// SPDX-License-Identifier: GPL-2.0 /* * PCI VPD support * * Copyright (C) 2010 Broadcom Corporation. */ #include #include #include #include #include "pci.h" /* VPD access through PCI 2.2+ VPD capability */ struct pci_vpd_ops { ssize_t (*read)(struct pci_dev *dev, loff_t pos, size_t count, void *buf); ssize_t (*write)(struct pci_dev *dev, loff_t pos, size_t count, const void *buf); }; struct pci_vpd { const struct pci_vpd_ops *ops; struct bin_attribute *attr; /* Descriptor for sysfs VPD entry */ struct mutex lock; unsigned int len; u16 flag; u8 cap; unsigned int busy:1; unsigned int valid:1; }; /** * pci_read_vpd - Read one entry from Vital Product Data * @dev: pci device struct * @pos: offset in vpd space * @count: number of bytes to read * @buf: pointer to where to store result */ ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf) { if (!dev->vpd || !dev->vpd->ops) return -ENODEV; return dev->vpd->ops->read(dev, pos, count, buf); } EXPORT_SYMBOL(pci_read_vpd); /** * pci_write_vpd - Write entry to Vital Product Data * @dev: pci device struct * @pos: offset in vpd space * @count: number of bytes to write * @buf: buffer containing write data */ ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf) { if (!dev->vpd || !dev->vpd->ops) return -ENODEV; return dev->vpd->ops->write(dev, pos, count, buf); } EXPORT_SYMBOL(pci_write_vpd); #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1) /** * pci_vpd_size - determine actual size of Vital Product Data * @dev: pci device struct * @old_size: current assumed size, also maximum allowed size */ static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size) { size_t off = 0; unsigned char header[1+2]; /* 1 byte tag, 2 bytes length */ while (off < old_size && pci_read_vpd(dev, off, 1, header) == 1) { unsigned char tag; if (!header[0] && !off) { pci_info(dev, "Invalid VPD tag 00, assume missing optional VPD EPROM\n"); return 0; } if (header[0] & PCI_VPD_LRDT) { /* Large Resource Data Type Tag */ tag = pci_vpd_lrdt_tag(header); /* Only read length from known tag items */ if ((tag == PCI_VPD_LTIN_ID_STRING) || (tag == PCI_VPD_LTIN_RO_DATA) || (tag == PCI_VPD_LTIN_RW_DATA)) { if (pci_read_vpd(dev, off+1, 2, &header[1]) != 2) { pci_warn(dev, "invalid large VPD tag %02x size at offset %zu", tag, off + 1); return 0; } off += PCI_VPD_LRDT_TAG_SIZE + pci_vpd_lrdt_size(header); } } else { /* Short Resource Data Type Tag */ off += PCI_VPD_SRDT_TAG_SIZE + pci_vpd_srdt_size(header); tag = pci_vpd_srdt_tag(header); } if (tag == PCI_VPD_STIN_END) /* End tag descriptor */ return off; if ((tag != PCI_VPD_LTIN_ID_STRING) && (tag != PCI_VPD_LTIN_RO_DATA) && (tag != PCI_VPD_LTIN_RW_DATA)) { pci_warn(dev, "invalid %s VPD tag %02x at offset %zu", (header[0] & PCI_VPD_LRDT) ? "large" : "short", tag, off); return 0; } } return 0; } /* * Wait for last operation to complete. * This code has to spin since there is no other notification from the PCI * hardware. Since the VPD is often implemented by serial attachment to an * EEPROM, it may take many milliseconds to complete. * * Returns 0 on success, negative values indicate error. */ static int pci_vpd_wait(struct pci_dev *dev) { struct pci_vpd *vpd = dev->vpd; unsigned long timeout = jiffies + msecs_to_jiffies(125); unsigned long max_sleep = 16; u16 status; int ret; if (!vpd->busy) return 0; do { ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR, &status); if (ret < 0) return ret; if ((status & PCI_VPD_ADDR_F) == vpd->flag) { vpd->busy = 0; return 0; } if (fatal_signal_pending(current)) return -EINTR; if (time_after(jiffies, timeout)) break; usleep_range(10, max_sleep); if (max_sleep < 1024) max_sleep *= 2; } while (true); pci_warn(dev, "VPD access failed. This is likely a firmware bug on this device. Contact the card vendor for a firmware update\n"); return -ETIMEDOUT; } static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count, void *arg) { struct pci_vpd *vpd = dev->vpd; int ret; loff_t end = pos + count; u8 *buf = arg; if (pos < 0) return -EINVAL; if (!vpd->valid) { vpd->valid = 1; vpd->len = pci_vpd_size(dev, vpd->len); } if (vpd->len == 0) return -EIO; if (pos > vpd->len) return 0; if (end > vpd->len) { end = vpd->len; count = end - pos; } if (mutex_lock_killable(&vpd->lock)) return -EINTR; ret = pci_vpd_wait(dev); if (ret < 0) goto out; while (pos < end) { u32 val; unsigned int i, skip; ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, pos & ~3); if (ret < 0) break; vpd->busy = 1; vpd->flag = PCI_VPD_ADDR_F; ret = pci_vpd_wait(dev); if (ret < 0) break; ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val); if (ret < 0) break; skip = pos & 3; for (i = 0; i < sizeof(u32); i++) { if (i >= skip) { *buf++ = val; if (++pos == end) break; } val >>= 8; } } out: mutex_unlock(&vpd->lock); return ret ? ret : count; } static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count, const void *arg) { struct pci_vpd *vpd = dev->vpd; const u8 *buf = arg; loff_t end = pos + count; int ret = 0; if (pos < 0 || (pos & 3) || (count & 3)) return -EINVAL; if (!vpd->valid) { vpd->valid = 1; vpd->len = pci_vpd_size(dev, vpd->len); } if (vpd->len == 0) return -EIO; if (end > vpd->len) return -EINVAL; if (mutex_lock_killable(&vpd->lock)) return -EINTR; ret = pci_vpd_wait(dev); if (ret < 0) goto out; while (pos < end) { u32 val; val = *buf++; val |= *buf++ << 8; val |= *buf++ << 16; val |= *buf++ << 24; ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val); if (ret < 0) break; ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, pos | PCI_VPD_ADDR_F); if (ret < 0) break; vpd->busy = 1; vpd->flag = 0; ret = pci_vpd_wait(dev); if (ret < 0) break; pos += sizeof(u32); } out: mutex_unlock(&vpd->lock); return ret ? ret : count; } static const struct pci_vpd_ops pci_vpd_ops = { .read = pci_vpd_read, .write = pci_vpd_write, }; static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count, void *arg) { struct pci_dev *tdev = pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); ssize_t ret; if (!tdev) return -ENODEV; ret = pci_read_vpd(tdev, pos, count, arg); pci_dev_put(tdev); return ret; } static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count, const void *arg) { struct pci_dev *tdev = pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); ssize_t ret; if (!tdev) return -ENODEV; ret = pci_write_vpd(tdev, pos, count, arg); pci_dev_put(tdev); return ret; } static const struct pci_vpd_ops pci_vpd_f0_ops = { .read = pci_vpd_f0_read, .write = pci_vpd_f0_write, }; void pci_vpd_init(struct pci_dev *dev) { struct pci_vpd *vpd; u8 cap; cap = pci_find_capability(dev, PCI_CAP_ID_VPD); if (!cap) return; vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC); if (!vpd) return; vpd->len = PCI_VPD_MAX_SIZE; if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) vpd->ops = &pci_vpd_f0_ops; else vpd->ops = &pci_vpd_ops; mutex_init(&vpd->lock); vpd->cap = cap; vpd->busy = 0; vpd->valid = 0; dev->vpd = vpd; } void pci_vpd_release(struct pci_dev *dev) { kfree(dev->vpd); } static ssize_t read_vpd_attr(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj)); return pci_read_vpd(dev, off, count, buf); } static ssize_t write_vpd_attr(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj)); return pci_write_vpd(dev, off, count, buf); } void pcie_vpd_create_sysfs_dev_files(struct pci_dev *dev) { int retval; struct bin_attribute *attr; if (!dev->vpd) return; attr = kzalloc(sizeof(*attr), GFP_ATOMIC); if (!attr) return; sysfs_bin_attr_init(attr); attr->size = 0; attr->attr.name = "vpd"; attr->attr.mode = S_IRUSR | S_IWUSR; attr->read = read_vpd_attr; attr->write = write_vpd_attr; retval = sysfs_create_bin_file(&dev->dev.kobj, attr); if (retval) { kfree(attr); return; } dev->vpd->attr = attr; } void pcie_vpd_remove_sysfs_dev_files(struct pci_dev *dev) { if (dev->vpd && dev->vpd->attr) { sysfs_remove_bin_file(&dev->dev.kobj, dev->vpd->attr); kfree(dev->vpd->attr); } } int pci_vpd_find_tag(const u8 *buf, unsigned int len, u8 rdt) { int i; for (i = 0; i < len; ) { u8 val = buf[i]; if (val & PCI_VPD_LRDT) { /* Don't return success of the tag isn't complete */ if (i + PCI_VPD_LRDT_TAG_SIZE > len) break; if (val == rdt) return i; i += PCI_VPD_LRDT_TAG_SIZE + pci_vpd_lrdt_size(&buf[i]); } else { u8 tag = val & ~PCI_VPD_SRDT_LEN_MASK; if (tag == rdt) return i; if (tag == PCI_VPD_SRDT_END) break; i += PCI_VPD_SRDT_TAG_SIZE + pci_vpd_srdt_size(&buf[i]); } } return -ENOENT; } EXPORT_SYMBOL_GPL(pci_vpd_find_tag); int pci_vpd_find_info_keyword(const u8 *buf, unsigned int off, unsigned int len, const char *kw) { int i; for (i = off; i + PCI_VPD_INFO_FLD_HDR_SIZE <= off + len;) { if (buf[i + 0] == kw[0] && buf[i + 1] == kw[1]) return i; i += PCI_VPD_INFO_FLD_HDR_SIZE + pci_vpd_info_field_size(&buf[i]); } return -ENOENT; } EXPORT_SYMBOL_GPL(pci_vpd_find_info_keyword); #ifdef CONFIG_PCI_QUIRKS /* * Quirk non-zero PCI functions to route VPD access through function 0 for * devices that share VPD resources between functions. The functions are * expected to be identical devices. */ static void quirk_f0_vpd_link(struct pci_dev *dev) { struct pci_dev *f0; if (!PCI_FUNC(dev->devfn)) return; f0 = pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); if (!f0) return; if (f0->vpd && dev->class == f0->class && dev->vendor == f0->vendor && dev->device == f0->device) dev->dev_flags |= PCI_DEV_FLAGS_VPD_REF_F0; pci_dev_put(f0); } DECLARE_PCI_FIXUP_CLASS_EARLY(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET, 8, quirk_f0_vpd_link); /* * If a device follows the VPD format spec, the PCI core will not read or * write past the VPD End Tag. But some vendors do not follow the VPD * format spec, so we can't tell how much data is safe to access. Devices * may behave unpredictably if we access too much. Blacklist these devices * so we don't touch VPD at all. */ static void quirk_blacklist_vpd(struct pci_dev *dev) { if (dev->vpd) { dev->vpd->len = 0; pci_warn(dev, FW_BUG "disabling VPD access (can't determine size of non-standard VPD format)\n"); } } DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0060, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x007c, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0413, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0078, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0079, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0073, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x0071, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x005b, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x002f, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x005d, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_LSI_LOGIC, 0x005f, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_ATTANSIC, PCI_ANY_ID, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_QLOGIC, 0x2261, quirk_blacklist_vpd); /* * The Amazon Annapurna Labs 0x0031 device id is reused for other non Root Port * device types, so the quirk is registered for the PCI_CLASS_BRIDGE_PCI class. */ DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_VENDOR_ID_AMAZON_ANNAPURNA_LABS, 0x0031, PCI_CLASS_BRIDGE_PCI, 8, quirk_blacklist_vpd); static void pci_vpd_set_size(struct pci_dev *dev, size_t len) { struct pci_vpd *vpd = dev->vpd; if (!vpd || len == 0 || len > PCI_VPD_MAX_SIZE) return; vpd->valid = 1; vpd->len = len; } static void quirk_chelsio_extend_vpd(struct pci_dev *dev) { int chip = (dev->device & 0xf000) >> 12; int func = (dev->device & 0x0f00) >> 8; int prod = (dev->device & 0x00ff) >> 0; /* * If this is a T3-based adapter, there's a 1KB VPD area at offset * 0xc00 which contains the preferred VPD values. If this is a T4 or * later based adapter, the special VPD is at offset 0x400 for the * Physical Functions (the SR-IOV Virtual Functions have no VPD * Capabilities). The PCI VPD Access core routines will normally * compute the size of the VPD by parsing the VPD Data Structure at * offset 0x000. This will result in silent failures when attempting * to accesses these other VPD areas which are beyond those computed * limits. */ if (chip == 0x0 && prod >= 0x20) pci_vpd_set_size(dev, 8192); else if (chip >= 0x4 && func < 0x8) pci_vpd_set_size(dev, 2048); } DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_CHELSIO, PCI_ANY_ID, quirk_chelsio_extend_vpd); #endif