// SPDX-License-Identifier: GPL-2.0-or-later /******************************************************************************* * Filename: target_core_iblock.c * * This file contains the Storage Engine <-> Linux BlockIO transport * specific functions. * * (c) Copyright 2003-2013 Datera, Inc. * * Nicholas A. Bellinger * ******************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "target_core_iblock.h" #include "target_core_pr.h" #define IBLOCK_MAX_BIO_PER_TASK 32 /* max # of bios to submit at a time */ #define IBLOCK_BIO_POOL_SIZE 128 static inline struct iblock_dev *IBLOCK_DEV(struct se_device *dev) { return container_of(dev, struct iblock_dev, dev); } static int iblock_attach_hba(struct se_hba *hba, u32 host_id) { pr_debug("CORE_HBA[%d] - TCM iBlock HBA Driver %s on" " Generic Target Core Stack %s\n", hba->hba_id, IBLOCK_VERSION, TARGET_CORE_VERSION); return 0; } static void iblock_detach_hba(struct se_hba *hba) { } static struct se_device *iblock_alloc_device(struct se_hba *hba, const char *name) { struct iblock_dev *ib_dev = NULL; ib_dev = kzalloc(sizeof(struct iblock_dev), GFP_KERNEL); if (!ib_dev) { pr_err("Unable to allocate struct iblock_dev\n"); return NULL; } ib_dev->ibd_plug = kcalloc(nr_cpu_ids, sizeof(*ib_dev->ibd_plug), GFP_KERNEL); if (!ib_dev->ibd_plug) goto free_dev; pr_debug( "IBLOCK: Allocated ib_dev for %s\n", name); return &ib_dev->dev; free_dev: kfree(ib_dev); return NULL; } static bool iblock_configure_unmap(struct se_device *dev) { struct iblock_dev *ib_dev = IBLOCK_DEV(dev); return target_configure_unmap_from_queue(&dev->dev_attrib, ib_dev->ibd_bd); } static int iblock_configure_device(struct se_device *dev) { struct iblock_dev *ib_dev = IBLOCK_DEV(dev); struct request_queue *q; struct block_device *bd = NULL; struct blk_integrity *bi; blk_mode_t mode = BLK_OPEN_READ; unsigned int max_write_zeroes_sectors; int ret; if (!(ib_dev->ibd_flags & IBDF_HAS_UDEV_PATH)) { pr_err("Missing udev_path= parameters for IBLOCK\n"); return -EINVAL; } ret = bioset_init(&ib_dev->ibd_bio_set, IBLOCK_BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); if (ret) { pr_err("IBLOCK: Unable to create bioset\n"); goto out; } pr_debug( "IBLOCK: Claiming struct block_device: %s\n", ib_dev->ibd_udev_path); if (!ib_dev->ibd_readonly) mode |= BLK_OPEN_WRITE; else dev->dev_flags |= DF_READ_ONLY; bd = blkdev_get_by_path(ib_dev->ibd_udev_path, mode, ib_dev, NULL); if (IS_ERR(bd)) { ret = PTR_ERR(bd); goto out_free_bioset; } ib_dev->ibd_bd = bd; q = bdev_get_queue(bd); dev->dev_attrib.hw_block_size = bdev_logical_block_size(bd); dev->dev_attrib.hw_max_sectors = mult_frac(queue_max_hw_sectors(q), SECTOR_SIZE, dev->dev_attrib.hw_block_size); dev->dev_attrib.hw_queue_depth = q->nr_requests; /* * Enable write same emulation for IBLOCK and use 0xFFFF as * the smaller WRITE_SAME(10) only has a two-byte block count. */ max_write_zeroes_sectors = bdev_write_zeroes_sectors(bd); if (max_write_zeroes_sectors) dev->dev_attrib.max_write_same_len = max_write_zeroes_sectors; else dev->dev_attrib.max_write_same_len = 0xFFFF; if (bdev_nonrot(bd)) dev->dev_attrib.is_nonrot = 1; bi = bdev_get_integrity(bd); if (bi) { struct bio_set *bs = &ib_dev->ibd_bio_set; if (!strcmp(bi->profile->name, "T10-DIF-TYPE3-IP") || !strcmp(bi->profile->name, "T10-DIF-TYPE1-IP")) { pr_err("IBLOCK export of blk_integrity: %s not" " supported\n", bi->profile->name); ret = -ENOSYS; goto out_blkdev_put; } if (!strcmp(bi->profile->name, "T10-DIF-TYPE3-CRC")) { dev->dev_attrib.pi_prot_type = TARGET_DIF_TYPE3_PROT; } else if (!strcmp(bi->profile->name, "T10-DIF-TYPE1-CRC")) { dev->dev_attrib.pi_prot_type = TARGET_DIF_TYPE1_PROT; } if (dev->dev_attrib.pi_prot_type) { if (bioset_integrity_create(bs, IBLOCK_BIO_POOL_SIZE) < 0) { pr_err("Unable to allocate bioset for PI\n"); ret = -ENOMEM; goto out_blkdev_put; } pr_debug("IBLOCK setup BIP bs->bio_integrity_pool: %p\n", &bs->bio_integrity_pool); } dev->dev_attrib.hw_pi_prot_type = dev->dev_attrib.pi_prot_type; } return 0; out_blkdev_put: blkdev_put(ib_dev->ibd_bd, ib_dev); out_free_bioset: bioset_exit(&ib_dev->ibd_bio_set); out: return ret; } static void iblock_dev_call_rcu(struct rcu_head *p) { struct se_device *dev = container_of(p, struct se_device, rcu_head); struct iblock_dev *ib_dev = IBLOCK_DEV(dev); kfree(ib_dev->ibd_plug); kfree(ib_dev); } static void iblock_free_device(struct se_device *dev) { call_rcu(&dev->rcu_head, iblock_dev_call_rcu); } static void iblock_destroy_device(struct se_device *dev) { struct iblock_dev *ib_dev = IBLOCK_DEV(dev); if (ib_dev->ibd_bd != NULL) blkdev_put(ib_dev->ibd_bd, ib_dev); bioset_exit(&ib_dev->ibd_bio_set); } static struct se_dev_plug *iblock_plug_device(struct se_device *se_dev) { struct iblock_dev *ib_dev = IBLOCK_DEV(se_dev); struct iblock_dev_plug *ib_dev_plug; /* * Each se_device has a per cpu work this can be run from. We * shouldn't have multiple threads on the same cpu calling this * at the same time. */ ib_dev_plug = &ib_dev->ibd_plug[raw_smp_processor_id()]; if (test_and_set_bit(IBD_PLUGF_PLUGGED, &ib_dev_plug->flags)) return NULL; blk_start_plug(&ib_dev_plug->blk_plug); return &ib_dev_plug->se_plug; } static void iblock_unplug_device(struct se_dev_plug *se_plug) { struct iblock_dev_plug *ib_dev_plug = container_of(se_plug, struct iblock_dev_plug, se_plug); blk_finish_plug(&ib_dev_plug->blk_plug); clear_bit(IBD_PLUGF_PLUGGED, &ib_dev_plug->flags); } static sector_t iblock_get_blocks(struct se_device *dev) { struct iblock_dev *ib_dev = IBLOCK_DEV(dev); u32 block_size = bdev_logical_block_size(ib_dev->ibd_bd); unsigned long long blocks_long = div_u64(bdev_nr_bytes(ib_dev->ibd_bd), block_size) - 1; if (block_size == dev->dev_attrib.block_size) return blocks_long; switch (block_size) { case 4096: switch (dev->dev_attrib.block_size) { case 2048: blocks_long <<= 1; break; case 1024: blocks_long <<= 2; break; case 512: blocks_long <<= 3; break; default: break; } break; case 2048: switch (dev->dev_attrib.block_size) { case 4096: blocks_long >>= 1; break; case 1024: blocks_long <<= 1; break; case 512: blocks_long <<= 2; break; default: break; } break; case 1024: switch (dev->dev_attrib.block_size) { case 4096: blocks_long >>= 2; break; case 2048: blocks_long >>= 1; break; case 512: blocks_long <<= 1; break; default: break; } break; case 512: switch (dev->dev_attrib.block_size) { case 4096: blocks_long >>= 3; break; case 2048: blocks_long >>= 2; break; case 1024: blocks_long >>= 1; break; default: break; } break; default: break; } return blocks_long; } static void iblock_complete_cmd(struct se_cmd *cmd, blk_status_t blk_status) { struct iblock_req *ibr = cmd->priv; u8 status; if (!refcount_dec_and_test(&ibr->pending)) return; if (blk_status == BLK_STS_RESV_CONFLICT) status = SAM_STAT_RESERVATION_CONFLICT; else if (atomic_read(&ibr->ib_bio_err_cnt)) status = SAM_STAT_CHECK_CONDITION; else status = SAM_STAT_GOOD; target_complete_cmd(cmd, status); kfree(ibr); } static void iblock_bio_done(struct bio *bio) { struct se_cmd *cmd = bio->bi_private; struct iblock_req *ibr = cmd->priv; blk_status_t blk_status = bio->bi_status; if (bio->bi_status) { pr_err("bio error: %p, err: %d\n", bio, bio->bi_status); /* * Bump the ib_bio_err_cnt and release bio. */ atomic_inc(&ibr->ib_bio_err_cnt); smp_mb__after_atomic(); } bio_put(bio); iblock_complete_cmd(cmd, blk_status); } static struct bio *iblock_get_bio(struct se_cmd *cmd, sector_t lba, u32 sg_num, blk_opf_t opf) { struct iblock_dev *ib_dev = IBLOCK_DEV(cmd->se_dev); struct bio *bio; /* * Only allocate as many vector entries as the bio code allows us to, * we'll loop later on until we have handled the whole request. */ bio = bio_alloc_bioset(ib_dev->ibd_bd, bio_max_segs(sg_num), opf, GFP_NOIO, &ib_dev->ibd_bio_set); if (!bio) { pr_err("Unable to allocate memory for bio\n"); return NULL; } bio->bi_private = cmd; bio->bi_end_io = &iblock_bio_done; bio->bi_iter.bi_sector = lba; return bio; } static void iblock_submit_bios(struct bio_list *list) { struct blk_plug plug; struct bio *bio; /* * The block layer handles nested plugs, so just plug/unplug to handle * fabric drivers that didn't support batching and multi bio cmds. */ blk_start_plug(&plug); while ((bio = bio_list_pop(list))) submit_bio(bio); blk_finish_plug(&plug); } static void iblock_end_io_flush(struct bio *bio) { struct se_cmd *cmd = bio->bi_private; if (bio->bi_status) pr_err("IBLOCK: cache flush failed: %d\n", bio->bi_status); if (cmd) { if (bio->bi_status) target_complete_cmd(cmd, SAM_STAT_CHECK_CONDITION); else target_complete_cmd(cmd, SAM_STAT_GOOD); } bio_put(bio); } /* * Implement SYCHRONIZE CACHE. Note that we can't handle lba ranges and must * always flush the whole cache. */ static sense_reason_t iblock_execute_sync_cache(struct se_cmd *cmd) { struct iblock_dev *ib_dev = IBLOCK_DEV(cmd->se_dev); int immed = (cmd->t_task_cdb[1] & 0x2); struct bio *bio; /* * If the Immediate bit is set, queue up the GOOD response * for this SYNCHRONIZE_CACHE op. */ if (immed) target_complete_cmd(cmd, SAM_STAT_GOOD); bio = bio_alloc(ib_dev->ibd_bd, 0, REQ_OP_WRITE | REQ_PREFLUSH, GFP_KERNEL); bio->bi_end_io = iblock_end_io_flush; if (!immed) bio->bi_private = cmd; submit_bio(bio); return 0; } static sense_reason_t iblock_execute_unmap(struct se_cmd *cmd, sector_t lba, sector_t nolb) { struct block_device *bdev = IBLOCK_DEV(cmd->se_dev)->ibd_bd; struct se_device *dev = cmd->se_dev; int ret; ret = blkdev_issue_discard(bdev, target_to_linux_sector(dev, lba), target_to_linux_sector(dev, nolb), GFP_KERNEL); if (ret < 0) { pr_err("blkdev_issue_discard() failed: %d\n", ret); return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; } return 0; } static sense_reason_t iblock_execute_zero_out(struct block_device *bdev, struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; struct scatterlist *sg = &cmd->t_data_sg[0]; unsigned char *buf, *not_zero; int ret; buf = kmap(sg_page(sg)) + sg->offset; if (!buf) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; /* * Fall back to block_execute_write_same() slow-path if * incoming WRITE_SAME payload does not contain zeros. */ not_zero = memchr_inv(buf, 0x00, cmd->data_length); kunmap(sg_page(sg)); if (not_zero) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; ret = blkdev_issue_zeroout(bdev, target_to_linux_sector(dev, cmd->t_task_lba), target_to_linux_sector(dev, sbc_get_write_same_sectors(cmd)), GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); if (ret) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; target_complete_cmd(cmd, SAM_STAT_GOOD); return 0; } static sense_reason_t iblock_execute_write_same(struct se_cmd *cmd) { struct block_device *bdev = IBLOCK_DEV(cmd->se_dev)->ibd_bd; struct iblock_req *ibr; struct scatterlist *sg; struct bio *bio; struct bio_list list; struct se_device *dev = cmd->se_dev; sector_t block_lba = target_to_linux_sector(dev, cmd->t_task_lba); sector_t sectors = target_to_linux_sector(dev, sbc_get_write_same_sectors(cmd)); if (cmd->prot_op) { pr_err("WRITE_SAME: Protection information with IBLOCK" " backends not supported\n"); return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; } if (!cmd->t_data_nents) return TCM_INVALID_CDB_FIELD; sg = &cmd->t_data_sg[0]; if (cmd->t_data_nents > 1 || sg->length != cmd->se_dev->dev_attrib.block_size) { pr_err("WRITE_SAME: Illegal SGL t_data_nents: %u length: %u" " block_size: %u\n", cmd->t_data_nents, sg->length, cmd->se_dev->dev_attrib.block_size); return TCM_INVALID_CDB_FIELD; } if (bdev_write_zeroes_sectors(bdev)) { if (!iblock_execute_zero_out(bdev, cmd)) return 0; } ibr = kzalloc(sizeof(struct iblock_req), GFP_KERNEL); if (!ibr) goto fail; cmd->priv = ibr; bio = iblock_get_bio(cmd, block_lba, 1, REQ_OP_WRITE); if (!bio) goto fail_free_ibr; bio_list_init(&list); bio_list_add(&list, bio); refcount_set(&ibr->pending, 1); while (sectors) { while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset) != sg->length) { bio = iblock_get_bio(cmd, block_lba, 1, REQ_OP_WRITE); if (!bio) goto fail_put_bios; refcount_inc(&ibr->pending); bio_list_add(&list, bio); } /* Always in 512 byte units for Linux/Block */ block_lba += sg->length >> SECTOR_SHIFT; sectors -= sg->length >> SECTOR_SHIFT; } iblock_submit_bios(&list); return 0; fail_put_bios: while ((bio = bio_list_pop(&list))) bio_put(bio); fail_free_ibr: kfree(ibr); fail: return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; } enum { Opt_udev_path, Opt_readonly, Opt_force, Opt_err }; static match_table_t tokens = { {Opt_udev_path, "udev_path=%s"}, {Opt_readonly, "readonly=%d"}, {Opt_force, "force=%d"}, {Opt_err, NULL} }; static ssize_t iblock_set_configfs_dev_params(struct se_device *dev, const char *page, ssize_t count) { struct iblock_dev *ib_dev = IBLOCK_DEV(dev); char *orig, *ptr, *arg_p, *opts; substring_t args[MAX_OPT_ARGS]; int ret = 0, token; unsigned long tmp_readonly; opts = kstrdup(page, GFP_KERNEL); if (!opts) return -ENOMEM; orig = opts; while ((ptr = strsep(&opts, ",\n")) != NULL) { if (!*ptr) continue; token = match_token(ptr, tokens, args); switch (token) { case Opt_udev_path: if (ib_dev->ibd_bd) { pr_err("Unable to set udev_path= while" " ib_dev->ibd_bd exists\n"); ret = -EEXIST; goto out; } if (match_strlcpy(ib_dev->ibd_udev_path, &args[0], SE_UDEV_PATH_LEN) == 0) { ret = -EINVAL; break; } pr_debug("IBLOCK: Referencing UDEV path: %s\n", ib_dev->ibd_udev_path); ib_dev->ibd_flags |= IBDF_HAS_UDEV_PATH; break; case Opt_readonly: arg_p = match_strdup(&args[0]); if (!arg_p) { ret = -ENOMEM; break; } ret = kstrtoul(arg_p, 0, &tmp_readonly); kfree(arg_p); if (ret < 0) { pr_err("kstrtoul() failed for" " readonly=\n"); goto out; } ib_dev->ibd_readonly = tmp_readonly; pr_debug("IBLOCK: readonly: %d\n", ib_dev->ibd_readonly); break; case Opt_force: break; default: break; } } out: kfree(orig); return (!ret) ? count : ret; } static ssize_t iblock_show_configfs_dev_params(struct se_device *dev, char *b) { struct iblock_dev *ib_dev = IBLOCK_DEV(dev); struct block_device *bd = ib_dev->ibd_bd; ssize_t bl = 0; if (bd) bl += sprintf(b + bl, "iBlock device: %pg", bd); if (ib_dev->ibd_flags & IBDF_HAS_UDEV_PATH) bl += sprintf(b + bl, " UDEV PATH: %s", ib_dev->ibd_udev_path); bl += sprintf(b + bl, " readonly: %d\n", ib_dev->ibd_readonly); bl += sprintf(b + bl, " "); if (bd) { bl += sprintf(b + bl, "Major: %d Minor: %d %s\n", MAJOR(bd->bd_dev), MINOR(bd->bd_dev), "CLAIMED: IBLOCK"); } else { bl += sprintf(b + bl, "Major: 0 Minor: 0\n"); } return bl; } static int iblock_alloc_bip(struct se_cmd *cmd, struct bio *bio, struct sg_mapping_iter *miter) { struct se_device *dev = cmd->se_dev; struct blk_integrity *bi; struct bio_integrity_payload *bip; struct iblock_dev *ib_dev = IBLOCK_DEV(dev); int rc; size_t resid, len; bi = bdev_get_integrity(ib_dev->ibd_bd); if (!bi) { pr_err("Unable to locate bio_integrity\n"); return -ENODEV; } bip = bio_integrity_alloc(bio, GFP_NOIO, bio_max_segs(cmd->t_prot_nents)); if (IS_ERR(bip)) { pr_err("Unable to allocate bio_integrity_payload\n"); return PTR_ERR(bip); } bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); /* virtual start sector must be in integrity interval units */ bip_set_seed(bip, bio->bi_iter.bi_sector >> (bi->interval_exp - SECTOR_SHIFT)); pr_debug("IBLOCK BIP Size: %u Sector: %llu\n", bip->bip_iter.bi_size, (unsigned long long)bip->bip_iter.bi_sector); resid = bip->bip_iter.bi_size; while (resid > 0 && sg_miter_next(miter)) { len = min_t(size_t, miter->length, resid); rc = bio_integrity_add_page(bio, miter->page, len, offset_in_page(miter->addr)); if (rc != len) { pr_err("bio_integrity_add_page() failed; %d\n", rc); sg_miter_stop(miter); return -ENOMEM; } pr_debug("Added bio integrity page: %p length: %zu offset: %lu\n", miter->page, len, offset_in_page(miter->addr)); resid -= len; if (len < miter->length) miter->consumed -= miter->length - len; } sg_miter_stop(miter); return 0; } static sense_reason_t iblock_execute_rw(struct se_cmd *cmd, struct scatterlist *sgl, u32 sgl_nents, enum dma_data_direction data_direction) { struct se_device *dev = cmd->se_dev; sector_t block_lba = target_to_linux_sector(dev, cmd->t_task_lba); struct iblock_req *ibr; struct bio *bio; struct bio_list list; struct scatterlist *sg; u32 sg_num = sgl_nents; blk_opf_t opf; unsigned bio_cnt; int i, rc; struct sg_mapping_iter prot_miter; unsigned int miter_dir; if (data_direction == DMA_TO_DEVICE) { struct iblock_dev *ib_dev = IBLOCK_DEV(dev); /* * Set bits to indicate WRITE_ODIRECT so we are not throttled * by WBT. */ opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; /* * Force writethrough using REQ_FUA if a volatile write cache * is not enabled, or if initiator set the Force Unit Access bit. */ miter_dir = SG_MITER_TO_SG; if (bdev_fua(ib_dev->ibd_bd)) { if (cmd->se_cmd_flags & SCF_FUA) opf |= REQ_FUA; else if (!bdev_write_cache(ib_dev->ibd_bd)) opf |= REQ_FUA; } } else { opf = REQ_OP_READ; miter_dir = SG_MITER_FROM_SG; } ibr = kzalloc(sizeof(struct iblock_req), GFP_KERNEL); if (!ibr) goto fail; cmd->priv = ibr; if (!sgl_nents) { refcount_set(&ibr->pending, 1); iblock_complete_cmd(cmd, BLK_STS_OK); return 0; } bio = iblock_get_bio(cmd, block_lba, sgl_nents, opf); if (!bio) goto fail_free_ibr; bio_list_init(&list); bio_list_add(&list, bio); refcount_set(&ibr->pending, 2); bio_cnt = 1; if (cmd->prot_type && dev->dev_attrib.pi_prot_type) sg_miter_start(&prot_miter, cmd->t_prot_sg, cmd->t_prot_nents, miter_dir); for_each_sg(sgl, sg, sgl_nents, i) { /* * XXX: if the length the device accepts is shorter than the * length of the S/G list entry this will cause and * endless loop. Better hope no driver uses huge pages. */ while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset) != sg->length) { if (cmd->prot_type && dev->dev_attrib.pi_prot_type) { rc = iblock_alloc_bip(cmd, bio, &prot_miter); if (rc) goto fail_put_bios; } if (bio_cnt >= IBLOCK_MAX_BIO_PER_TASK) { iblock_submit_bios(&list); bio_cnt = 0; } bio = iblock_get_bio(cmd, block_lba, sg_num, opf); if (!bio) goto fail_put_bios; refcount_inc(&ibr->pending); bio_list_add(&list, bio); bio_cnt++; } /* Always in 512 byte units for Linux/Block */ block_lba += sg->length >> SECTOR_SHIFT; sg_num--; } if (cmd->prot_type && dev->dev_attrib.pi_prot_type) { rc = iblock_alloc_bip(cmd, bio, &prot_miter); if (rc) goto fail_put_bios; } iblock_submit_bios(&list); iblock_complete_cmd(cmd, BLK_STS_OK); return 0; fail_put_bios: while ((bio = bio_list_pop(&list))) bio_put(bio); fail_free_ibr: kfree(ibr); fail: return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; } static sense_reason_t iblock_execute_pr_out(struct se_cmd *cmd, u8 sa, u64 key, u64 sa_key, u8 type, bool aptpl) { struct se_device *dev = cmd->se_dev; struct iblock_dev *ib_dev = IBLOCK_DEV(dev); struct block_device *bdev = ib_dev->ibd_bd; const struct pr_ops *ops = bdev->bd_disk->fops->pr_ops; int ret; if (!ops) { pr_err("Block device does not support pr_ops but iblock device has been configured for PR passthrough.\n"); return TCM_UNSUPPORTED_SCSI_OPCODE; } switch (sa) { case PRO_REGISTER: case PRO_REGISTER_AND_IGNORE_EXISTING_KEY: if (!ops->pr_register) { pr_err("block device does not support pr_register.\n"); return TCM_UNSUPPORTED_SCSI_OPCODE; } /* The block layer pr ops always enables aptpl */ if (!aptpl) pr_info("APTPL not set by initiator, but will be used.\n"); ret = ops->pr_register(bdev, key, sa_key, sa == PRO_REGISTER ? 0 : PR_FL_IGNORE_KEY); break; case PRO_RESERVE: if (!ops->pr_reserve) { pr_err("block_device does not support pr_reserve.\n"); return TCM_UNSUPPORTED_SCSI_OPCODE; } ret = ops->pr_reserve(bdev, key, scsi_pr_type_to_block(type), 0); break; case PRO_CLEAR: if (!ops->pr_clear) { pr_err("block_device does not support pr_clear.\n"); return TCM_UNSUPPORTED_SCSI_OPCODE; } ret = ops->pr_clear(bdev, key); break; case PRO_PREEMPT: case PRO_PREEMPT_AND_ABORT: if (!ops->pr_clear) { pr_err("block_device does not support pr_preempt.\n"); return TCM_UNSUPPORTED_SCSI_OPCODE; } ret = ops->pr_preempt(bdev, key, sa_key, scsi_pr_type_to_block(type), sa == PRO_PREEMPT_AND_ABORT); break; case PRO_RELEASE: if (!ops->pr_clear) { pr_err("block_device does not support pr_pclear.\n"); return TCM_UNSUPPORTED_SCSI_OPCODE; } ret = ops->pr_release(bdev, key, scsi_pr_type_to_block(type)); break; default: pr_err("Unknown PERSISTENT_RESERVE_OUT SA: 0x%02x\n", sa); return TCM_UNSUPPORTED_SCSI_OPCODE; } if (!ret) return TCM_NO_SENSE; else if (ret == PR_STS_RESERVATION_CONFLICT) return TCM_RESERVATION_CONFLICT; else return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; } static void iblock_pr_report_caps(unsigned char *param_data) { u16 len = 8; put_unaligned_be16(len, ¶m_data[0]); /* * When using the pr_ops passthrough method we only support exporting * the device through one target port because from the backend module * level we can't see the target port config. As a result we only * support registration directly from the I_T nexus the cmd is sent * through and do not set ATP_C here. * * The block layer pr_ops do not support passing in initiators so * we don't set SIP_C here. */ /* PTPL_C: Persistence across Target Power Loss bit */ param_data[2] |= 0x01; /* * We are filling in the PERSISTENT RESERVATION TYPE MASK below, so * set the TMV: Task Mask Valid bit. */ param_data[3] |= 0x80; /* * Change ALLOW COMMANDs to 0x20 or 0x40 later from Table 166 */ param_data[3] |= 0x10; /* ALLOW COMMANDs field 001b */ /* * PTPL_A: Persistence across Target Power Loss Active bit. The block * layer pr ops always enables this so report it active. */ param_data[3] |= 0x01; /* * Setup the PERSISTENT RESERVATION TYPE MASK from Table 212 spc4r37. */ param_data[4] |= 0x80; /* PR_TYPE_EXCLUSIVE_ACCESS_ALLREG */ param_data[4] |= 0x40; /* PR_TYPE_EXCLUSIVE_ACCESS_REGONLY */ param_data[4] |= 0x20; /* PR_TYPE_WRITE_EXCLUSIVE_REGONLY */ param_data[4] |= 0x08; /* PR_TYPE_EXCLUSIVE_ACCESS */ param_data[4] |= 0x02; /* PR_TYPE_WRITE_EXCLUSIVE */ param_data[5] |= 0x01; /* PR_TYPE_EXCLUSIVE_ACCESS_ALLREG */ } static sense_reason_t iblock_pr_read_keys(struct se_cmd *cmd, unsigned char *param_data) { struct se_device *dev = cmd->se_dev; struct iblock_dev *ib_dev = IBLOCK_DEV(dev); struct block_device *bdev = ib_dev->ibd_bd; const struct pr_ops *ops = bdev->bd_disk->fops->pr_ops; int i, len, paths, data_offset; struct pr_keys *keys; sense_reason_t ret; if (!ops) { pr_err("Block device does not support pr_ops but iblock device has been configured for PR passthrough.\n"); return TCM_UNSUPPORTED_SCSI_OPCODE; } if (!ops->pr_read_keys) { pr_err("Block device does not support read_keys.\n"); return TCM_UNSUPPORTED_SCSI_OPCODE; } /* * We don't know what's under us, but dm-multipath will register every * path with the same key, so start off with enough space for 16 paths. * which is not a lot of memory and should normally be enough. */ paths = 16; retry: len = 8 * paths; keys = kzalloc(sizeof(*keys) + len, GFP_KERNEL); if (!keys) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; keys->num_keys = paths; if (!ops->pr_read_keys(bdev, keys)) { if (keys->num_keys > paths) { kfree(keys); paths *= 2; goto retry; } } else { ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; goto free_keys; } ret = TCM_NO_SENSE; put_unaligned_be32(keys->generation, ¶m_data[0]); if (!keys->num_keys) { put_unaligned_be32(0, ¶m_data[4]); goto free_keys; } put_unaligned_be32(8 * keys->num_keys, ¶m_data[4]); data_offset = 8; for (i = 0; i < keys->num_keys; i++) { if (data_offset + 8 > cmd->data_length) break; put_unaligned_be64(keys->keys[i], ¶m_data[data_offset]); data_offset += 8; } free_keys: kfree(keys); return ret; } static sense_reason_t iblock_pr_read_reservation(struct se_cmd *cmd, unsigned char *param_data) { struct se_device *dev = cmd->se_dev; struct iblock_dev *ib_dev = IBLOCK_DEV(dev); struct block_device *bdev = ib_dev->ibd_bd; const struct pr_ops *ops = bdev->bd_disk->fops->pr_ops; struct pr_held_reservation rsv = { }; if (!ops) { pr_err("Block device does not support pr_ops but iblock device has been configured for PR passthrough.\n"); return TCM_UNSUPPORTED_SCSI_OPCODE; } if (!ops->pr_read_reservation) { pr_err("Block device does not support read_keys.\n"); return TCM_UNSUPPORTED_SCSI_OPCODE; } if (ops->pr_read_reservation(bdev, &rsv)) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; put_unaligned_be32(rsv.generation, ¶m_data[0]); if (!block_pr_type_to_scsi(rsv.type)) { put_unaligned_be32(0, ¶m_data[4]); return TCM_NO_SENSE; } put_unaligned_be32(16, ¶m_data[4]); if (cmd->data_length < 16) return TCM_NO_SENSE; put_unaligned_be64(rsv.key, ¶m_data[8]); if (cmd->data_length < 22) return TCM_NO_SENSE; param_data[21] = block_pr_type_to_scsi(rsv.type); return TCM_NO_SENSE; } static sense_reason_t iblock_execute_pr_in(struct se_cmd *cmd, u8 sa, unsigned char *param_data) { sense_reason_t ret = TCM_NO_SENSE; switch (sa) { case PRI_REPORT_CAPABILITIES: iblock_pr_report_caps(param_data); break; case PRI_READ_KEYS: ret = iblock_pr_read_keys(cmd, param_data); break; case PRI_READ_RESERVATION: ret = iblock_pr_read_reservation(cmd, param_data); break; default: pr_err("Unknown PERSISTENT_RESERVE_IN SA: 0x%02x\n", sa); return TCM_UNSUPPORTED_SCSI_OPCODE; } return ret; } static sector_t iblock_get_alignment_offset_lbas(struct se_device *dev) { struct iblock_dev *ib_dev = IBLOCK_DEV(dev); struct block_device *bd = ib_dev->ibd_bd; int ret; ret = bdev_alignment_offset(bd); if (ret == -1) return 0; /* convert offset-bytes to offset-lbas */ return ret / bdev_logical_block_size(bd); } static unsigned int iblock_get_lbppbe(struct se_device *dev) { struct iblock_dev *ib_dev = IBLOCK_DEV(dev); struct block_device *bd = ib_dev->ibd_bd; unsigned int logs_per_phys = bdev_physical_block_size(bd) / bdev_logical_block_size(bd); return ilog2(logs_per_phys); } static unsigned int iblock_get_io_min(struct se_device *dev) { struct iblock_dev *ib_dev = IBLOCK_DEV(dev); struct block_device *bd = ib_dev->ibd_bd; return bdev_io_min(bd); } static unsigned int iblock_get_io_opt(struct se_device *dev) { struct iblock_dev *ib_dev = IBLOCK_DEV(dev); struct block_device *bd = ib_dev->ibd_bd; return bdev_io_opt(bd); } static struct exec_cmd_ops iblock_exec_cmd_ops = { .execute_rw = iblock_execute_rw, .execute_sync_cache = iblock_execute_sync_cache, .execute_write_same = iblock_execute_write_same, .execute_unmap = iblock_execute_unmap, .execute_pr_out = iblock_execute_pr_out, .execute_pr_in = iblock_execute_pr_in, }; static sense_reason_t iblock_parse_cdb(struct se_cmd *cmd) { return sbc_parse_cdb(cmd, &iblock_exec_cmd_ops); } static bool iblock_get_write_cache(struct se_device *dev) { return bdev_write_cache(IBLOCK_DEV(dev)->ibd_bd); } static const struct target_backend_ops iblock_ops = { .name = "iblock", .inquiry_prod = "IBLOCK", .transport_flags_changeable = TRANSPORT_FLAG_PASSTHROUGH_PGR, .inquiry_rev = IBLOCK_VERSION, .owner = THIS_MODULE, .attach_hba = iblock_attach_hba, .detach_hba = iblock_detach_hba, .alloc_device = iblock_alloc_device, .configure_device = iblock_configure_device, .destroy_device = iblock_destroy_device, .free_device = iblock_free_device, .configure_unmap = iblock_configure_unmap, .plug_device = iblock_plug_device, .unplug_device = iblock_unplug_device, .parse_cdb = iblock_parse_cdb, .set_configfs_dev_params = iblock_set_configfs_dev_params, .show_configfs_dev_params = iblock_show_configfs_dev_params, .get_device_type = sbc_get_device_type, .get_blocks = iblock_get_blocks, .get_alignment_offset_lbas = iblock_get_alignment_offset_lbas, .get_lbppbe = iblock_get_lbppbe, .get_io_min = iblock_get_io_min, .get_io_opt = iblock_get_io_opt, .get_write_cache = iblock_get_write_cache, .tb_dev_attrib_attrs = sbc_attrib_attrs, }; static int __init iblock_module_init(void) { return transport_backend_register(&iblock_ops); } static void __exit iblock_module_exit(void) { target_backend_unregister(&iblock_ops); } MODULE_DESCRIPTION("TCM IBLOCK subsystem plugin"); MODULE_AUTHOR("nab@Linux-iSCSI.org"); MODULE_LICENSE("GPL"); module_init(iblock_module_init); module_exit(iblock_module_exit);