// SPDX-License-Identifier: GPL-2.0-or-later /* * IPV4 GSO/GRO offload support * Linux INET implementation * * UDPv4 GSO support */ #include #include #include #include #include #include static struct sk_buff *__skb_udp_tunnel_segment(struct sk_buff *skb, netdev_features_t features, struct sk_buff *(*gso_inner_segment)(struct sk_buff *skb, netdev_features_t features), __be16 new_protocol, bool is_ipv6) { int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb); bool remcsum, need_csum, offload_csum, gso_partial; struct sk_buff *segs = ERR_PTR(-EINVAL); struct udphdr *uh = udp_hdr(skb); u16 mac_offset = skb->mac_header; __be16 protocol = skb->protocol; u16 mac_len = skb->mac_len; int udp_offset, outer_hlen; __wsum partial; bool need_ipsec; if (unlikely(!pskb_may_pull(skb, tnl_hlen))) goto out; /* Adjust partial header checksum to negate old length. * We cannot rely on the value contained in uh->len as it is * possible that the actual value exceeds the boundaries of the * 16 bit length field due to the header being added outside of an * IP or IPv6 frame that was already limited to 64K - 1. */ if (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) partial = (__force __wsum)uh->len; else partial = (__force __wsum)htonl(skb->len); partial = csum_sub(csum_unfold(uh->check), partial); /* setup inner skb. */ skb->encapsulation = 0; SKB_GSO_CB(skb)->encap_level = 0; __skb_pull(skb, tnl_hlen); skb_reset_mac_header(skb); skb_set_network_header(skb, skb_inner_network_offset(skb)); skb_set_transport_header(skb, skb_inner_transport_offset(skb)); skb->mac_len = skb_inner_network_offset(skb); skb->protocol = new_protocol; need_csum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM); skb->encap_hdr_csum = need_csum; remcsum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TUNNEL_REMCSUM); skb->remcsum_offload = remcsum; need_ipsec = skb_dst(skb) && dst_xfrm(skb_dst(skb)); /* Try to offload checksum if possible */ offload_csum = !!(need_csum && !need_ipsec && (skb->dev->features & (is_ipv6 ? (NETIF_F_HW_CSUM | NETIF_F_IPV6_CSUM) : (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM)))); features &= skb->dev->hw_enc_features; if (need_csum) features &= ~NETIF_F_SCTP_CRC; /* The only checksum offload we care about from here on out is the * outer one so strip the existing checksum feature flags and * instead set the flag based on our outer checksum offload value. */ if (remcsum) { features &= ~NETIF_F_CSUM_MASK; if (!need_csum || offload_csum) features |= NETIF_F_HW_CSUM; } /* segment inner packet. */ segs = gso_inner_segment(skb, features); if (IS_ERR_OR_NULL(segs)) { skb_gso_error_unwind(skb, protocol, tnl_hlen, mac_offset, mac_len); goto out; } gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); outer_hlen = skb_tnl_header_len(skb); udp_offset = outer_hlen - tnl_hlen; skb = segs; do { unsigned int len; if (remcsum) skb->ip_summed = CHECKSUM_NONE; /* Set up inner headers if we are offloading inner checksum */ if (skb->ip_summed == CHECKSUM_PARTIAL) { skb_reset_inner_headers(skb); skb->encapsulation = 1; } skb->mac_len = mac_len; skb->protocol = protocol; __skb_push(skb, outer_hlen); skb_reset_mac_header(skb); skb_set_network_header(skb, mac_len); skb_set_transport_header(skb, udp_offset); len = skb->len - udp_offset; uh = udp_hdr(skb); /* If we are only performing partial GSO the inner header * will be using a length value equal to only one MSS sized * segment instead of the entire frame. */ if (gso_partial && skb_is_gso(skb)) { uh->len = htons(skb_shinfo(skb)->gso_size + SKB_GSO_CB(skb)->data_offset + skb->head - (unsigned char *)uh); } else { uh->len = htons(len); } if (!need_csum) continue; uh->check = ~csum_fold(csum_add(partial, (__force __wsum)htonl(len))); if (skb->encapsulation || !offload_csum) { uh->check = gso_make_checksum(skb, ~uh->check); if (uh->check == 0) uh->check = CSUM_MANGLED_0; } else { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct udphdr, check); } } while ((skb = skb->next)); out: return segs; } struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb, netdev_features_t features, bool is_ipv6) { const struct net_offload __rcu **offloads; __be16 protocol = skb->protocol; const struct net_offload *ops; struct sk_buff *segs = ERR_PTR(-EINVAL); struct sk_buff *(*gso_inner_segment)(struct sk_buff *skb, netdev_features_t features); rcu_read_lock(); switch (skb->inner_protocol_type) { case ENCAP_TYPE_ETHER: protocol = skb->inner_protocol; gso_inner_segment = skb_mac_gso_segment; break; case ENCAP_TYPE_IPPROTO: offloads = is_ipv6 ? inet6_offloads : inet_offloads; ops = rcu_dereference(offloads[skb->inner_ipproto]); if (!ops || !ops->callbacks.gso_segment) goto out_unlock; gso_inner_segment = ops->callbacks.gso_segment; break; default: goto out_unlock; } segs = __skb_udp_tunnel_segment(skb, features, gso_inner_segment, protocol, is_ipv6); out_unlock: rcu_read_unlock(); return segs; } EXPORT_SYMBOL(skb_udp_tunnel_segment); static void __udpv4_gso_segment_csum(struct sk_buff *seg, __be32 *oldip, __be32 *newip, __be16 *oldport, __be16 *newport) { struct udphdr *uh; struct iphdr *iph; if (*oldip == *newip && *oldport == *newport) return; uh = udp_hdr(seg); iph = ip_hdr(seg); if (uh->check) { inet_proto_csum_replace4(&uh->check, seg, *oldip, *newip, true); inet_proto_csum_replace2(&uh->check, seg, *oldport, *newport, false); if (!uh->check) uh->check = CSUM_MANGLED_0; } *oldport = *newport; csum_replace4(&iph->check, *oldip, *newip); *oldip = *newip; } static struct sk_buff *__udpv4_gso_segment_list_csum(struct sk_buff *segs) { struct sk_buff *seg; struct udphdr *uh, *uh2; struct iphdr *iph, *iph2; seg = segs; uh = udp_hdr(seg); iph = ip_hdr(seg); if ((udp_hdr(seg)->dest == udp_hdr(seg->next)->dest) && (udp_hdr(seg)->source == udp_hdr(seg->next)->source) && (ip_hdr(seg)->daddr == ip_hdr(seg->next)->daddr) && (ip_hdr(seg)->saddr == ip_hdr(seg->next)->saddr)) return segs; while ((seg = seg->next)) { uh2 = udp_hdr(seg); iph2 = ip_hdr(seg); __udpv4_gso_segment_csum(seg, &iph2->saddr, &iph->saddr, &uh2->source, &uh->source); __udpv4_gso_segment_csum(seg, &iph2->daddr, &iph->daddr, &uh2->dest, &uh->dest); } return segs; } static struct sk_buff *__udp_gso_segment_list(struct sk_buff *skb, netdev_features_t features, bool is_ipv6) { unsigned int mss = skb_shinfo(skb)->gso_size; skb = skb_segment_list(skb, features, skb_mac_header_len(skb)); if (IS_ERR(skb)) return skb; udp_hdr(skb)->len = htons(sizeof(struct udphdr) + mss); return is_ipv6 ? skb : __udpv4_gso_segment_list_csum(skb); } struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb, netdev_features_t features, bool is_ipv6) { struct sock *sk = gso_skb->sk; unsigned int sum_truesize = 0; struct sk_buff *segs, *seg; struct udphdr *uh; unsigned int mss; bool copy_dtor; __sum16 check; __be16 newlen; mss = skb_shinfo(gso_skb)->gso_size; if (gso_skb->len <= sizeof(*uh) + mss) return ERR_PTR(-EINVAL); if (unlikely(skb_checksum_start(gso_skb) != skb_transport_header(gso_skb))) return ERR_PTR(-EINVAL); /* We don't know if egress device can segment and checksum the packet * when IPv6 extension headers are present. Fall back to software GSO. */ if (gso_skb->ip_summed != CHECKSUM_PARTIAL) features &= ~(NETIF_F_GSO_UDP_L4 | NETIF_F_CSUM_MASK); if (skb_gso_ok(gso_skb, features | NETIF_F_GSO_ROBUST)) { /* Packet is from an untrusted source, reset gso_segs. */ skb_shinfo(gso_skb)->gso_segs = DIV_ROUND_UP(gso_skb->len - sizeof(*uh), mss); return NULL; } if (skb_shinfo(gso_skb)->gso_type & SKB_GSO_FRAGLIST) return __udp_gso_segment_list(gso_skb, features, is_ipv6); skb_pull(gso_skb, sizeof(*uh)); /* clear destructor to avoid skb_segment assigning it to tail */ copy_dtor = gso_skb->destructor == sock_wfree; if (copy_dtor) gso_skb->destructor = NULL; segs = skb_segment(gso_skb, features); if (IS_ERR_OR_NULL(segs)) { if (copy_dtor) gso_skb->destructor = sock_wfree; return segs; } /* GSO partial and frag_list segmentation only requires splitting * the frame into an MSS multiple and possibly a remainder, both * cases return a GSO skb. So update the mss now. */ if (skb_is_gso(segs)) mss *= skb_shinfo(segs)->gso_segs; seg = segs; uh = udp_hdr(seg); /* preserve TX timestamp flags and TS key for first segment */ skb_shinfo(seg)->tskey = skb_shinfo(gso_skb)->tskey; skb_shinfo(seg)->tx_flags |= (skb_shinfo(gso_skb)->tx_flags & SKBTX_ANY_TSTAMP); /* compute checksum adjustment based on old length versus new */ newlen = htons(sizeof(*uh) + mss); check = csum16_add(csum16_sub(uh->check, uh->len), newlen); for (;;) { if (copy_dtor) { seg->destructor = sock_wfree; seg->sk = sk; sum_truesize += seg->truesize; } if (!seg->next) break; uh->len = newlen; uh->check = check; if (seg->ip_summed == CHECKSUM_PARTIAL) gso_reset_checksum(seg, ~check); else uh->check = gso_make_checksum(seg, ~check) ? : CSUM_MANGLED_0; seg = seg->next; uh = udp_hdr(seg); } /* last packet can be partial gso_size, account for that in checksum */ newlen = htons(skb_tail_pointer(seg) - skb_transport_header(seg) + seg->data_len); check = csum16_add(csum16_sub(uh->check, uh->len), newlen); uh->len = newlen; uh->check = check; if (seg->ip_summed == CHECKSUM_PARTIAL) gso_reset_checksum(seg, ~check); else uh->check = gso_make_checksum(seg, ~check) ? : CSUM_MANGLED_0; /* On the TX path, CHECKSUM_NONE and CHECKSUM_UNNECESSARY have the same * meaning. However, check for bad offloads in the GSO stack expects the * latter, if the checksum was calculated in software. To vouch for the * segment skbs we actually need to set it on the gso_skb. */ if (gso_skb->ip_summed == CHECKSUM_NONE) gso_skb->ip_summed = CHECKSUM_UNNECESSARY; /* update refcount for the packet */ if (copy_dtor) { int delta = sum_truesize - gso_skb->truesize; /* In some pathological cases, delta can be negative. * We need to either use refcount_add() or refcount_sub_and_test() */ if (likely(delta >= 0)) refcount_add(delta, &sk->sk_wmem_alloc); else WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc)); } return segs; } EXPORT_SYMBOL_GPL(__udp_gso_segment); static struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, netdev_features_t features) { struct sk_buff *segs = ERR_PTR(-EINVAL); unsigned int mss; __wsum csum; struct udphdr *uh; struct iphdr *iph; if (skb->encapsulation && (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL|SKB_GSO_UDP_TUNNEL_CSUM))) { segs = skb_udp_tunnel_segment(skb, features, false); goto out; } if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_UDP | SKB_GSO_UDP_L4))) goto out; if (!pskb_may_pull(skb, sizeof(struct udphdr))) goto out; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) return __udp_gso_segment(skb, features, false); mss = skb_shinfo(skb)->gso_size; if (unlikely(skb->len <= mss)) goto out; /* Do software UFO. Complete and fill in the UDP checksum as * HW cannot do checksum of UDP packets sent as multiple * IP fragments. */ uh = udp_hdr(skb); iph = ip_hdr(skb); uh->check = 0; csum = skb_checksum(skb, 0, skb->len, 0); uh->check = udp_v4_check(skb->len, iph->saddr, iph->daddr, csum); if (uh->check == 0) uh->check = CSUM_MANGLED_0; skb->ip_summed = CHECKSUM_UNNECESSARY; /* If there is no outer header we can fake a checksum offload * due to the fact that we have already done the checksum in * software prior to segmenting the frame. */ if (!skb->encap_hdr_csum) features |= NETIF_F_HW_CSUM; /* Fragment the skb. IP headers of the fragments are updated in * inet_gso_segment() */ segs = skb_segment(skb, features); out: return segs; } #define UDP_GRO_CNT_MAX 64 static struct sk_buff *udp_gro_receive_segment(struct list_head *head, struct sk_buff *skb) { struct udphdr *uh = udp_gro_udphdr(skb); struct sk_buff *pp = NULL; struct udphdr *uh2; struct sk_buff *p; unsigned int ulen; int ret = 0; int flush; /* requires non zero csum, for symmetry with GSO */ if (!uh->check) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } /* Do not deal with padded or malicious packets, sorry ! */ ulen = ntohs(uh->len); if (ulen <= sizeof(*uh) || ulen != skb_gro_len(skb)) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } /* pull encapsulating udp header */ skb_gro_pull(skb, sizeof(struct udphdr)); list_for_each_entry(p, head, list) { if (!NAPI_GRO_CB(p)->same_flow) continue; uh2 = udp_hdr(p); /* Match ports only, as csum is always non zero */ if ((*(u32 *)&uh->source != *(u32 *)&uh2->source)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } if (NAPI_GRO_CB(skb)->is_flist != NAPI_GRO_CB(p)->is_flist) { NAPI_GRO_CB(skb)->flush = 1; return p; } flush = gro_receive_network_flush(uh, uh2, p); /* Terminate the flow on len mismatch or if it grow "too much". * Under small packet flood GRO count could elsewhere grow a lot * leading to excessive truesize values. * On len mismatch merge the first packet shorter than gso_size, * otherwise complete the GRO packet. */ if (ulen > ntohs(uh2->len) || flush) { pp = p; } else { if (NAPI_GRO_CB(skb)->is_flist) { if (!pskb_may_pull(skb, skb_gro_offset(skb))) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } if ((skb->ip_summed != p->ip_summed) || (skb->csum_level != p->csum_level)) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } ret = skb_gro_receive_list(p, skb); } else { skb_gro_postpull_rcsum(skb, uh, sizeof(struct udphdr)); ret = skb_gro_receive(p, skb); } } if (ret || ulen != ntohs(uh2->len) || NAPI_GRO_CB(p)->count >= UDP_GRO_CNT_MAX) pp = p; return pp; } /* mismatch, but we never need to flush */ return NULL; } struct sk_buff *udp_gro_receive(struct list_head *head, struct sk_buff *skb, struct udphdr *uh, struct sock *sk) { struct sk_buff *pp = NULL; struct sk_buff *p; struct udphdr *uh2; unsigned int off = skb_gro_offset(skb); int flush = 1; /* We can do L4 aggregation only if the packet can't land in a tunnel * otherwise we could corrupt the inner stream. Detecting such packets * cannot be foolproof and the aggregation might still happen in some * cases. Such packets should be caught in udp_unexpected_gso later. */ NAPI_GRO_CB(skb)->is_flist = 0; if (!sk || !udp_sk(sk)->gro_receive) { /* If the packet was locally encapsulated in a UDP tunnel that * wasn't detected above, do not GRO. */ if (skb->encapsulation) goto out; if (skb->dev->features & NETIF_F_GRO_FRAGLIST) NAPI_GRO_CB(skb)->is_flist = sk ? !udp_test_bit(GRO_ENABLED, sk) : 1; if ((!sk && (skb->dev->features & NETIF_F_GRO_UDP_FWD)) || (sk && udp_test_bit(GRO_ENABLED, sk)) || NAPI_GRO_CB(skb)->is_flist) return call_gro_receive(udp_gro_receive_segment, head, skb); /* no GRO, be sure flush the current packet */ goto out; } if (NAPI_GRO_CB(skb)->encap_mark || (uh->check && skb->ip_summed != CHECKSUM_PARTIAL && NAPI_GRO_CB(skb)->csum_cnt == 0 && !NAPI_GRO_CB(skb)->csum_valid)) goto out; /* mark that this skb passed once through the tunnel gro layer */ NAPI_GRO_CB(skb)->encap_mark = 1; flush = 0; list_for_each_entry(p, head, list) { if (!NAPI_GRO_CB(p)->same_flow) continue; uh2 = (struct udphdr *)(p->data + off); /* Match ports and either checksums are either both zero * or nonzero. */ if ((*(u32 *)&uh->source != *(u32 *)&uh2->source) || (!uh->check ^ !uh2->check)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } } skb_gro_pull(skb, sizeof(struct udphdr)); /* pull encapsulating udp header */ skb_gro_postpull_rcsum(skb, uh, sizeof(struct udphdr)); pp = call_gro_receive_sk(udp_sk(sk)->gro_receive, sk, head, skb); out: skb_gro_flush_final(skb, pp, flush); return pp; } EXPORT_SYMBOL(udp_gro_receive); static struct sock *udp4_gro_lookup_skb(struct sk_buff *skb, __be16 sport, __be16 dport) { const struct iphdr *iph = skb_gro_network_header(skb); struct net *net = dev_net(skb->dev); int iif, sdif; inet_get_iif_sdif(skb, &iif, &sdif); return __udp4_lib_lookup(net, iph->saddr, sport, iph->daddr, dport, iif, sdif, net->ipv4.udp_table, NULL); } INDIRECT_CALLABLE_SCOPE struct sk_buff *udp4_gro_receive(struct list_head *head, struct sk_buff *skb) { struct udphdr *uh = udp_gro_udphdr(skb); struct sock *sk = NULL; struct sk_buff *pp; if (unlikely(!uh)) goto flush; /* Don't bother verifying checksum if we're going to flush anyway. */ if (NAPI_GRO_CB(skb)->flush) goto skip; if (skb_gro_checksum_validate_zero_check(skb, IPPROTO_UDP, uh->check, inet_gro_compute_pseudo)) goto flush; else if (uh->check) skb_gro_checksum_try_convert(skb, IPPROTO_UDP, inet_gro_compute_pseudo); skip: NAPI_GRO_CB(skb)->is_ipv6 = 0; if (static_branch_unlikely(&udp_encap_needed_key)) sk = udp4_gro_lookup_skb(skb, uh->source, uh->dest); pp = udp_gro_receive(head, skb, uh, sk); return pp; flush: NAPI_GRO_CB(skb)->flush = 1; return NULL; } static int udp_gro_complete_segment(struct sk_buff *skb) { struct udphdr *uh = udp_hdr(skb); skb->csum_start = (unsigned char *)uh - skb->head; skb->csum_offset = offsetof(struct udphdr, check); skb->ip_summed = CHECKSUM_PARTIAL; skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_L4; if (skb->encapsulation) skb->inner_transport_header = skb->transport_header; return 0; } int udp_gro_complete(struct sk_buff *skb, int nhoff, udp_lookup_t lookup) { __be16 newlen = htons(skb->len - nhoff); struct udphdr *uh = (struct udphdr *)(skb->data + nhoff); struct sock *sk; int err; uh->len = newlen; sk = INDIRECT_CALL_INET(lookup, udp6_lib_lookup_skb, udp4_lib_lookup_skb, skb, uh->source, uh->dest); if (sk && udp_sk(sk)->gro_complete) { skb_shinfo(skb)->gso_type = uh->check ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; /* clear the encap mark, so that inner frag_list gro_complete * can take place */ NAPI_GRO_CB(skb)->encap_mark = 0; /* Set encapsulation before calling into inner gro_complete() * functions to make them set up the inner offsets. */ skb->encapsulation = 1; err = udp_sk(sk)->gro_complete(sk, skb, nhoff + sizeof(struct udphdr)); } else { err = udp_gro_complete_segment(skb); } if (skb->remcsum_offload) skb_shinfo(skb)->gso_type |= SKB_GSO_TUNNEL_REMCSUM; return err; } EXPORT_SYMBOL(udp_gro_complete); INDIRECT_CALLABLE_SCOPE int udp4_gro_complete(struct sk_buff *skb, int nhoff) { const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; const struct iphdr *iph = (struct iphdr *)(skb->data + offset); struct udphdr *uh = (struct udphdr *)(skb->data + nhoff); /* do fraglist only if there is no outer UDP encap (or we already processed it) */ if (NAPI_GRO_CB(skb)->is_flist && !NAPI_GRO_CB(skb)->encap_mark) { uh->len = htons(skb->len - nhoff); skb_shinfo(skb)->gso_type |= (SKB_GSO_FRAGLIST|SKB_GSO_UDP_L4); skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; __skb_incr_checksum_unnecessary(skb); return 0; } if (uh->check) uh->check = ~udp_v4_check(skb->len - nhoff, iph->saddr, iph->daddr, 0); return udp_gro_complete(skb, nhoff, udp4_lib_lookup_skb); } int __init udpv4_offload_init(void) { net_hotdata.udpv4_offload = (struct net_offload) { .callbacks = { .gso_segment = udp4_ufo_fragment, .gro_receive = udp4_gro_receive, .gro_complete = udp4_gro_complete, }, }; return inet_add_offload(&net_hotdata.udpv4_offload, IPPROTO_UDP); }