// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include #include "sfp.h" struct sfp_quirk { const char *vendor; const char *part; void (*modes)(const struct sfp_eeprom_id *id, unsigned long *modes); }; /** * struct sfp_bus - internal representation of a sfp bus */ struct sfp_bus { /* private: */ struct kref kref; struct list_head node; struct fwnode_handle *fwnode; const struct sfp_socket_ops *socket_ops; struct device *sfp_dev; struct sfp *sfp; const struct sfp_quirk *sfp_quirk; const struct sfp_upstream_ops *upstream_ops; void *upstream; struct phy_device *phydev; bool registered; bool started; }; static const struct sfp_quirk sfp_quirks[] = { }; static size_t sfp_strlen(const char *str, size_t maxlen) { size_t size, i; /* Trailing characters should be filled with space chars */ for (i = 0, size = 0; i < maxlen; i++) if (str[i] != ' ') size = i + 1; return size; } static bool sfp_match(const char *qs, const char *str, size_t len) { if (!qs) return true; if (strlen(qs) != len) return false; return !strncmp(qs, str, len); } static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) { const struct sfp_quirk *q; unsigned int i; size_t vs, ps; vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) if (sfp_match(q->vendor, id->base.vendor_name, vs) && sfp_match(q->part, id->base.vendor_pn, ps)) return q; return NULL; } /** * sfp_parse_port() - Parse the EEPROM base ID, setting the port type * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @id: a pointer to the module's &struct sfp_eeprom_id * @support: optional pointer to an array of unsigned long for the * ethtool support mask * * Parse the EEPROM identification given in @id, and return one of * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL, * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with * the connector type. * * If the port type is not known, returns %PORT_OTHER. */ int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id, unsigned long *support) { int port; /* port is the physical connector, set this from the connector field. */ switch (id->base.connector) { case SFP_CONNECTOR_SC: case SFP_CONNECTOR_FIBERJACK: case SFP_CONNECTOR_LC: case SFP_CONNECTOR_MT_RJ: case SFP_CONNECTOR_MU: case SFP_CONNECTOR_OPTICAL_PIGTAIL: port = PORT_FIBRE; break; case SFP_CONNECTOR_RJ45: port = PORT_TP; break; case SFP_CONNECTOR_COPPER_PIGTAIL: port = PORT_DA; break; case SFP_CONNECTOR_UNSPEC: if (id->base.e1000_base_t) { port = PORT_TP; break; } /* fallthrough */ case SFP_CONNECTOR_SG: /* guess */ case SFP_CONNECTOR_MPO_1X12: case SFP_CONNECTOR_MPO_2X16: case SFP_CONNECTOR_HSSDC_II: case SFP_CONNECTOR_NOSEPARATE: case SFP_CONNECTOR_MXC_2X16: port = PORT_OTHER; break; default: dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n", id->base.connector); port = PORT_OTHER; break; } if (support) { switch (port) { case PORT_FIBRE: phylink_set(support, FIBRE); break; case PORT_TP: phylink_set(support, TP); break; } } return port; } EXPORT_SYMBOL_GPL(sfp_parse_port); /** * sfp_parse_support() - Parse the eeprom id for supported link modes * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @id: a pointer to the module's &struct sfp_eeprom_id * @support: pointer to an array of unsigned long for the ethtool support mask * * Parse the EEPROM identification information and derive the supported * ethtool link modes for the module. */ void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id, unsigned long *support) { unsigned int br_min, br_nom, br_max; __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, }; /* Decode the bitrate information to MBd */ br_min = br_nom = br_max = 0; if (id->base.br_nominal) { if (id->base.br_nominal != 255) { br_nom = id->base.br_nominal * 100; br_min = br_nom - id->base.br_nominal * id->ext.br_min; br_max = br_nom + id->base.br_nominal * id->ext.br_max; } else if (id->ext.br_max) { br_nom = 250 * id->ext.br_max; br_max = br_nom + br_nom * id->ext.br_min / 100; br_min = br_nom - br_nom * id->ext.br_min / 100; } /* When using passive cables, in case neither BR,min nor BR,max * are specified, set br_min to 0 as the nominal value is then * used as the maximum. */ if (br_min == br_max && id->base.sfp_ct_passive) br_min = 0; } /* Set ethtool support from the compliance fields. */ if (id->base.e10g_base_sr) phylink_set(modes, 10000baseSR_Full); if (id->base.e10g_base_lr) phylink_set(modes, 10000baseLR_Full); if (id->base.e10g_base_lrm) phylink_set(modes, 10000baseLRM_Full); if (id->base.e10g_base_er) phylink_set(modes, 10000baseER_Full); if (id->base.e1000_base_sx || id->base.e1000_base_lx || id->base.e1000_base_cx) phylink_set(modes, 1000baseX_Full); if (id->base.e1000_base_t) { phylink_set(modes, 1000baseT_Half); phylink_set(modes, 1000baseT_Full); } /* 1000Base-PX or 1000Base-BX10 */ if ((id->base.e_base_px || id->base.e_base_bx10) && br_min <= 1300 && br_max >= 1200) phylink_set(modes, 1000baseX_Full); /* For active or passive cables, select the link modes * based on the bit rates and the cable compliance bytes. */ if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) { /* This may look odd, but some manufacturers use 12000MBd */ if (br_min <= 12000 && br_max >= 10300) phylink_set(modes, 10000baseCR_Full); if (br_min <= 3200 && br_max >= 3100) phylink_set(modes, 2500baseX_Full); if (br_min <= 1300 && br_max >= 1200) phylink_set(modes, 1000baseX_Full); } if (id->base.sfp_ct_passive) { if (id->base.passive.sff8431_app_e) phylink_set(modes, 10000baseCR_Full); } if (id->base.sfp_ct_active) { if (id->base.active.sff8431_app_e || id->base.active.sff8431_lim) { phylink_set(modes, 10000baseCR_Full); } } switch (id->base.extended_cc) { case 0x00: /* Unspecified */ break; case 0x02: /* 100Gbase-SR4 or 25Gbase-SR */ phylink_set(modes, 100000baseSR4_Full); phylink_set(modes, 25000baseSR_Full); break; case 0x03: /* 100Gbase-LR4 or 25Gbase-LR */ case 0x04: /* 100Gbase-ER4 or 25Gbase-ER */ phylink_set(modes, 100000baseLR4_ER4_Full); break; case 0x0b: /* 100Gbase-CR4 or 25Gbase-CR CA-L */ case 0x0c: /* 25Gbase-CR CA-S */ case 0x0d: /* 25Gbase-CR CA-N */ phylink_set(modes, 100000baseCR4_Full); phylink_set(modes, 25000baseCR_Full); break; default: dev_warn(bus->sfp_dev, "Unknown/unsupported extended compliance code: 0x%02x\n", id->base.extended_cc); break; } /* For fibre channel SFP, derive possible BaseX modes */ if (id->base.fc_speed_100 || id->base.fc_speed_200 || id->base.fc_speed_400) { if (id->base.br_nominal >= 31) phylink_set(modes, 2500baseX_Full); if (id->base.br_nominal >= 12) phylink_set(modes, 1000baseX_Full); } /* If we haven't discovered any modes that this module supports, try * the encoding and bitrate to determine supported modes. Some BiDi * modules (eg, 1310nm/1550nm) are not 1000BASE-BX compliant due to * the differing wavelengths, so do not set any transceiver bits. */ if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) { /* If the encoding and bit rate allows 1000baseX */ if (id->base.encoding == SFP_ENCODING_8B10B && br_nom && br_min <= 1300 && br_max >= 1200) phylink_set(modes, 1000baseX_Full); } if (bus->sfp_quirk) bus->sfp_quirk->modes(id, modes); bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS); phylink_set(support, Autoneg); phylink_set(support, Pause); phylink_set(support, Asym_Pause); } EXPORT_SYMBOL_GPL(sfp_parse_support); /** * sfp_select_interface() - Select appropriate phy_interface_t mode * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @id: a pointer to the module's &struct sfp_eeprom_id * @link_modes: ethtool link modes mask * * Derive the phy_interface_t mode for the information found in the * module's identifying EEPROM and the link modes mask. There is no * standard or defined way to derive this information, so we decide * based upon the link mode mask. */ phy_interface_t sfp_select_interface(struct sfp_bus *bus, const struct sfp_eeprom_id *id, unsigned long *link_modes) { if (phylink_test(link_modes, 10000baseCR_Full) || phylink_test(link_modes, 10000baseSR_Full) || phylink_test(link_modes, 10000baseLR_Full) || phylink_test(link_modes, 10000baseLRM_Full) || phylink_test(link_modes, 10000baseER_Full)) return PHY_INTERFACE_MODE_10GKR; if (phylink_test(link_modes, 2500baseX_Full)) return PHY_INTERFACE_MODE_2500BASEX; if (id->base.e1000_base_t || id->base.e100_base_lx || id->base.e100_base_fx) return PHY_INTERFACE_MODE_SGMII; if (phylink_test(link_modes, 1000baseX_Full)) return PHY_INTERFACE_MODE_1000BASEX; dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n"); return PHY_INTERFACE_MODE_NA; } EXPORT_SYMBOL_GPL(sfp_select_interface); static LIST_HEAD(sfp_buses); static DEFINE_MUTEX(sfp_mutex); static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus) { return bus->registered ? bus->upstream_ops : NULL; } static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode) { struct sfp_bus *sfp, *new, *found = NULL; new = kzalloc(sizeof(*new), GFP_KERNEL); mutex_lock(&sfp_mutex); list_for_each_entry(sfp, &sfp_buses, node) { if (sfp->fwnode == fwnode) { kref_get(&sfp->kref); found = sfp; break; } } if (!found && new) { kref_init(&new->kref); new->fwnode = fwnode; list_add(&new->node, &sfp_buses); found = new; new = NULL; } mutex_unlock(&sfp_mutex); kfree(new); return found; } static void sfp_bus_release(struct kref *kref) { struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref); list_del(&bus->node); mutex_unlock(&sfp_mutex); kfree(bus); } /** * sfp_bus_put() - put a reference on the &struct sfp_bus * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode() * * Put a reference on the &struct sfp_bus and free the underlying structure * if this was the last reference. */ void sfp_bus_put(struct sfp_bus *bus) { if (bus) kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex); } EXPORT_SYMBOL_GPL(sfp_bus_put); static int sfp_register_bus(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = bus->upstream_ops; int ret; if (ops) { if (ops->link_down) ops->link_down(bus->upstream); if (ops->connect_phy && bus->phydev) { ret = ops->connect_phy(bus->upstream, bus->phydev); if (ret) return ret; } } bus->registered = true; bus->socket_ops->attach(bus->sfp); if (bus->started) bus->socket_ops->start(bus->sfp); bus->upstream_ops->attach(bus->upstream, bus); return 0; } static void sfp_unregister_bus(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = bus->upstream_ops; if (bus->registered) { bus->upstream_ops->detach(bus->upstream, bus); if (bus->started) bus->socket_ops->stop(bus->sfp); bus->socket_ops->detach(bus->sfp); if (bus->phydev && ops && ops->disconnect_phy) ops->disconnect_phy(bus->upstream); } bus->registered = false; } /** * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @modinfo: a &struct ethtool_modinfo * * Fill in the type and eeprom_len parameters in @modinfo for a module on * the sfp bus specified by @bus. * * Returns 0 on success or a negative errno number. */ int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo) { return bus->socket_ops->module_info(bus->sfp, modinfo); } EXPORT_SYMBOL_GPL(sfp_get_module_info); /** * sfp_get_module_eeprom() - Read the SFP module EEPROM * @bus: a pointer to the &struct sfp_bus structure for the sfp module * @ee: a &struct ethtool_eeprom * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes) * * Read the EEPROM as specified by the supplied @ee. See the documentation * for &struct ethtool_eeprom for the region to be read. * * Returns 0 on success or a negative errno number. */ int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee, u8 *data) { return bus->socket_ops->module_eeprom(bus->sfp, ee, data); } EXPORT_SYMBOL_GPL(sfp_get_module_eeprom); /** * sfp_upstream_start() - Inform the SFP that the network device is up * @bus: a pointer to the &struct sfp_bus structure for the sfp module * * Inform the SFP socket that the network device is now up, so that the * module can be enabled by allowing TX_DISABLE to be deasserted. This * should be called from the network device driver's &struct net_device_ops * ndo_open() method. */ void sfp_upstream_start(struct sfp_bus *bus) { if (bus->registered) bus->socket_ops->start(bus->sfp); bus->started = true; } EXPORT_SYMBOL_GPL(sfp_upstream_start); /** * sfp_upstream_stop() - Inform the SFP that the network device is down * @bus: a pointer to the &struct sfp_bus structure for the sfp module * * Inform the SFP socket that the network device is now up, so that the * module can be disabled by asserting TX_DISABLE, disabling the laser * in optical modules. This should be called from the network device * driver's &struct net_device_ops ndo_stop() method. */ void sfp_upstream_stop(struct sfp_bus *bus) { if (bus->registered) bus->socket_ops->stop(bus->sfp); bus->started = false; } EXPORT_SYMBOL_GPL(sfp_upstream_stop); static void sfp_upstream_clear(struct sfp_bus *bus) { bus->upstream_ops = NULL; bus->upstream = NULL; } /** * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode * @fwnode: firmware node for the parent device (MAC or PHY) * * Parse the parent device's firmware node for a SFP bus, and locate * the sfp_bus structure, incrementing its reference count. This must * be put via sfp_bus_put() when done. * * Returns: on success, a pointer to the sfp_bus structure, * %NULL if no SFP is specified, * on failure, an error pointer value: * corresponding to the errors detailed for * fwnode_property_get_reference_args(). * %-ENOMEM if we failed to allocate the bus. * an error from the upstream's connect_phy() method. */ struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode) { struct fwnode_reference_args ref; struct sfp_bus *bus; int ret; ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL, 0, 0, &ref); if (ret == -ENOENT) return NULL; else if (ret < 0) return ERR_PTR(ret); bus = sfp_bus_get(ref.fwnode); fwnode_handle_put(ref.fwnode); if (!bus) return ERR_PTR(-ENOMEM); return bus; } EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode); /** * sfp_bus_add_upstream() - parse and register the neighbouring device * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode() * @upstream: the upstream private data * @ops: the upstream's &struct sfp_upstream_ops * * Add upstream driver for the SFP bus, and if the bus is complete, register * the SFP bus using sfp_register_upstream(). This takes a reference on the * bus, so it is safe to put the bus after this call. * * Returns: on success, a pointer to the sfp_bus structure, * %NULL if no SFP is specified, * on failure, an error pointer value: * corresponding to the errors detailed for * fwnode_property_get_reference_args(). * %-ENOMEM if we failed to allocate the bus. * an error from the upstream's connect_phy() method. */ int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream, const struct sfp_upstream_ops *ops) { int ret; /* If no bus, return success */ if (!bus) return 0; rtnl_lock(); kref_get(&bus->kref); bus->upstream_ops = ops; bus->upstream = upstream; if (bus->sfp) { ret = sfp_register_bus(bus); if (ret) sfp_upstream_clear(bus); } else { ret = 0; } rtnl_unlock(); if (ret) sfp_bus_put(bus); return ret; } EXPORT_SYMBOL_GPL(sfp_bus_add_upstream); /** * sfp_bus_del_upstream() - Delete a sfp bus * @bus: a pointer to the &struct sfp_bus structure for the sfp module * * Delete a previously registered upstream connection for the SFP * module. @bus should have been added by sfp_bus_add_upstream(). */ void sfp_bus_del_upstream(struct sfp_bus *bus) { if (bus) { rtnl_lock(); if (bus->sfp) sfp_unregister_bus(bus); sfp_upstream_clear(bus); rtnl_unlock(); sfp_bus_put(bus); } } EXPORT_SYMBOL_GPL(sfp_bus_del_upstream); /* Socket driver entry points */ int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); int ret = 0; if (ops && ops->connect_phy) ret = ops->connect_phy(bus->upstream, phydev); if (ret == 0) bus->phydev = phydev; return ret; } EXPORT_SYMBOL_GPL(sfp_add_phy); void sfp_remove_phy(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); if (ops && ops->disconnect_phy) ops->disconnect_phy(bus->upstream); bus->phydev = NULL; } EXPORT_SYMBOL_GPL(sfp_remove_phy); void sfp_link_up(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); if (ops && ops->link_up) ops->link_up(bus->upstream); } EXPORT_SYMBOL_GPL(sfp_link_up); void sfp_link_down(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); if (ops && ops->link_down) ops->link_down(bus->upstream); } EXPORT_SYMBOL_GPL(sfp_link_down); int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); int ret = 0; bus->sfp_quirk = sfp_lookup_quirk(id); if (ops && ops->module_insert) ret = ops->module_insert(bus->upstream, id); return ret; } EXPORT_SYMBOL_GPL(sfp_module_insert); void sfp_module_remove(struct sfp_bus *bus) { const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus); if (ops && ops->module_remove) ops->module_remove(bus->upstream); bus->sfp_quirk = NULL; } EXPORT_SYMBOL_GPL(sfp_module_remove); static void sfp_socket_clear(struct sfp_bus *bus) { bus->sfp_dev = NULL; bus->sfp = NULL; bus->socket_ops = NULL; } struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp, const struct sfp_socket_ops *ops) { struct sfp_bus *bus = sfp_bus_get(dev->fwnode); int ret = 0; if (bus) { rtnl_lock(); bus->sfp_dev = dev; bus->sfp = sfp; bus->socket_ops = ops; if (bus->upstream_ops) { ret = sfp_register_bus(bus); if (ret) sfp_socket_clear(bus); } rtnl_unlock(); } if (ret) { sfp_bus_put(bus); bus = NULL; } return bus; } EXPORT_SYMBOL_GPL(sfp_register_socket); void sfp_unregister_socket(struct sfp_bus *bus) { rtnl_lock(); if (bus->upstream_ops) sfp_unregister_bus(bus); sfp_socket_clear(bus); rtnl_unlock(); sfp_bus_put(bus); } EXPORT_SYMBOL_GPL(sfp_unregister_socket);