) { bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "bucket %llu:%llu gen %u different types of data in same bucket: %s, %s\n" "while marking %s", iter.pos.inode, iter.pos.offset, a->v.gen, bch2_data_types[a->v.data_type], bch2_data_types[type], bch2_data_types[type]); ret = -EIO; goto out; } a->v.data_type = type; a->v.dirty_sectors = sectors; ret = bch2_trans_update(trans, &iter, &a->k_i, 0); if (ret) goto out; out: bch2_trans_iter_exit(trans, &iter); return ret; } int bch2_trans_mark_metadata_bucket(struct btree_trans *trans, struct bch_dev *ca, size_t b, enum bch_data_type type, unsigned sectors) { return commit_do(trans, NULL, NULL, 0, __bch2_trans_mark_metadata_bucket(trans, ca, b, type, sectors)); } static int bch2_trans_mark_metadata_sectors(struct btree_trans *trans, struct bch_dev *ca, u64 start, u64 end, enum bch_data_type type, u64 *bucket, unsigned *bucket_sectors) { do { u64 b = sector_to_bucket(ca, start); unsigned sectors = min_t(u64, bucket_to_sector(ca, b + 1), end) - start; if (b != *bucket && *bucket_sectors) { int ret = bch2_trans_mark_metadata_bucket(trans, ca, *bucket, type, *bucket_sectors); if (ret) return ret; *bucket_sectors = 0; } *bucket = b; *bucket_sectors += sectors; start += sectors; } while (start < end); return 0; } static int __bch2_trans_mark_dev_sb(struct btree_trans *trans, struct bch_dev *ca) { struct bch_sb_layout *layout = &ca->disk_sb.sb->layout; u64 bucket = 0; unsigned i, bucket_sectors = 0; int ret; for (i = 0; i < layout->nr_superblocks; i++) { u64 offset = le64_to_cpu(layout->sb_offset[i]); if (offset == BCH_SB_SECTOR) { ret = bch2_trans_mark_metadata_sectors(trans, ca, 0, BCH_SB_SECTOR, BCH_DATA_sb, &bucket, &bucket_sectors); if (ret) return ret; } ret = bch2_trans_mark_metadata_sectors(trans, ca, offset, offset + (1 << layout->sb_max_size_bits), BCH_DATA_sb, &bucket, &bucket_sectors); if (ret) return ret; } if (bucket_sectors) { ret = bch2_trans_mark_metadata_bucket(trans, ca, bucket, BCH_DATA_sb, bucket_sectors); if (ret) return ret; } for (i = 0; i < ca->journal.nr; i++) { ret = bch2_trans_mark_metadata_bucket(trans, ca, ca->journal.buckets[i], BCH_DATA_journal, ca->mi.bucket_size); if (ret) return ret; } return 0; } int bch2_trans_mark_dev_sb(struct bch_fs *c, struct bch_dev *ca) { return bch2_trans_run(c, __bch2_trans_mark_dev_sb(&trans, ca)); } /* Disk reservations: */ #define SECTORS_CACHE 1024 int __bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res, u64 sectors, int flags) { struct bch_fs_pcpu *pcpu; u64 old, v, get; s64 sectors_available; int ret; percpu_down_read(&c->mark_lock); preempt_disable(); pcpu = this_cpu_ptr(c->pcpu); if (sectors <= pcpu->sectors_available) goto out; v = atomic64_read(&c->sectors_available); do { old = v; get = min((u64) sectors + SECTORS_CACHE, old); if (get < sectors) { preempt_enable(); goto recalculate; } } while ((v = atomic64_cmpxchg(&c->sectors_available, old, old - get)) != old); pcpu->sectors_available += get; out: pcpu->sectors_available -= sectors; this_cpu_add(*c->online_reserved, sectors); res->sectors += sectors; preempt_enable(); percpu_up_read(&c->mark_lock); return 0; recalculate: mutex_lock(&c->sectors_available_lock); percpu_u64_set(&c->pcpu->sectors_available, 0); sectors_available = avail_factor(__bch2_fs_usage_read_short(c).free); if (sectors <= sectors_available || (flags & BCH_DISK_RESERVATION_NOFAIL)) { atomic64_set(&c->sectors_available, max_t(s64, 0, sectors_available - sectors)); this_cpu_add(*c->online_reserved, sectors); res->sectors += sectors; ret = 0; } else { atomic64_set(&c->sectors_available, sectors_available); ret = -BCH_ERR_ENOSPC_disk_reservation; } mutex_unlock(&c->sectors_available_lock); percpu_up_read(&c->mark_lock); return ret; } /* Startup/shutdown: */ static void bucket_gens_free_rcu(struct rcu_head *rcu) { struct bucket_gens *buckets = container_of(rcu, struct bucket_gens, rcu); kvpfree(buckets, sizeof(*buckets) + buckets->nbuckets); } int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) { struct bucket_gens *bucket_gens = NULL, *old_bucket_gens = NULL; unsigned long *buckets_nouse = NULL; bool resize = ca->bucket_gens != NULL; int ret = -ENOMEM; if (!(bucket_gens = kvpmalloc(sizeof(struct bucket_gens) + nbuckets, GFP_KERNEL|__GFP_ZERO)) || (c->opts.buckets_nouse && !(buckets_nouse = kvpmalloc(BITS_TO_LONGS(nbuckets) * sizeof(unsigned long), GFP_KERNEL|__GFP_ZERO)))) goto err; bucket_gens->first_bucket = ca->mi.first_bucket; bucket_gens->nbuckets = nbuckets; bch2_copygc_stop(c); if (resize) { down_write(&c->gc_lock); down_write(&ca->bucket_lock); percpu_down_write(&c->mark_lock); } old_bucket_gens = rcu_dereference_protected(ca->bucket_gens, 1); if (resize) { size_t n = min(bucket_gens->nbuckets, old_bucket_gens->nbuckets); memcpy(bucket_gens->b, old_bucket_gens->b, n); if (buckets_nouse) memcpy(buckets_nouse, ca->buckets_nouse, BITS_TO_LONGS(n) * sizeof(unsigned long)); } rcu_assign_pointer(ca->bucket_gens, bucket_gens); bucket_gens = old_bucket_gens; swap(ca->buckets_nouse, buckets_nouse); nbuckets = ca->mi.nbuckets; if (resize) { percpu_up_write(&c->mark_lock); up_write(&ca->bucket_lock); up_write(&c->gc_lock); } ret = 0; err: kvpfree(buckets_nouse, BITS_TO_LONGS(nbuckets) * sizeof(unsigned long)); if (bucket_gens) call_rcu(&bucket_gens->rcu, bucket_gens_free_rcu); return ret; } void bch2_dev_buckets_free(struct bch_dev *ca) { unsigned i; kvpfree(ca->buckets_nouse, BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long)); kvpfree(rcu_dereference_protected(ca->bucket_gens, 1), sizeof(struct bucket_gens) + ca->mi.nbuckets); for (i = 0; i < ARRAY_SIZE(ca->usage); i++) free_percpu(ca->usage[i]); kfree(ca->usage_base); } int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca) { unsigned i; ca->usage_base = kzalloc(sizeof(struct bch_dev_usage), GFP_KERNEL); if (!ca->usage_base) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(ca->usage); i++) { ca->usage[i] = alloc_percpu(struct bch_dev_usage); if (!ca->usage[i]) return -ENOMEM; } return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);; }