// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) Qu Wenruo 2017. All rights reserved. */ /* * The module is used to catch unexpected/corrupted tree block data. * Such behavior can be caused either by a fuzzed image or bugs. * * The objective is to do leaf/node validation checks when tree block is read * from disk, and check *every* possible member, so other code won't * need to checking them again. * * Due to the potential and unwanted damage, every checker needs to be * carefully reviewed otherwise so it does not prevent mount of valid images. */ #include #include #include #include "messages.h" #include "ctree.h" #include "tree-checker.h" #include "disk-io.h" #include "compression.h" #include "volumes.h" #include "misc.h" #include "btrfs_inode.h" #include "fs.h" /* * Error message should follow the following format: * corrupt : , [, ] * * @type: leaf or node * @identifier: the necessary info to locate the leaf/node. * It's recommended to decode key.objecitd/offset if it's * meaningful. * @reason: describe the error * @bad_value: optional, it's recommended to output bad value and its * expected value (range). * * Since comma is used to separate the components, only space is allowed * inside each component. */ /* * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. * Allows callers to customize the output. */ __printf(3, 4) __cold static void generic_err(const struct extent_buffer *eb, int slot, const char *fmt, ...) { const struct btrfs_fs_info *fs_info = eb->fs_info; struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; btrfs_crit(fs_info, "corrupt %s: root=%llu block=%llu slot=%d, %pV", btrfs_header_level(eb) == 0 ? "leaf" : "node", btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); va_end(args); } /* * Customized reporter for extent data item, since its key objectid and * offset has its own meaning. */ __printf(3, 4) __cold static void file_extent_err(const struct extent_buffer *eb, int slot, const char *fmt, ...) { const struct btrfs_fs_info *fs_info = eb->fs_info; struct btrfs_key key; struct va_format vaf; va_list args; btrfs_item_key_to_cpu(eb, &key, slot); va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; btrfs_crit(fs_info, "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", btrfs_header_level(eb) == 0 ? "leaf" : "node", btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, key.objectid, key.offset, &vaf); va_end(args); } /* * Return 0 if the btrfs_file_extent_##name is aligned to @alignment * Else return 1 */ #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ ({ \ if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ (alignment)))) \ file_extent_err((leaf), (slot), \ "invalid %s for file extent, have %llu, should be aligned to %u", \ (#name), btrfs_file_extent_##name((leaf), (fi)), \ (alignment)); \ (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ }) static u64 file_extent_end(struct extent_buffer *leaf, struct btrfs_key *key, struct btrfs_file_extent_item *extent) { u64 end; u64 len; if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { len = btrfs_file_extent_ram_bytes(leaf, extent); end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); } else { len = btrfs_file_extent_num_bytes(leaf, extent); end = key->offset + len; } return end; } /* * Customized report for dir_item, the only new important information is * key->objectid, which represents inode number */ __printf(3, 4) __cold static void dir_item_err(const struct extent_buffer *eb, int slot, const char *fmt, ...) { const struct btrfs_fs_info *fs_info = eb->fs_info; struct btrfs_key key; struct va_format vaf; va_list args; btrfs_item_key_to_cpu(eb, &key, slot); va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; btrfs_crit(fs_info, "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", btrfs_header_level(eb) == 0 ? "leaf" : "node", btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, key.objectid, &vaf); va_end(args); } /* * This functions checks prev_key->objectid, to ensure current key and prev_key * share the same objectid as inode number. * * This is to detect missing INODE_ITEM in subvolume trees. * * Return true if everything is OK or we don't need to check. * Return false if anything is wrong. */ static bool check_prev_ino(struct extent_buffer *leaf, struct btrfs_key *key, int slot, struct btrfs_key *prev_key) { /* No prev key, skip check */ if (slot == 0) return true; /* Only these key->types needs to be checked */ ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || key->type == BTRFS_INODE_REF_KEY || key->type == BTRFS_DIR_INDEX_KEY || key->type == BTRFS_DIR_ITEM_KEY || key->type == BTRFS_EXTENT_DATA_KEY); /* * Only subvolume trees along with their reloc trees need this check. * Things like log tree doesn't follow this ino requirement. */ if (!is_fstree(btrfs_header_owner(leaf))) return true; if (key->objectid == prev_key->objectid) return true; /* Error found */ dir_item_err(leaf, slot, "invalid previous key objectid, have %llu expect %llu", prev_key->objectid, key->objectid); return false; } static int check_extent_data_item(struct extent_buffer *leaf, struct btrfs_key *key, int slot, struct btrfs_key *prev_key) { struct btrfs_fs_info *fs_info = leaf->fs_info; struct btrfs_file_extent_item *fi; u32 sectorsize = fs_info->sectorsize; u32 item_size = btrfs_item_size(leaf, slot); u64 extent_end; if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { file_extent_err(leaf, slot, "unaligned file_offset for file extent, have %llu should be aligned to %u", key->offset, sectorsize); return -EUCLEAN; } /* * Previous key must have the same key->objectid (ino). * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. * But if objectids mismatch, it means we have a missing * INODE_ITEM. */ if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) return -EUCLEAN; fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); /* * Make sure the item contains at least inline header, so the file * extent type is not some garbage. */ if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { file_extent_err(leaf, slot, "invalid item size, have %u expect [%zu, %u)", item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, SZ_4K); return -EUCLEAN; } if (unlikely(btrfs_file_extent_type(leaf, fi) >= BTRFS_NR_FILE_EXTENT_TYPES)) { file_extent_err(leaf, slot, "invalid type for file extent, have %u expect range [0, %u]", btrfs_file_extent_type(leaf, fi), BTRFS_NR_FILE_EXTENT_TYPES - 1); return -EUCLEAN; } /* * Support for new compression/encryption must introduce incompat flag, * and must be caught in open_ctree(). */ if (unlikely(btrfs_file_extent_compression(leaf, fi) >= BTRFS_NR_COMPRESS_TYPES)) { file_extent_err(leaf, slot, "invalid compression for file extent, have %u expect range [0, %u]", btrfs_file_extent_compression(leaf, fi), BTRFS_NR_COMPRESS_TYPES - 1); return -EUCLEAN; } if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { file_extent_err(leaf, slot, "invalid encryption for file extent, have %u expect 0", btrfs_file_extent_encryption(leaf, fi)); return -EUCLEAN; } if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { /* Inline extent must have 0 as key offset */ if (unlikely(key->offset)) { file_extent_err(leaf, slot, "invalid file_offset for inline file extent, have %llu expect 0", key->offset); return -EUCLEAN; } /* Compressed inline extent has no on-disk size, skip it */ if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) return 0; /* Uncompressed inline extent size must match item size */ if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + btrfs_file_extent_ram_bytes(leaf, fi))) { file_extent_err(leaf, slot, "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + btrfs_file_extent_ram_bytes(leaf, fi)); return -EUCLEAN; } return 0; } /* Regular or preallocated extent has fixed item size */ if (unlikely(item_size != sizeof(*fi))) { file_extent_err(leaf, slot, "invalid item size for reg/prealloc file extent, have %u expect %zu", item_size, sizeof(*fi)); return -EUCLEAN; } if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) return -EUCLEAN; /* Catch extent end overflow */ if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), key->offset, &extent_end))) { file_extent_err(leaf, slot, "extent end overflow, have file offset %llu extent num bytes %llu", key->offset, btrfs_file_extent_num_bytes(leaf, fi)); return -EUCLEAN; } /* * Check that no two consecutive file extent items, in the same leaf, * present ranges that overlap each other. */ if (slot > 0 && prev_key->objectid == key->objectid && prev_key->type == BTRFS_EXTENT_DATA_KEY) { struct btrfs_file_extent_item *prev_fi; u64 prev_end; prev_fi = btrfs_item_ptr(leaf, slot - 1, struct btrfs_file_extent_item); prev_end = file_extent_end(leaf, prev_key, prev_fi); if (unlikely(prev_end > key->offset)) { file_extent_err(leaf, slot - 1, "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", prev_end, key->offset); return -EUCLEAN; } } return 0; } static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, int slot, struct btrfs_key *prev_key) { struct btrfs_fs_info *fs_info = leaf->fs_info; u32 sectorsize = fs_info->sectorsize; const u32 csumsize = fs_info->csum_size; if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { generic_err(leaf, slot, "invalid key objectid for csum item, have %llu expect %llu", key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); return -EUCLEAN; } if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { generic_err(leaf, slot, "unaligned key offset for csum item, have %llu should be aligned to %u", key->offset, sectorsize); return -EUCLEAN; } if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { generic_err(leaf, slot, "unaligned item size for csum item, have %u should be aligned to %u", btrfs_item_size(leaf, slot), csumsize); return -EUCLEAN; } if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { u64 prev_csum_end; u32 prev_item_size; prev_item_size = btrfs_item_size(leaf, slot - 1); prev_csum_end = (prev_item_size / csumsize) * sectorsize; prev_csum_end += prev_key->offset; if (unlikely(prev_csum_end > key->offset)) { generic_err(leaf, slot - 1, "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", prev_csum_end, key->offset); return -EUCLEAN; } } return 0; } /* Inode item error output has the same format as dir_item_err() */ #define inode_item_err(eb, slot, fmt, ...) \ dir_item_err(eb, slot, fmt, __VA_ARGS__) static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct btrfs_key item_key; bool is_inode_item; btrfs_item_key_to_cpu(leaf, &item_key, slot); is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); /* For XATTR_ITEM, location key should be all 0 */ if (item_key.type == BTRFS_XATTR_ITEM_KEY) { if (unlikely(key->objectid != 0 || key->type != 0 || key->offset != 0)) return -EUCLEAN; return 0; } if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || key->objectid > BTRFS_LAST_FREE_OBJECTID) && key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && key->objectid != BTRFS_FREE_INO_OBJECTID)) { if (is_inode_item) { generic_err(leaf, slot, "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID, BTRFS_FREE_INO_OBJECTID); } else { dir_item_err(leaf, slot, "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID, BTRFS_FREE_INO_OBJECTID); } return -EUCLEAN; } if (unlikely(key->offset != 0)) { if (is_inode_item) inode_item_err(leaf, slot, "invalid key offset: has %llu expect 0", key->offset); else dir_item_err(leaf, slot, "invalid location key offset:has %llu expect 0", key->offset); return -EUCLEAN; } return 0; } static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct btrfs_key item_key; bool is_root_item; btrfs_item_key_to_cpu(leaf, &item_key, slot); is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); /* No such tree id */ if (unlikely(key->objectid == 0)) { if (is_root_item) generic_err(leaf, slot, "invalid root id 0"); else dir_item_err(leaf, slot, "invalid location key root id 0"); return -EUCLEAN; } /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ if (unlikely(!is_fstree(key->objectid) && !is_root_item)) { dir_item_err(leaf, slot, "invalid location key objectid, have %llu expect [%llu, %llu]", key->objectid, BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); return -EUCLEAN; } /* * ROOT_ITEM with non-zero offset means this is a snapshot, created at * @offset transid. * Furthermore, for location key in DIR_ITEM, its offset is always -1. * * So here we only check offset for reloc tree whose key->offset must * be a valid tree. */ if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && key->offset == 0)) { generic_err(leaf, slot, "invalid root id 0 for reloc tree"); return -EUCLEAN; } return 0; } static int check_dir_item(struct extent_buffer *leaf, struct btrfs_key *key, struct btrfs_key *prev_key, int slot) { struct btrfs_fs_info *fs_info = leaf->fs_info; struct btrfs_dir_item *di; u32 item_size = btrfs_item_size(leaf, slot); u32 cur = 0; if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) return -EUCLEAN; di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); while (cur < item_size) { struct btrfs_key location_key; u32 name_len; u32 data_len; u32 max_name_len; u32 total_size; u32 name_hash; u8 dir_type; int ret; /* header itself should not cross item boundary */ if (unlikely(cur + sizeof(*di) > item_size)) { dir_item_err(leaf, slot, "dir item header crosses item boundary, have %zu boundary %u", cur + sizeof(*di), item_size); return -EUCLEAN; } /* Location key check */ btrfs_dir_item_key_to_cpu(leaf, di, &location_key); if (location_key.type == BTRFS_ROOT_ITEM_KEY) { ret = check_root_key(leaf, &location_key, slot); if (unlikely(ret < 0)) return ret; } else if (location_key.type == BTRFS_INODE_ITEM_KEY || location_key.type == 0) { ret = check_inode_key(leaf, &location_key, slot); if (unlikely(ret < 0)) return ret; } else { dir_item_err(leaf, slot, "invalid location key type, have %u, expect %u or %u", location_key.type, BTRFS_ROOT_ITEM_KEY, BTRFS_INODE_ITEM_KEY); return -EUCLEAN; } /* dir type check */ dir_type = btrfs_dir_type(leaf, di); if (unlikely(dir_type >= BTRFS_FT_MAX)) { dir_item_err(leaf, slot, "invalid dir item type, have %u expect [0, %u)", dir_type, BTRFS_FT_MAX); return -EUCLEAN; } if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && dir_type != BTRFS_FT_XATTR)) { dir_item_err(leaf, slot, "invalid dir item type for XATTR key, have %u expect %u", dir_type, BTRFS_FT_XATTR); return -EUCLEAN; } if (unlikely(dir_type == BTRFS_FT_XATTR && key->type != BTRFS_XATTR_ITEM_KEY)) { dir_item_err(leaf, slot, "xattr dir type found for non-XATTR key"); return -EUCLEAN; } if (dir_type == BTRFS_FT_XATTR) max_name_len = XATTR_NAME_MAX; else max_name_len = BTRFS_NAME_LEN; /* Name/data length check */ name_len = btrfs_dir_name_len(leaf, di); data_len = btrfs_dir_data_len(leaf, di); if (unlikely(name_len > max_name_len)) { dir_item_err(leaf, slot, "dir item name len too long, have %u max %u", name_len, max_name_len); return -EUCLEAN; } if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { dir_item_err(leaf, slot, "dir item name and data len too long, have %u max %u", name_len + data_len, BTRFS_MAX_XATTR_SIZE(fs_info)); return -EUCLEAN; } if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { dir_item_err(leaf, slot, "dir item with invalid data len, have %u expect 0", data_len); return -EUCLEAN; } total_size = sizeof(*di) + name_len + data_len; /* header and name/data should not cross item boundary */ if (unlikely(cur + total_size > item_size)) { dir_item_err(leaf, slot, "dir item data crosses item boundary, have %u boundary %u", cur + total_size, item_size); return -EUCLEAN; } /* * Special check for XATTR/DIR_ITEM, as key->offset is name * hash, should match its name */ if (key->type == BTRFS_DIR_ITEM_KEY || key->type == BTRFS_XATTR_ITEM_KEY) { char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; read_extent_buffer(leaf, namebuf, (unsigned long)(di + 1), name_len); name_hash = btrfs_name_hash(namebuf, name_len); if (unlikely(key->offset != name_hash)) { dir_item_err(leaf, slot, "name hash mismatch with key, have 0x%016x expect 0x%016llx", name_hash, key->offset); return -EUCLEAN; } } cur += total_size; di = (struct btrfs_dir_item *)((void *)di + total_size); } return 0; } __printf(3, 4) __cold static void block_group_err(const struct extent_buffer *eb, int slot, const char *fmt, ...) { const struct btrfs_fs_info *fs_info = eb->fs_info; struct btrfs_key key; struct va_format vaf; va_list args; btrfs_item_key_to_cpu(eb, &key, slot); va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; btrfs_crit(fs_info, "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", btrfs_header_level(eb) == 0 ? "leaf" : "node", btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, key.objectid, key.offset, &vaf); va_end(args); } static int check_block_group_item(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct btrfs_fs_info *fs_info = leaf->fs_info; struct btrfs_block_group_item bgi; u32 item_size = btrfs_item_size(leaf, slot); u64 chunk_objectid; u64 flags; u64 type; /* * Here we don't really care about alignment since extent allocator can * handle it. We care more about the size. */ if (unlikely(key->offset == 0)) { block_group_err(leaf, slot, "invalid block group size 0"); return -EUCLEAN; } if (unlikely(item_size != sizeof(bgi))) { block_group_err(leaf, slot, "invalid item size, have %u expect %zu", item_size, sizeof(bgi)); return -EUCLEAN; } read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), sizeof(bgi)); chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { /* * We don't init the nr_global_roots until we load the global * roots, so this could be 0 at mount time. If it's 0 we'll * just assume we're fine, and later we'll check against our * actual value. */ if (unlikely(fs_info->nr_global_roots && chunk_objectid >= fs_info->nr_global_roots)) { block_group_err(leaf, slot, "invalid block group global root id, have %llu, needs to be <= %llu", chunk_objectid, fs_info->nr_global_roots); return -EUCLEAN; } } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { block_group_err(leaf, slot, "invalid block group chunk objectid, have %llu expect %llu", btrfs_stack_block_group_chunk_objectid(&bgi), BTRFS_FIRST_CHUNK_TREE_OBJECTID); return -EUCLEAN; } if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { block_group_err(leaf, slot, "invalid block group used, have %llu expect [0, %llu)", btrfs_stack_block_group_used(&bgi), key->offset); return -EUCLEAN; } flags = btrfs_stack_block_group_flags(&bgi); if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { block_group_err(leaf, slot, "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); return -EUCLEAN; } type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && type != BTRFS_BLOCK_GROUP_METADATA && type != BTRFS_BLOCK_GROUP_SYSTEM && type != (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) { block_group_err(leaf, slot, "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", type, hweight64(type), BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, BTRFS_BLOCK_GROUP_SYSTEM, BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); return -EUCLEAN; } return 0; } __printf(4, 5) __cold static void chunk_err(const struct extent_buffer *leaf, const struct btrfs_chunk *chunk, u64 logical, const char *fmt, ...) { const struct btrfs_fs_info *fs_info = leaf->fs_info; bool is_sb; struct va_format vaf; va_list args; int i; int slot = -1; /* Only superblock eb is able to have such small offset */ is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET); if (!is_sb) { /* * Get the slot number by iterating through all slots, this * would provide better readability. */ for (i = 0; i < btrfs_header_nritems(leaf); i++) { if (btrfs_item_ptr_offset(leaf, i) == (unsigned long)chunk) { slot = i; break; } } } va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; if (is_sb) btrfs_crit(fs_info, "corrupt superblock syschunk array: chunk_start=%llu, %pV", logical, &vaf); else btrfs_crit(fs_info, "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, logical, &vaf); va_end(args); } /* * The common chunk check which could also work on super block sys chunk array. * * Return -EUCLEAN if anything is corrupted. * Return 0 if everything is OK. */ int btrfs_check_chunk_valid(struct extent_buffer *leaf, struct btrfs_chunk *chunk, u64 logical) { struct btrfs_fs_info *fs_info = leaf->fs_info; u64 length; u64 chunk_end; u64 stripe_len; u16 num_stripes; u16 sub_stripes; u64 type; u64 features; bool mixed = false; int raid_index; int nparity; int ncopies; length = btrfs_chunk_length(leaf, chunk); stripe_len = btrfs_chunk_stripe_len(leaf, chunk); num_stripes = btrfs_chunk_num_stripes(leaf, chunk); sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); type = btrfs_chunk_type(leaf, chunk); raid_index = btrfs_bg_flags_to_raid_index(type); ncopies = btrfs_raid_array[raid_index].ncopies; nparity = btrfs_raid_array[raid_index].nparity; if (unlikely(!num_stripes)) { chunk_err(leaf, chunk, logical, "invalid chunk num_stripes, have %u", num_stripes); return -EUCLEAN; } if (unlikely(num_stripes < ncopies)) { chunk_err(leaf, chunk, logical, "invalid chunk num_stripes < ncopies, have %u < %d", num_stripes, ncopies); return -EUCLEAN; } if (unlikely(nparity && num_stripes == nparity)) { chunk_err(leaf, chunk, logical, "invalid chunk num_stripes == nparity, have %u == %d", num_stripes, nparity); return -EUCLEAN; } if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) { chunk_err(leaf, chunk, logical, "invalid chunk logical, have %llu should aligned to %u", logical, fs_info->sectorsize); return -EUCLEAN; } if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) { chunk_err(leaf, chunk, logical, "invalid chunk sectorsize, have %u expect %u", btrfs_chunk_sector_size(leaf, chunk), fs_info->sectorsize); return -EUCLEAN; } if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) { chunk_err(leaf, chunk, logical, "invalid chunk length, have %llu", length); return -EUCLEAN; } if (unlikely(check_add_overflow(logical, length, &chunk_end))) { chunk_err(leaf, chunk, logical, "invalid chunk logical start and length, have logical start %llu length %llu", logical, length); return -EUCLEAN; } if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { chunk_err(leaf, chunk, logical, "invalid chunk stripe length: %llu", stripe_len); return -EUCLEAN; } if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK))) { chunk_err(leaf, chunk, logical, "unrecognized chunk type: 0x%llx", ~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & btrfs_chunk_type(leaf, chunk)); return -EUCLEAN; } if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { chunk_err(leaf, chunk, logical, "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", type & BTRFS_BLOCK_GROUP_PROFILE_MASK); return -EUCLEAN; } if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { chunk_err(leaf, chunk, logical, "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", type, BTRFS_BLOCK_GROUP_TYPE_MASK); return -EUCLEAN; } if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA)))) { chunk_err(leaf, chunk, logical, "system chunk with data or metadata type: 0x%llx", type); return -EUCLEAN; } features = btrfs_super_incompat_flags(fs_info->super_copy); if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) mixed = true; if (!mixed) { if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && (type & BTRFS_BLOCK_GROUP_DATA))) { chunk_err(leaf, chunk, logical, "mixed chunk type in non-mixed mode: 0x%llx", type); return -EUCLEAN; } } if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || (type & BTRFS_BLOCK_GROUP_RAID1C3 && num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || (type & BTRFS_BLOCK_GROUP_RAID1C4 && num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || (type & BTRFS_BLOCK_GROUP_DUP && num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { chunk_err(leaf, chunk, logical, "invalid num_stripes:sub_stripes %u:%u for profile %llu", num_stripes, sub_stripes, type & BTRFS_BLOCK_GROUP_PROFILE_MASK); return -EUCLEAN; } return 0; } /* * Enhanced version of chunk item checker. * * The common btrfs_check_chunk_valid() doesn't check item size since it needs * to work on super block sys_chunk_array which doesn't have full item ptr. */ static int check_leaf_chunk_item(struct extent_buffer *leaf, struct btrfs_chunk *chunk, struct btrfs_key *key, int slot) { int num_stripes; if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { chunk_err(leaf, chunk, key->offset, "invalid chunk item size: have %u expect [%zu, %u)", btrfs_item_size(leaf, slot), sizeof(struct btrfs_chunk), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); return -EUCLEAN; } num_stripes = btrfs_chunk_num_stripes(leaf, chunk); /* Let btrfs_check_chunk_valid() handle this error type */ if (num_stripes == 0) goto out; if (unlikely(btrfs_chunk_item_size(num_stripes) != btrfs_item_size(leaf, slot))) { chunk_err(leaf, chunk, key->offset, "invalid chunk item size: have %u expect %lu", btrfs_item_size(leaf, slot), btrfs_chunk_item_size(num_stripes)); return -EUCLEAN; } out: return btrfs_check_chunk_valid(leaf, chunk, key->offset); } __printf(3, 4) __cold static void dev_item_err(const struct extent_buffer *eb, int slot, const char *fmt, ...) { struct btrfs_key key; struct va_format vaf; va_list args; btrfs_item_key_to_cpu(eb, &key, slot); va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; btrfs_crit(eb->fs_info, "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", btrfs_header_level(eb) == 0 ? "leaf" : "node", btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, key.objectid, &vaf); va_end(args); } static int check_dev_item(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct btrfs_dev_item *ditem; const u32 item_size = btrfs_item_size(leaf, slot); if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { dev_item_err(leaf, slot, "invalid objectid: has=%llu expect=%llu", key->objectid, BTRFS_DEV_ITEMS_OBJECTID); return -EUCLEAN; } if (unlikely(item_size != sizeof(*ditem))) { dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", item_size, sizeof(*ditem)); return -EUCLEAN; } ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { dev_item_err(leaf, slot, "devid mismatch: key has=%llu item has=%llu", key->offset, btrfs_device_id(leaf, ditem)); return -EUCLEAN; } /* * For device total_bytes, we don't have reliable way to check it, as * it can be 0 for device removal. Device size check can only be done * by dev extents check. */ if (unlikely(btrfs_device_bytes_used(leaf, ditem) > btrfs_device_total_bytes(leaf, ditem))) { dev_item_err(leaf, slot, "invalid bytes used: have %llu expect [0, %llu]", btrfs_device_bytes_used(leaf, ditem), btrfs_device_total_bytes(leaf, ditem)); return -EUCLEAN; } /* * Remaining members like io_align/type/gen/dev_group aren't really * utilized. Skip them to make later usage of them easier. */ return 0; } static int check_inode_item(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct btrfs_fs_info *fs_info = leaf->fs_info; struct btrfs_inode_item *iitem; u64 super_gen = btrfs_super_generation(fs_info->super_copy); u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); const u32 item_size = btrfs_item_size(leaf, slot); u32 mode; int ret; u32 flags; u32 ro_flags; ret = check_inode_key(leaf, key, slot); if (unlikely(ret < 0)) return ret; if (unlikely(item_size != sizeof(*iitem))) { generic_err(leaf, slot, "invalid item size: has %u expect %zu", item_size, sizeof(*iitem)); return -EUCLEAN; } iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); /* Here we use super block generation + 1 to handle log tree */ if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { inode_item_err(leaf, slot, "invalid inode generation: has %llu expect (0, %llu]", btrfs_inode_generation(leaf, iitem), super_gen + 1); return -EUCLEAN; } /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { inode_item_err(leaf, slot, "invalid inode transid: has %llu expect [0, %llu]", btrfs_inode_transid(leaf, iitem), super_gen + 1); return -EUCLEAN; } /* * For size and nbytes it's better not to be too strict, as for dir * item its size/nbytes can easily get wrong, but doesn't affect * anything in the fs. So here we skip the check. */ mode = btrfs_inode_mode(leaf, iitem); if (unlikely(mode & ~valid_mask)) { inode_item_err(leaf, slot, "unknown mode bit detected: 0x%x", mode & ~valid_mask); return -EUCLEAN; } /* * S_IFMT is not bit mapped so we can't completely rely on * is_power_of_2/has_single_bit_set, but it can save us from checking * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS */ if (!has_single_bit_set(mode & S_IFMT)) { if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { inode_item_err(leaf, slot, "invalid mode: has 0%o expect valid S_IF* bit(s)", mode & S_IFMT); return -EUCLEAN; } } if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { inode_item_err(leaf, slot, "invalid nlink: has %u expect no more than 1 for dir", btrfs_inode_nlink(leaf, iitem)); return -EUCLEAN; } btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { inode_item_err(leaf, slot, "unknown incompat flags detected: 0x%x", flags); return -EUCLEAN; } if (unlikely(!sb_rdonly(fs_info->sb) && (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { inode_item_err(leaf, slot, "unknown ro-compat flags detected on writeable mount: 0x%x", ro_flags); return -EUCLEAN; } return 0; } static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct btrfs_fs_info *fs_info = leaf->fs_info; struct btrfs_root_item ri = { 0 }; const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | BTRFS_ROOT_SUBVOL_DEAD; int ret; ret = check_root_key(leaf, key, slot); if (unlikely(ret < 0)) return ret; if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && btrfs_item_size(leaf, slot) != btrfs_legacy_root_item_size())) { generic_err(leaf, slot, "invalid root item size, have %u expect %zu or %u", btrfs_item_size(leaf, slot), sizeof(ri), btrfs_legacy_root_item_size()); return -EUCLEAN; } /* * For legacy root item, the members starting at generation_v2 will be * all filled with 0. * And since we allow geneartion_v2 as 0, it will still pass the check. */ read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), btrfs_item_size(leaf, slot)); /* Generation related */ if (unlikely(btrfs_root_generation(&ri) > btrfs_super_generation(fs_info->super_copy) + 1)) { generic_err(leaf, slot, "invalid root generation, have %llu expect (0, %llu]", btrfs_root_generation(&ri), btrfs_super_generation(fs_info->super_copy) + 1); return -EUCLEAN; } if (unlikely(btrfs_root_generation_v2(&ri) > btrfs_super_generation(fs_info->super_copy) + 1)) { generic_err(leaf, slot, "invalid root v2 generation, have %llu expect (0, %llu]", btrfs_root_generation_v2(&ri), btrfs_super_generation(fs_info->super_copy) + 1); return -EUCLEAN; } if (unlikely(btrfs_root_last_snapshot(&ri) > btrfs_super_generation(fs_info->super_copy) + 1)) { generic_err(leaf, slot, "invalid root last_snapshot, have %llu expect (0, %llu]", btrfs_root_last_snapshot(&ri), btrfs_super_generation(fs_info->super_copy) + 1); return -EUCLEAN; } /* Alignment and level check */ if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { generic_err(leaf, slot, "invalid root bytenr, have %llu expect to be aligned to %u", btrfs_root_bytenr(&ri), fs_info->sectorsize); return -EUCLEAN; } if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { generic_err(leaf, slot, "invalid root level, have %u expect [0, %u]", btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); return -EUCLEAN; } if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { generic_err(leaf, slot, "invalid root level, have %u expect [0, %u]", btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); return -EUCLEAN; } /* Flags check */ if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { generic_err(leaf, slot, "invalid root flags, have 0x%llx expect mask 0x%llx", btrfs_root_flags(&ri), valid_root_flags); return -EUCLEAN; } return 0; } __printf(3,4) __cold static void extent_err(const struct extent_buffer *eb, int slot, const char *fmt, ...) { struct btrfs_key key; struct va_format vaf; va_list args; u64 bytenr; u64 len; btrfs_item_key_to_cpu(eb, &key, slot); bytenr = key.objectid; if (key.type == BTRFS_METADATA_ITEM_KEY || key.type == BTRFS_TREE_BLOCK_REF_KEY || key.type == BTRFS_SHARED_BLOCK_REF_KEY) len = eb->fs_info->nodesize; else len = key.offset; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; btrfs_crit(eb->fs_info, "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", btrfs_header_level(eb) == 0 ? "leaf" : "node", eb->start, slot, bytenr, len, &vaf); va_end(args); } static int check_extent_item(struct extent_buffer *leaf, struct btrfs_key *key, int slot, struct btrfs_key *prev_key) { struct btrfs_fs_info *fs_info = leaf->fs_info; struct btrfs_extent_item *ei; bool is_tree_block = false; unsigned long ptr; /* Current pointer inside inline refs */ unsigned long end; /* Extent item end */ const u32 item_size = btrfs_item_size(leaf, slot); u64 flags; u64 generation; u64 total_refs; /* Total refs in btrfs_extent_item */ u64 inline_refs = 0; /* found total inline refs */ if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { generic_err(leaf, slot, "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); return -EUCLEAN; } /* key->objectid is the bytenr for both key types */ if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { generic_err(leaf, slot, "invalid key objectid, have %llu expect to be aligned to %u", key->objectid, fs_info->sectorsize); return -EUCLEAN; } /* key->offset is tree level for METADATA_ITEM_KEY */ if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && key->offset >= BTRFS_MAX_LEVEL)) { extent_err(leaf, slot, "invalid tree level, have %llu expect [0, %u]", key->offset, BTRFS_MAX_LEVEL - 1); return -EUCLEAN; } /* * EXTENT/METADATA_ITEM consists of: * 1) One btrfs_extent_item * Records the total refs, type and generation of the extent. * * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) * Records the first key and level of the tree block. * * 2) Zero or more btrfs_extent_inline_ref(s) * Each inline ref has one btrfs_extent_inline_ref shows: * 2.1) The ref type, one of the 4 * TREE_BLOCK_REF Tree block only * SHARED_BLOCK_REF Tree block only * EXTENT_DATA_REF Data only * SHARED_DATA_REF Data only * 2.2) Ref type specific data * Either using btrfs_extent_inline_ref::offset, or specific * data structure. */ if (unlikely(item_size < sizeof(*ei))) { extent_err(leaf, slot, "invalid item size, have %u expect [%zu, %u)", item_size, sizeof(*ei), BTRFS_LEAF_DATA_SIZE(fs_info)); return -EUCLEAN; } end = item_size + btrfs_item_ptr_offset(leaf, slot); /* Checks against extent_item */ ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); flags = btrfs_extent_flags(leaf, ei); total_refs = btrfs_extent_refs(leaf, ei); generation = btrfs_extent_generation(leaf, ei); if (unlikely(generation > btrfs_super_generation(fs_info->super_copy) + 1)) { extent_err(leaf, slot, "invalid generation, have %llu expect (0, %llu]", generation, btrfs_super_generation(fs_info->super_copy) + 1); return -EUCLEAN; } if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { extent_err(leaf, slot, "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", flags, BTRFS_EXTENT_FLAG_DATA | BTRFS_EXTENT_FLAG_TREE_BLOCK); return -EUCLEAN; } is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); if (is_tree_block) { if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && key->offset != fs_info->nodesize)) { extent_err(leaf, slot, "invalid extent length, have %llu expect %u", key->offset, fs_info->nodesize); return -EUCLEAN; } } else { if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { extent_err(leaf, slot, "invalid key type, have %u expect %u for data backref", key->type, BTRFS_EXTENT_ITEM_KEY); return -EUCLEAN; } if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { extent_err(leaf, slot, "invalid extent length, have %llu expect aligned to %u", key->offset, fs_info->sectorsize); return -EUCLEAN; } if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { extent_err(leaf, slot, "invalid extent flag, data has full backref set"); return -EUCLEAN; } } ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); /* Check the special case of btrfs_tree_block_info */ if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { struct btrfs_tree_block_info *info; info = (struct btrfs_tree_block_info *)ptr; if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { extent_err(leaf, slot, "invalid tree block info level, have %u expect [0, %u]", btrfs_tree_block_level(leaf, info), BTRFS_MAX_LEVEL - 1); return -EUCLEAN; } ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); } /* Check inline refs */ while (ptr < end) { struct btrfs_extent_inline_ref *iref; struct btrfs_extent_data_ref *dref; struct btrfs_shared_data_ref *sref; u64 dref_offset; u64 inline_offset; u8 inline_type; if (unlikely(ptr + sizeof(*iref) > end)) { extent_err(leaf, slot, "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", ptr, sizeof(*iref), end); return -EUCLEAN; } iref = (struct btrfs_extent_inline_ref *)ptr; inline_type = btrfs_extent_inline_ref_type(leaf, iref); inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { extent_err(leaf, slot, "inline ref item overflows extent item, ptr %lu iref size %u end %lu", ptr, inline_type, end); return -EUCLEAN; } switch (inline_type) { /* inline_offset is subvolid of the owner, no need to check */ case BTRFS_TREE_BLOCK_REF_KEY: inline_refs++; break; /* Contains parent bytenr */ case BTRFS_SHARED_BLOCK_REF_KEY: if (unlikely(!IS_ALIGNED(inline_offset, fs_info->sectorsize))) { extent_err(leaf, slot, "invalid tree parent bytenr, have %llu expect aligned to %u", inline_offset, fs_info->sectorsize); return -EUCLEAN; } inline_refs++; break; /* * Contains owner subvolid, owner key objectid, adjusted offset. * The only obvious corruption can happen in that offset. */ case BTRFS_EXTENT_DATA_REF_KEY: dref = (struct btrfs_extent_data_ref *)(&iref->offset); dref_offset = btrfs_extent_data_ref_offset(leaf, dref); if (unlikely(!IS_ALIGNED(dref_offset, fs_info->sectorsize))) { extent_err(leaf, slot, "invalid data ref offset, have %llu expect aligned to %u", dref_offset, fs_info->sectorsize); return -EUCLEAN; } inline_refs += btrfs_extent_data_ref_count(leaf, dref); break; /* Contains parent bytenr and ref count */ case BTRFS_SHARED_DATA_REF_KEY: sref = (struct btrfs_shared_data_ref *)(iref + 1); if (unlikely(!IS_ALIGNED(inline_offset, fs_info->sectorsize))) { extent_err(leaf, slot, "invalid data parent bytenr, have %llu expect aligned to %u", inline_offset, fs_info->sectorsize); return -EUCLEAN; } inline_refs += btrfs_shared_data_ref_count(leaf, sref); break; default: extent_err(leaf, slot, "unknown inline ref type: %u", inline_type); return -EUCLEAN; } ptr += btrfs_extent_inline_ref_size(inline_type); } /* No padding is allowed */ if (unlikely(ptr != end)) { extent_err(leaf, slot, "invalid extent item size, padding bytes found"); return -EUCLEAN; } /* Finally, check the inline refs against total refs */ if (unlikely(inline_refs > total_refs)) { extent_err(leaf, slot, "invalid extent refs, have %llu expect >= inline %llu", total_refs, inline_refs); return -EUCLEAN; } if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { u64 prev_end = prev_key->objectid; if (prev_key->type == BTRFS_METADATA_ITEM_KEY) prev_end += fs_info->nodesize; else prev_end += prev_key->offset; if (unlikely(prev_end > key->objectid)) { extent_err(leaf, slot, "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", prev_key->objectid, prev_key->type, prev_key->offset, key->objectid, key->type, key->offset); return -EUCLEAN; } } return 0; } static int check_simple_keyed_refs(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { u32 expect_item_size = 0; if (key->type == BTRFS_SHARED_DATA_REF_KEY) expect_item_size = sizeof(struct btrfs_shared_data_ref); if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { generic_err(leaf, slot, "invalid item size, have %u expect %u for key type %u", btrfs_item_size(leaf, slot), expect_item_size, key->type); return -EUCLEAN; } if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { generic_err(leaf, slot, "invalid key objectid for shared block ref, have %llu expect aligned to %u", key->objectid, leaf->fs_info->sectorsize); return -EUCLEAN; } if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { extent_err(leaf, slot, "invalid tree parent bytenr, have %llu expect aligned to %u", key->offset, leaf->fs_info->sectorsize); return -EUCLEAN; } return 0; } static int check_extent_data_ref(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct btrfs_extent_data_ref *dref; unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); const unsigned long end = ptr + btrfs_item_size(leaf, slot); if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { generic_err(leaf, slot, "invalid item size, have %u expect aligned to %zu for key type %u", btrfs_item_size(leaf, slot), sizeof(*dref), key->type); return -EUCLEAN; } if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { generic_err(leaf, slot, "invalid key objectid for shared block ref, have %llu expect aligned to %u", key->objectid, leaf->fs_info->sectorsize); return -EUCLEAN; } for (; ptr < end; ptr += sizeof(*dref)) { u64 offset; /* * We cannot check the extent_data_ref hash due to possible * overflow from the leaf due to hash collisions. */ dref = (struct btrfs_extent_data_ref *)ptr; offset = btrfs_extent_data_ref_offset(leaf, dref); if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { extent_err(leaf, slot, "invalid extent data backref offset, have %llu expect aligned to %u", offset, leaf->fs_info->sectorsize); return -EUCLEAN; } } return 0; } #define inode_ref_err(eb, slot, fmt, args...) \ inode_item_err(eb, slot, fmt, ##args) static int check_inode_ref(struct extent_buffer *leaf, struct btrfs_key *key, struct btrfs_key *prev_key, int slot) { struct btrfs_inode_ref *iref; unsigned long ptr; unsigned long end; if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) return -EUCLEAN; /* namelen can't be 0, so item_size == sizeof() is also invalid */ if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { inode_ref_err(leaf, slot, "invalid item size, have %u expect (%zu, %u)", btrfs_item_size(leaf, slot), sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); return -EUCLEAN; } ptr = btrfs_item_ptr_offset(leaf, slot); end = ptr + btrfs_item_size(leaf, slot); while (ptr < end) { u16 namelen; if (unlikely(ptr + sizeof(iref) > end)) { inode_ref_err(leaf, slot, "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", ptr, end, sizeof(iref)); return -EUCLEAN; } iref = (struct btrfs_inode_ref *)ptr; namelen = btrfs_inode_ref_name_len(leaf, iref); if (unlikely(ptr + sizeof(*iref) + namelen > end)) { inode_ref_err(leaf, slot, "inode ref overflow, ptr %lu end %lu namelen %u", ptr, end, namelen); return -EUCLEAN; } /* * NOTE: In theory we should record all found index numbers * to find any duplicated indexes, but that will be too time * consuming for inodes with too many hard links. */ ptr += sizeof(*iref) + namelen; } return 0; } /* * Common point to switch the item-specific validation. */ static int check_leaf_item(struct extent_buffer *leaf, struct btrfs_key *key, int slot, struct btrfs_key *prev_key) { int ret = 0; struct btrfs_chunk *chunk; switch (key->type) { case BTRFS_EXTENT_DATA_KEY: ret = check_extent_data_item(leaf, key, slot, prev_key); break; case BTRFS_EXTENT_CSUM_KEY: ret = check_csum_item(leaf, key, slot, prev_key); break; case BTRFS_DIR_ITEM_KEY: case BTRFS_DIR_INDEX_KEY: case BTRFS_XATTR_ITEM_KEY: ret = check_dir_item(leaf, key, prev_key, slot); break; case BTRFS_INODE_REF_KEY: ret = check_inode_ref(leaf, key, prev_key, slot); break; case BTRFS_BLOCK_GROUP_ITEM_KEY: ret = check_block_group_item(leaf, key, slot); break; case BTRFS_CHUNK_ITEM_KEY: chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); ret = check_leaf_chunk_item(leaf, chunk, key, slot); break; case BTRFS_DEV_ITEM_KEY: ret = check_dev_item(leaf, key, slot); break; case BTRFS_INODE_ITEM_KEY: ret = check_inode_item(leaf, key, slot); break; case BTRFS_ROOT_ITEM_KEY: ret = check_root_item(leaf, key, slot); break; case BTRFS_EXTENT_ITEM_KEY: case BTRFS_METADATA_ITEM_KEY: ret = check_extent_item(leaf, key, slot, prev_key); break; case BTRFS_TREE_BLOCK_REF_KEY: case BTRFS_SHARED_DATA_REF_KEY: case BTRFS_SHARED_BLOCK_REF_KEY: ret = check_simple_keyed_refs(leaf, key, slot); break; case BTRFS_EXTENT_DATA_REF_KEY: ret = check_extent_data_ref(leaf, key, slot); break; } return ret; } static int check_leaf(struct extent_buffer *leaf, bool check_item_data) { struct btrfs_fs_info *fs_info = leaf->fs_info; /* No valid key type is 0, so all key should be larger than this key */ struct btrfs_key prev_key = {0, 0, 0}; struct btrfs_key key; u32 nritems = btrfs_header_nritems(leaf); int slot; if (unlikely(btrfs_header_level(leaf) != 0)) { generic_err(leaf, 0, "invalid level for leaf, have %d expect 0", btrfs_header_level(leaf)); return -EUCLEAN; } /* * Extent buffers from a relocation tree have a owner field that * corresponds to the subvolume tree they are based on. So just from an * extent buffer alone we can not find out what is the id of the * corresponding subvolume tree, so we can not figure out if the extent * buffer corresponds to the root of the relocation tree or not. So * skip this check for relocation trees. */ if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { u64 owner = btrfs_header_owner(leaf); /* These trees must never be empty */ if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || owner == BTRFS_CHUNK_TREE_OBJECTID || owner == BTRFS_DEV_TREE_OBJECTID || owner == BTRFS_FS_TREE_OBJECTID || owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { generic_err(leaf, 0, "invalid root, root %llu must never be empty", owner); return -EUCLEAN; } /* Unknown tree */ if (unlikely(owner == 0)) { generic_err(leaf, 0, "invalid owner, root 0 is not defined"); return -EUCLEAN; } /* EXTENT_TREE_V2 can have empty extent trees. */ if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) return 0; if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { generic_err(leaf, 0, "invalid root, root %llu must never be empty", owner); return -EUCLEAN; } return 0; } if (unlikely(nritems == 0)) return 0; /* * Check the following things to make sure this is a good leaf, and * leaf users won't need to bother with similar sanity checks: * * 1) key ordering * 2) item offset and size * No overlap, no hole, all inside the leaf. * 3) item content * If possible, do comprehensive sanity check. * NOTE: All checks must only rely on the item data itself. */ for (slot = 0; slot < nritems; slot++) { u32 item_end_expected; u64 item_data_end; int ret; btrfs_item_key_to_cpu(leaf, &key, slot); /* Make sure the keys are in the right order */ if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { generic_err(leaf, slot, "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", prev_key.objectid, prev_key.type, prev_key.offset, key.objectid, key.type, key.offset); return -EUCLEAN; } item_data_end = (u64)btrfs_item_offset(leaf, slot) + btrfs_item_size(leaf, slot); /* * Make sure the offset and ends are right, remember that the * item data starts at the end of the leaf and grows towards the * front. */ if (slot == 0) item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); else item_end_expected = btrfs_item_offset(leaf, slot - 1); if (unlikely(item_data_end != item_end_expected)) { generic_err(leaf, slot, "unexpected item end, have %llu expect %u", item_data_end, item_end_expected); return -EUCLEAN; } /* * Check to make sure that we don't point outside of the leaf, * just in case all the items are consistent to each other, but * all point outside of the leaf. */ if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { generic_err(leaf, slot, "slot end outside of leaf, have %llu expect range [0, %u]", item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); return -EUCLEAN; } /* Also check if the item pointer overlaps with btrfs item. */ if (unlikely(btrfs_item_ptr_offset(leaf, slot) < btrfs_item_nr_offset(slot) + sizeof(struct btrfs_item))) { generic_err(leaf, slot, "slot overlaps with its data, item end %lu data start %lu", btrfs_item_nr_offset(slot) + sizeof(struct btrfs_item), btrfs_item_ptr_offset(leaf, slot)); return -EUCLEAN; } if (check_item_data) { /* * Check if the item size and content meet other * criteria */ ret = check_leaf_item(leaf, &key, slot, &prev_key); if (unlikely(ret < 0)) return ret; } prev_key.objectid = key.objectid; prev_key.type = key.type; prev_key.offset = key.offset; } return 0; } int btrfs_check_leaf_full(struct extent_buffer *leaf) { return check_leaf(leaf, true); } ALLOW_ERROR_INJECTION(btrfs_check_leaf_full, ERRNO); int btrfs_check_leaf_relaxed(struct extent_buffer *leaf) { return check_leaf(leaf, false); } int btrfs_check_node(struct extent_buffer *node) { struct btrfs_fs_info *fs_info = node->fs_info; unsigned long nr = btrfs_header_nritems(node); struct btrfs_key key, next_key; int slot; int level = btrfs_header_level(node); u64 bytenr; int ret = 0; if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { generic_err(node, 0, "invalid level for node, have %d expect [1, %d]", level, BTRFS_MAX_LEVEL - 1); return -EUCLEAN; } if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { btrfs_crit(fs_info, "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", btrfs_header_owner(node), node->start, nr == 0 ? "small" : "large", nr, BTRFS_NODEPTRS_PER_BLOCK(fs_info)); return -EUCLEAN; } for (slot = 0; slot < nr - 1; slot++) { bytenr = btrfs_node_blockptr(node, slot); btrfs_node_key_to_cpu(node, &key, slot); btrfs_node_key_to_cpu(node, &next_key, slot + 1); if (unlikely(!bytenr)) { generic_err(node, slot, "invalid NULL node pointer"); ret = -EUCLEAN; goto out; } if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { generic_err(node, slot, "unaligned pointer, have %llu should be aligned to %u", bytenr, fs_info->sectorsize); ret = -EUCLEAN; goto out; } if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { generic_err(node, slot, "bad key order, current (%llu %u %llu) next (%llu %u %llu)", key.objectid, key.type, key.offset, next_key.objectid, next_key.type, next_key.offset); ret = -EUCLEAN; goto out; } } out: return ret; } ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) { const bool is_subvol = is_fstree(root_owner); const u64 eb_owner = btrfs_header_owner(eb); /* * Skip dummy fs, as selftests don't create unique ebs for each dummy * root. */ if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state)) return 0; /* * There are several call sites (backref walking, qgroup, and data * reloc) passing 0 as @root_owner, as they are not holding the * tree root. In that case, we can not do a reliable ownership check, * so just exit. */ if (root_owner == 0) return 0; /* * These trees use key.offset as their owner, our callers don't have * the extra capacity to pass key.offset here. So we just skip them. */ if (root_owner == BTRFS_TREE_LOG_OBJECTID || root_owner == BTRFS_TREE_RELOC_OBJECTID) return 0; if (!is_subvol) { /* For non-subvolume trees, the eb owner should match root owner */ if (unlikely(root_owner != eb_owner)) { btrfs_crit(eb->fs_info, "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", btrfs_header_level(eb) == 0 ? "leaf" : "node", root_owner, btrfs_header_bytenr(eb), eb_owner, root_owner); return -EUCLEAN; } return 0; } /* * For subvolume trees, owners can mismatch, but they should all belong * to subvolume trees. */ if (unlikely(is_subvol != is_fstree(eb_owner))) { btrfs_crit(eb->fs_info, "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", btrfs_header_level(eb) == 0 ? "leaf" : "node", root_owner, btrfs_header_bytenr(eb), eb_owner, BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); return -EUCLEAN; } return 0; }