/* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_INTERNAL_H #define BLK_INTERNAL_H #include #include #include /* for max_pfn/max_low_pfn */ #include #include #include #include "blk-crypto-internal.h" struct elevator_type; /* Max future timer expiry for timeouts */ #define BLK_MAX_TIMEOUT (5 * HZ) extern struct dentry *blk_debugfs_root; struct blk_flush_queue { spinlock_t mq_flush_lock; unsigned int flush_pending_idx:1; unsigned int flush_running_idx:1; blk_status_t rq_status; unsigned long flush_pending_since; struct list_head flush_queue[2]; unsigned long flush_data_in_flight; struct request *flush_rq; }; bool is_flush_rq(struct request *req); struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, gfp_t flags); void blk_free_flush_queue(struct blk_flush_queue *q); void blk_freeze_queue(struct request_queue *q); void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); void blk_queue_start_drain(struct request_queue *q); int __bio_queue_enter(struct request_queue *q, struct bio *bio); void submit_bio_noacct_nocheck(struct bio *bio); void bio_await_chain(struct bio *bio); static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) { rcu_read_lock(); if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) goto fail; /* * The code that increments the pm_only counter must ensure that the * counter is globally visible before the queue is unfrozen. */ if (blk_queue_pm_only(q) && (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) goto fail_put; rcu_read_unlock(); return true; fail_put: blk_queue_exit(q); fail: rcu_read_unlock(); return false; } static inline int bio_queue_enter(struct bio *bio) { struct request_queue *q = bdev_get_queue(bio->bi_bdev); if (blk_try_enter_queue(q, false)) return 0; return __bio_queue_enter(q, bio); } static inline void blk_wait_io(struct completion *done) { /* Prevent hang_check timer from firing at us during very long I/O */ unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; if (timeout) while (!wait_for_completion_io_timeout(done, timeout)) ; else wait_for_completion_io(done); } #define BIO_INLINE_VECS 4 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, gfp_t gfp_mask); void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, struct page *page, unsigned len, unsigned offset, bool *same_page); static inline bool biovec_phys_mergeable(struct request_queue *q, struct bio_vec *vec1, struct bio_vec *vec2) { unsigned long mask = queue_segment_boundary(q); phys_addr_t addr1 = bvec_phys(vec1); phys_addr_t addr2 = bvec_phys(vec2); /* * Merging adjacent physical pages may not work correctly under KMSAN * if their metadata pages aren't adjacent. Just disable merging. */ if (IS_ENABLED(CONFIG_KMSAN)) return false; if (addr1 + vec1->bv_len != addr2) return false; if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) return false; if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) return false; return true; } static inline bool __bvec_gap_to_prev(const struct queue_limits *lim, struct bio_vec *bprv, unsigned int offset) { return (offset & lim->virt_boundary_mask) || ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); } /* * Check if adding a bio_vec after bprv with offset would create a gap in * the SG list. Most drivers don't care about this, but some do. */ static inline bool bvec_gap_to_prev(const struct queue_limits *lim, struct bio_vec *bprv, unsigned int offset) { if (!lim->virt_boundary_mask) return false; return __bvec_gap_to_prev(lim, bprv, offset); } static inline bool rq_mergeable(struct request *rq) { if (blk_rq_is_passthrough(rq)) return false; if (req_op(rq) == REQ_OP_FLUSH) return false; if (req_op(rq) == REQ_OP_WRITE_ZEROES) return false; if (req_op(rq) == REQ_OP_ZONE_APPEND) return false; if (rq->cmd_flags & REQ_NOMERGE_FLAGS) return false; if (rq->rq_flags & RQF_NOMERGE_FLAGS) return false; return true; } /* * There are two different ways to handle DISCARD merges: * 1) If max_discard_segments > 1, the driver treats every bio as a range and * send the bios to controller together. The ranges don't need to be * contiguous. * 2) Otherwise, the request will be normal read/write requests. The ranges * need to be contiguous. */ static inline bool blk_discard_mergable(struct request *req) { if (req_op(req) == REQ_OP_DISCARD && queue_max_discard_segments(req->q) > 1) return true; return false; } static inline unsigned int blk_rq_get_max_segments(struct request *rq) { if (req_op(rq) == REQ_OP_DISCARD) return queue_max_discard_segments(rq->q); return queue_max_segments(rq->q); } static inline unsigned int blk_queue_get_max_sectors(struct request *rq) { struct request_queue *q = rq->q; enum req_op op = req_op(rq); if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) return min(q->limits.max_discard_sectors, UINT_MAX >> SECTOR_SHIFT); if (unlikely(op == REQ_OP_WRITE_ZEROES)) return q->limits.max_write_zeroes_sectors; if (rq->cmd_flags & REQ_ATOMIC) return q->limits.atomic_write_max_sectors; return q->limits.max_sectors; } #ifdef CONFIG_BLK_DEV_INTEGRITY void blk_flush_integrity(void); void bio_integrity_free(struct bio *bio); /* * Integrity payloads can either be owned by the submitter, in which case * bio_uninit will free them, or owned and generated by the block layer, * in which case we'll verify them here (for reads) and free them before * the bio is handed back to the submitted. */ bool __bio_integrity_endio(struct bio *bio); static inline bool bio_integrity_endio(struct bio *bio) { struct bio_integrity_payload *bip = bio_integrity(bio); if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY)) return __bio_integrity_endio(bio); return true; } bool blk_integrity_merge_rq(struct request_queue *, struct request *, struct request *); bool blk_integrity_merge_bio(struct request_queue *, struct request *, struct bio *); static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { struct bio_integrity_payload *bip = bio_integrity(req->bio); struct bio_integrity_payload *bip_next = bio_integrity(next); return bvec_gap_to_prev(&req->q->limits, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { struct bio_integrity_payload *bip = bio_integrity(bio); struct bio_integrity_payload *bip_next = bio_integrity(req->bio); return bvec_gap_to_prev(&req->q->limits, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } extern const struct attribute_group blk_integrity_attr_group; #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline bool blk_integrity_merge_rq(struct request_queue *rq, struct request *r1, struct request *r2) { return true; } static inline bool blk_integrity_merge_bio(struct request_queue *rq, struct request *r, struct bio *b) { return true; } static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { return false; } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { return false; } static inline void blk_flush_integrity(void) { } static inline bool bio_integrity_endio(struct bio *bio) { return true; } static inline void bio_integrity_free(struct bio *bio) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ unsigned long blk_rq_timeout(unsigned long timeout); void blk_add_timer(struct request *req); enum bio_merge_status { BIO_MERGE_OK, BIO_MERGE_NONE, BIO_MERGE_FAILED, }; enum bio_merge_status bio_attempt_back_merge(struct request *req, struct bio *bio, unsigned int nr_segs); bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs); bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, struct bio *bio, unsigned int nr_segs); /* * Plug flush limits */ #define BLK_MAX_REQUEST_COUNT 32 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) /* * Internal elevator interface */ #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) bool blk_insert_flush(struct request *rq); int elevator_switch(struct request_queue *q, struct elevator_type *new_e); void elevator_disable(struct request_queue *q); void elevator_exit(struct request_queue *q); int elv_register_queue(struct request_queue *q, bool uevent); void elv_unregister_queue(struct request_queue *q); ssize_t part_size_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); ssize_t part_timeout_store(struct device *, struct device_attribute *, const char *, size_t); struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim, unsigned *nsegs); struct bio *bio_split_write_zeroes(struct bio *bio, const struct queue_limits *lim, unsigned *nsegs); struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, unsigned *nr_segs); struct bio *bio_split_zone_append(struct bio *bio, const struct queue_limits *lim, unsigned *nr_segs); /* * All drivers must accept single-segments bios that are smaller than PAGE_SIZE. * * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is * always valid if a bio has data. The check might lead to occasional false * positives when bios are cloned, but compared to the performance impact of * cloned bios themselves the loop below doesn't matter anyway. */ static inline bool bio_may_need_split(struct bio *bio, const struct queue_limits *lim) { return lim->chunk_sectors || bio->bi_vcnt != 1 || bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; } /** * __bio_split_to_limits - split a bio to fit the queue limits * @bio: bio to be split * @lim: queue limits to split based on * @nr_segs: returns the number of segments in the returned bio * * Check if @bio needs splitting based on the queue limits, and if so split off * a bio fitting the limits from the beginning of @bio and return it. @bio is * shortened to the remainder and re-submitted. * * The split bio is allocated from @q->bio_split, which is provided by the * block layer. */ static inline struct bio *__bio_split_to_limits(struct bio *bio, const struct queue_limits *lim, unsigned int *nr_segs) { switch (bio_op(bio)) { case REQ_OP_READ: case REQ_OP_WRITE: if (bio_may_need_split(bio, lim)) return bio_split_rw(bio, lim, nr_segs); *nr_segs = 1; return bio; case REQ_OP_ZONE_APPEND: return bio_split_zone_append(bio, lim, nr_segs); case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: return bio_split_discard(bio, lim, nr_segs); case REQ_OP_WRITE_ZEROES: return bio_split_write_zeroes(bio, lim, nr_segs); default: /* other operations can't be split */ *nr_segs = 0; return bio; } } int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs); bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next); unsigned int blk_recalc_rq_segments(struct request *rq); bool blk_rq_merge_ok(struct request *rq, struct bio *bio); enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); int blk_set_default_limits(struct queue_limits *lim); void blk_apply_bdi_limits(struct backing_dev_info *bdi, struct queue_limits *lim); int blk_dev_init(void); void update_io_ticks(struct block_device *part, unsigned long now, bool end); unsigned int part_in_flight(struct block_device *part); static inline void req_set_nomerge(struct request_queue *q, struct request *req) { req->cmd_flags |= REQ_NOMERGE; if (req == q->last_merge) q->last_merge = NULL; } /* * Internal io_context interface */ struct io_cq *ioc_find_get_icq(struct request_queue *q); struct io_cq *ioc_lookup_icq(struct request_queue *q); #ifdef CONFIG_BLK_ICQ void ioc_clear_queue(struct request_queue *q); #else static inline void ioc_clear_queue(struct request_queue *q) { } #endif /* CONFIG_BLK_ICQ */ struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q); static inline bool blk_queue_may_bounce(struct request_queue *q) { return IS_ENABLED(CONFIG_BOUNCE) && (q->limits.features & BLK_FEAT_BOUNCE_HIGH) && max_low_pfn >= max_pfn; } static inline struct bio *blk_queue_bounce(struct bio *bio, struct request_queue *q) { if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio))) return __blk_queue_bounce(bio, q); return bio; } #ifdef CONFIG_BLK_DEV_ZONED void disk_init_zone_resources(struct gendisk *disk); void disk_free_zone_resources(struct gendisk *disk); static inline bool bio_zone_write_plugging(struct bio *bio) { return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); } static inline bool bio_is_zone_append(struct bio *bio) { return bio_op(bio) == REQ_OP_ZONE_APPEND || bio_flagged(bio, BIO_EMULATES_ZONE_APPEND); } void blk_zone_write_plug_bio_merged(struct bio *bio); void blk_zone_write_plug_init_request(struct request *rq); static inline void blk_zone_update_request_bio(struct request *rq, struct bio *bio) { /* * For zone append requests, the request sector indicates the location * at which the BIO data was written. Return this value to the BIO * issuer through the BIO iter sector. * For plugged zone writes, which include emulated zone append, we need * the original BIO sector so that blk_zone_write_plug_bio_endio() can * lookup the zone write plug. */ if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio)) bio->bi_iter.bi_sector = rq->__sector; } void blk_zone_write_plug_bio_endio(struct bio *bio); static inline void blk_zone_bio_endio(struct bio *bio) { /* * For write BIOs to zoned devices, signal the completion of the BIO so * that the next write BIO can be submitted by zone write plugging. */ if (bio_zone_write_plugging(bio)) blk_zone_write_plug_bio_endio(bio); } void blk_zone_write_plug_finish_request(struct request *rq); static inline void blk_zone_finish_request(struct request *rq) { if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING) blk_zone_write_plug_finish_request(rq); } int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, unsigned long arg); int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg); #else /* CONFIG_BLK_DEV_ZONED */ static inline void disk_init_zone_resources(struct gendisk *disk) { } static inline void disk_free_zone_resources(struct gendisk *disk) { } static inline bool bio_zone_write_plugging(struct bio *bio) { return false; } static inline bool bio_is_zone_append(struct bio *bio) { return false; } static inline void blk_zone_write_plug_bio_merged(struct bio *bio) { } static inline void blk_zone_write_plug_init_request(struct request *rq) { } static inline void blk_zone_update_request_bio(struct request *rq, struct bio *bio) { } static inline void blk_zone_bio_endio(struct bio *bio) { } static inline void blk_zone_finish_request(struct request *rq) { } static inline int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, unsigned long arg) { return -ENOTTY; } static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } #endif /* CONFIG_BLK_DEV_ZONED */ struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); void bdev_add(struct block_device *bdev, dev_t dev); void bdev_unhash(struct block_device *bdev); void bdev_drop(struct block_device *bdev); int blk_alloc_ext_minor(void); void blk_free_ext_minor(unsigned int minor); #define ADDPART_FLAG_NONE 0 #define ADDPART_FLAG_RAID 1 #define ADDPART_FLAG_WHOLEDISK 2 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, sector_t length); int bdev_del_partition(struct gendisk *disk, int partno); int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, sector_t length); void drop_partition(struct block_device *part); void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors); struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, struct lock_class_key *lkclass); int bio_add_hw_page(struct request_queue *q, struct bio *bio, struct page *page, unsigned int len, unsigned int offset, unsigned int max_sectors, bool *same_page); int bio_add_hw_folio(struct request_queue *q, struct bio *bio, struct folio *folio, size_t len, size_t offset, unsigned int max_sectors, bool *same_page); /* * Clean up a page appropriately, where the page may be pinned, may have a * ref taken on it or neither. */ static inline void bio_release_page(struct bio *bio, struct page *page) { if (bio_flagged(bio, BIO_PAGE_PINNED)) unpin_user_page(page); } struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id); int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode); int disk_alloc_events(struct gendisk *disk); void disk_add_events(struct gendisk *disk); void disk_del_events(struct gendisk *disk); void disk_release_events(struct gendisk *disk); void disk_block_events(struct gendisk *disk); void disk_unblock_events(struct gendisk *disk); void disk_flush_events(struct gendisk *disk, unsigned int mask); extern struct device_attribute dev_attr_events; extern struct device_attribute dev_attr_events_async; extern struct device_attribute dev_attr_events_poll_msecs; extern struct attribute_group blk_trace_attr_group; blk_mode_t file_to_blk_mode(struct file *file); int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode, loff_t lstart, loff_t lend); long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags); long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); extern const struct address_space_operations def_blk_aops; int disk_register_independent_access_ranges(struct gendisk *disk); void disk_unregister_independent_access_ranges(struct gendisk *disk); #ifdef CONFIG_FAIL_MAKE_REQUEST bool should_fail_request(struct block_device *part, unsigned int bytes); #else /* CONFIG_FAIL_MAKE_REQUEST */ static inline bool should_fail_request(struct block_device *part, unsigned int bytes) { return false; } #endif /* CONFIG_FAIL_MAKE_REQUEST */ /* * Optimized request reference counting. Ideally we'd make timeouts be more * clever, as that's the only reason we need references at all... But until * this happens, this is faster than using refcount_t. Also see: * * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") */ #define req_ref_zero_or_close_to_overflow(req) \ ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) static inline bool req_ref_inc_not_zero(struct request *req) { return atomic_inc_not_zero(&req->ref); } static inline bool req_ref_put_and_test(struct request *req) { WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); return atomic_dec_and_test(&req->ref); } static inline void req_ref_set(struct request *req, int value) { atomic_set(&req->ref, value); } static inline int req_ref_read(struct request *req) { return atomic_read(&req->ref); } static inline u64 blk_time_get_ns(void) { struct blk_plug *plug = current->plug; if (!plug || !in_task()) return ktime_get_ns(); /* * 0 could very well be a valid time, but rather than flag "this is * a valid timestamp" separately, just accept that we'll do an extra * ktime_get_ns() if we just happen to get 0 as the current time. */ if (!plug->cur_ktime) { plug->cur_ktime = ktime_get_ns(); current->flags |= PF_BLOCK_TS; } return plug->cur_ktime; } static inline ktime_t blk_time_get(void) { return ns_to_ktime(blk_time_get_ns()); } /* * From most significant bit: * 1 bit: reserved for other usage, see below * 12 bits: original size of bio * 51 bits: issue time of bio */ #define BIO_ISSUE_RES_BITS 1 #define BIO_ISSUE_SIZE_BITS 12 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) #define BIO_ISSUE_SIZE_MASK \ (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) /* Reserved bit for blk-throtl */ #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) static inline u64 __bio_issue_time(u64 time) { return time & BIO_ISSUE_TIME_MASK; } static inline u64 bio_issue_time(struct bio_issue *issue) { return __bio_issue_time(issue->value); } static inline sector_t bio_issue_size(struct bio_issue *issue) { return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); } static inline void bio_issue_init(struct bio_issue *issue, sector_t size) { size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) | ((u64)size << BIO_ISSUE_SIZE_SHIFT)); } void bdev_release(struct file *bdev_file); int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder, const struct blk_holder_ops *hops, struct file *bdev_file); int bdev_permission(dev_t dev, blk_mode_t mode, void *holder); void blk_integrity_generate(struct bio *bio); void blk_integrity_verify(struct bio *bio); void blk_integrity_prepare(struct request *rq); void blk_integrity_complete(struct request *rq, unsigned int nr_bytes); #endif /* BLK_INTERNAL_H */