/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BITMAP_H #define __LINUX_BITMAP_H #ifndef __ASSEMBLY__ #include #include #include #include #include #include #include #include #include struct device; /* * bitmaps provide bit arrays that consume one or more unsigned * longs. The bitmap interface and available operations are listed * here, in bitmap.h * * Function implementations generic to all architectures are in * lib/bitmap.c. Functions implementations that are architecture * specific are in various arch//include/asm/bitops.h headers * and other arch/ specific files. * * See lib/bitmap.c for more details. */ /** * DOC: bitmap overview * * The available bitmap operations and their rough meaning in the * case that the bitmap is a single unsigned long are thus: * * The generated code is more efficient when nbits is known at * compile-time and at most BITS_PER_LONG. * * :: * * bitmap_zero(dst, nbits) *dst = 0UL * bitmap_fill(dst, nbits) *dst = ~0UL * bitmap_copy(dst, src, nbits) *dst = *src * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) * bitmap_complement(dst, src, nbits) *dst = ~(*src) * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? * bitmap_empty(src, nbits) Are all bits zero in *src? * bitmap_full(src, nbits) Are all bits set in *src? * bitmap_weight(src, nbits) Hamming Weight: number set bits * bitmap_weight_and(src1, src2, nbits) Hamming Weight of and'ed bitmap * bitmap_weight_andnot(src1, src2, nbits) Hamming Weight of andnot'ed bitmap * bitmap_set(dst, pos, nbits) Set specified bit area * bitmap_clear(dst, pos, nbits) Clear specified bit area * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask) * bitmap_scatter(dst, src, mask, nbits) *dst = map(dense, sparse)(src) * bitmap_gather(dst, src, mask, nbits) *dst = map(sparse, dense)(src) * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region * bitmap_release_region(bitmap, pos, order) Free specified bit region * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst * bitmap_from_arr64(dst, buf, nbits) Copy nbits from u64[] buf to dst * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst * bitmap_to_arr64(buf, src, nbits) Copy nbits from buf to u64[] dst * bitmap_get_value8(map, start) Get 8bit value from map at start * bitmap_set_value8(map, value, start) Set 8bit value to map at start * bitmap_read(map, start, nbits) Read an nbits-sized value from * map at start * bitmap_write(map, value, start, nbits) Write an nbits-sized value to * map at start * * Note, bitmap_zero() and bitmap_fill() operate over the region of * unsigned longs, that is, bits behind bitmap till the unsigned long * boundary will be zeroed or filled as well. Consider to use * bitmap_clear() or bitmap_set() to make explicit zeroing or filling * respectively. */ /** * DOC: bitmap bitops * * Also the following operations in asm/bitops.h apply to bitmaps.:: * * set_bit(bit, addr) *addr |= bit * clear_bit(bit, addr) *addr &= ~bit * change_bit(bit, addr) *addr ^= bit * test_bit(bit, addr) Is bit set in *addr? * test_and_set_bit(bit, addr) Set bit and return old value * test_and_clear_bit(bit, addr) Clear bit and return old value * test_and_change_bit(bit, addr) Change bit and return old value * find_first_zero_bit(addr, nbits) Position first zero bit in *addr * find_first_bit(addr, nbits) Position first set bit in *addr * find_next_zero_bit(addr, nbits, bit) * Position next zero bit in *addr >= bit * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit * find_next_and_bit(addr1, addr2, nbits, bit) * Same as find_next_bit, but in * (*addr1 & *addr2) * */ /** * DOC: declare bitmap * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used * to declare an array named 'name' of just enough unsigned longs to * contain all bit positions from 0 to 'bits' - 1. */ /* * Allocation and deallocation of bitmap. * Provided in lib/bitmap.c to avoid circular dependency. */ unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node); unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node); void bitmap_free(const unsigned long *bitmap); DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T)) /* Managed variants of the above. */ unsigned long *devm_bitmap_alloc(struct device *dev, unsigned int nbits, gfp_t flags); unsigned long *devm_bitmap_zalloc(struct device *dev, unsigned int nbits, gfp_t flags); /* * lib/bitmap.c provides these functions: */ bool __bitmap_equal(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); bool __pure __bitmap_or_equal(const unsigned long *src1, const unsigned long *src2, const unsigned long *src3, unsigned int nbits); void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits); void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits); void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits); void bitmap_cut(unsigned long *dst, const unsigned long *src, unsigned int first, unsigned int cut, unsigned int nbits); bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); void __bitmap_replace(unsigned long *dst, const unsigned long *old, const unsigned long *new, const unsigned long *mask, unsigned int nbits); bool __bitmap_intersects(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); bool __bitmap_subset(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); unsigned int __bitmap_weight_and(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); void __bitmap_set(unsigned long *map, unsigned int start, int len); void __bitmap_clear(unsigned long *map, unsigned int start, int len); unsigned long bitmap_find_next_zero_area_off(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask, unsigned long align_offset); /** * bitmap_find_next_zero_area - find a contiguous aligned zero area * @map: The address to base the search on * @size: The bitmap size in bits * @start: The bitnumber to start searching at * @nr: The number of zeroed bits we're looking for * @align_mask: Alignment mask for zero area * * The @align_mask should be one less than a power of 2; the effect is that * the bit offset of all zero areas this function finds is multiples of that * power of 2. A @align_mask of 0 means no alignment is required. */ static __always_inline unsigned long bitmap_find_next_zero_area(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask) { return bitmap_find_next_zero_area_off(map, size, start, nr, align_mask, 0); } void bitmap_remap(unsigned long *dst, const unsigned long *src, const unsigned long *old, const unsigned long *new, unsigned int nbits); int bitmap_bitremap(int oldbit, const unsigned long *old, const unsigned long *new, int bits); void bitmap_onto(unsigned long *dst, const unsigned long *orig, const unsigned long *relmap, unsigned int bits); void bitmap_fold(unsigned long *dst, const unsigned long *orig, unsigned int sz, unsigned int nbits); #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) #define bitmap_size(nbits) (ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE) static __always_inline void bitmap_zero(unsigned long *dst, unsigned int nbits) { unsigned int len = bitmap_size(nbits); if (small_const_nbits(nbits)) *dst = 0; else memset(dst, 0, len); } static __always_inline void bitmap_fill(unsigned long *dst, unsigned int nbits) { unsigned int len = bitmap_size(nbits); if (small_const_nbits(nbits)) *dst = ~0UL; else memset(dst, 0xff, len); } static __always_inline void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits) { unsigned int len = bitmap_size(nbits); if (small_const_nbits(nbits)) *dst = *src; else memcpy(dst, src, len); } /* * Copy bitmap and clear tail bits in last word. */ static __always_inline void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits) { bitmap_copy(dst, src, nbits); if (nbits % BITS_PER_LONG) dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); } static inline void bitmap_copy_and_extend(unsigned long *to, const unsigned long *from, unsigned int count, unsigned int size) { unsigned int copy = BITS_TO_LONGS(count); memcpy(to, from, copy * sizeof(long)); if (count % BITS_PER_LONG) to[copy - 1] &= BITMAP_LAST_WORD_MASK(count); memset(to + copy, 0, bitmap_size(size) - copy * sizeof(long)); } /* * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64 * machines the order of hi and lo parts of numbers match the bitmap structure. * In both cases conversion is not needed when copying data from/to arrays of * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit * architectures are not using bitmap_copy_clear_tail(). */ #if BITS_PER_LONG == 64 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits); void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits); #else #define bitmap_from_arr32(bitmap, buf, nbits) \ bitmap_copy_clear_tail((unsigned long *) (bitmap), \ (const unsigned long *) (buf), (nbits)) #define bitmap_to_arr32(buf, bitmap, nbits) \ bitmap_copy_clear_tail((unsigned long *) (buf), \ (const unsigned long *) (bitmap), (nbits)) #endif /* * On 64-bit systems bitmaps are represented as u64 arrays internally. So, * the conversion is not needed when copying data from/to arrays of u64. */ #if BITS_PER_LONG == 32 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits); void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits); #else #define bitmap_from_arr64(bitmap, buf, nbits) \ bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits)) #define bitmap_to_arr64(buf, bitmap, nbits) \ bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits)) #endif static __always_inline bool bitmap_and(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; return __bitmap_and(dst, src1, src2, nbits); } static __always_inline void bitmap_or(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = *src1 | *src2; else __bitmap_or(dst, src1, src2, nbits); } static __always_inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = *src1 ^ *src2; else __bitmap_xor(dst, src1, src2, nbits); } static __always_inline bool bitmap_andnot(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; return __bitmap_andnot(dst, src1, src2, nbits); } static __always_inline void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = ~(*src); else __bitmap_complement(dst, src, nbits); } #ifdef __LITTLE_ENDIAN #define BITMAP_MEM_ALIGNMENT 8 #else #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) #endif #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) static __always_inline bool bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) return !memcmp(src1, src2, nbits / 8); return __bitmap_equal(src1, src2, nbits); } /** * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third * @src1: Pointer to bitmap 1 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 * @nbits: number of bits in each of these bitmaps * * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise */ static __always_inline bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2, const unsigned long *src3, unsigned int nbits) { if (!small_const_nbits(nbits)) return __bitmap_or_equal(src1, src2, src3, nbits); return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); } static __always_inline bool bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; else return __bitmap_intersects(src1, src2, nbits); } static __always_inline bool bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); else return __bitmap_subset(src1, src2, nbits); } static __always_inline bool bitmap_empty(const unsigned long *src, unsigned nbits) { if (small_const_nbits(nbits)) return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); return find_first_bit(src, nbits) == nbits; } static __always_inline bool bitmap_full(const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); return find_first_zero_bit(src, nbits) == nbits; } static __always_inline unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); return __bitmap_weight(src, nbits); } static __always_inline unsigned long bitmap_weight_and(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)); return __bitmap_weight_and(src1, src2, nbits); } static __always_inline unsigned long bitmap_weight_andnot(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)); return __bitmap_weight_andnot(src1, src2, nbits); } static __always_inline void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits) { if (__builtin_constant_p(nbits) && nbits == 1) __set_bit(start, map); else if (small_const_nbits(start + nbits)) *map |= GENMASK(start + nbits - 1, start); else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && __builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) memset((char *)map + start / 8, 0xff, nbits / 8); else __bitmap_set(map, start, nbits); } static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits) { if (__builtin_constant_p(nbits) && nbits == 1) __clear_bit(start, map); else if (small_const_nbits(start + nbits)) *map &= ~GENMASK(start + nbits - 1, start); else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && __builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) memset((char *)map + start / 8, 0, nbits / 8); else __bitmap_clear(map, start, nbits); } static __always_inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; else __bitmap_shift_right(dst, src, shift, nbits); } static __always_inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); else __bitmap_shift_left(dst, src, shift, nbits); } static __always_inline void bitmap_replace(unsigned long *dst, const unsigned long *old, const unsigned long *new, const unsigned long *mask, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*old & ~(*mask)) | (*new & *mask); else __bitmap_replace(dst, old, new, mask, nbits); } /** * bitmap_scatter - Scatter a bitmap according to the given mask * @dst: scattered bitmap * @src: gathered bitmap * @mask: mask representing bits to assign to in the scattered bitmap * @nbits: number of bits in each of these bitmaps * * Scatters bitmap with sequential bits according to the given @mask. * * Example: * If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302. * * Or in binary form * @src @mask @dst * 0000000001011010 0001001100010011 0000001100000010 * * (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12) * * A more 'visual' description of the operation:: * * src: 0000000001011010 * |||||| * +------+||||| * | +----+|||| * | |+----+||| * | || +-+|| * | || | || * mask: ...v..vv...v..vv * ...0..11...0..10 * dst: 0000001100000010 * * A relationship exists between bitmap_scatter() and bitmap_gather(). * bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation. * See bitmap_scatter() for details related to this relationship. */ static __always_inline void bitmap_scatter(unsigned long *dst, const unsigned long *src, const unsigned long *mask, unsigned int nbits) { unsigned int n = 0; unsigned int bit; bitmap_zero(dst, nbits); for_each_set_bit(bit, mask, nbits) __assign_bit(bit, dst, test_bit(n++, src)); } /** * bitmap_gather - Gather a bitmap according to given mask * @dst: gathered bitmap * @src: scattered bitmap * @mask: mask representing bits to extract from in the scattered bitmap * @nbits: number of bits in each of these bitmaps * * Gathers bitmap with sparse bits according to the given @mask. * * Example: * If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a. * * Or in binary form * @src @mask @dst * 0000001100000010 0001001100010011 0000000000011010 * * (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5) * * A more 'visual' description of the operation:: * * mask: ...v..vv...v..vv * src: 0000001100000010 * ^ ^^ ^ 0 * | || | 10 * | || > 010 * | |+--> 1010 * | +--> 11010 * +----> 011010 * dst: 0000000000011010 * * A relationship exists between bitmap_gather() and bitmap_scatter(). See * bitmap_scatter() for the bitmap scatter detailed operations. * Suppose scattered computed using bitmap_scatter(scattered, src, mask, n). * The operation bitmap_gather(result, scattered, mask, n) leads to a result * equal or equivalent to src. * * The result can be 'equivalent' because bitmap_scatter() and bitmap_gather() * are not bijective. * The result and src values are equivalent in that sense that a call to * bitmap_scatter(res, src, mask, n) and a call to * bitmap_scatter(res, result, mask, n) will lead to the same res value. */ static __always_inline void bitmap_gather(unsigned long *dst, const unsigned long *src, const unsigned long *mask, unsigned int nbits) { unsigned int n = 0; unsigned int bit; bitmap_zero(dst, nbits); for_each_set_bit(bit, mask, nbits) __assign_bit(n++, dst, test_bit(bit, src)); } static __always_inline void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs, unsigned int *re, unsigned int end) { *rs = find_next_bit(bitmap, end, *rs); *re = find_next_zero_bit(bitmap, end, *rs + 1); } /** * bitmap_release_region - release allocated bitmap region * @bitmap: array of unsigned longs corresponding to the bitmap * @pos: beginning of bit region to release * @order: region size (log base 2 of number of bits) to release * * This is the complement to __bitmap_find_free_region() and releases * the found region (by clearing it in the bitmap). */ static __always_inline void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) { bitmap_clear(bitmap, pos, BIT(order)); } /** * bitmap_allocate_region - allocate bitmap region * @bitmap: array of unsigned longs corresponding to the bitmap * @pos: beginning of bit region to allocate * @order: region size (log base 2 of number of bits) to allocate * * Allocate (set bits in) a specified region of a bitmap. * * Returns: 0 on success, or %-EBUSY if specified region wasn't * free (not all bits were zero). */ static __always_inline int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) { unsigned int len = BIT(order); if (find_next_bit(bitmap, pos + len, pos) < pos + len) return -EBUSY; bitmap_set(bitmap, pos, len); return 0; } /** * bitmap_find_free_region - find a contiguous aligned mem region * @bitmap: array of unsigned longs corresponding to the bitmap * @bits: number of bits in the bitmap * @order: region size (log base 2 of number of bits) to find * * Find a region of free (zero) bits in a @bitmap of @bits bits and * allocate them (set them to one). Only consider regions of length * a power (@order) of two, aligned to that power of two, which * makes the search algorithm much faster. * * Returns: the bit offset in bitmap of the allocated region, * or -errno on failure. */ static __always_inline int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) { unsigned int pos, end; /* scans bitmap by regions of size order */ for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) { if (!bitmap_allocate_region(bitmap, pos, order)) return pos; } return -ENOMEM; } /** * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. * @n: u64 value * * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit * integers in 32-bit environment, and 64-bit integers in 64-bit one. * * There are four combinations of endianness and length of the word in linux * ABIs: LE64, BE64, LE32 and BE32. * * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in * bitmaps and therefore don't require any special handling. * * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the * other hand is represented as an array of 32-bit words and the position of * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that * word. For example, bit #42 is located at 10th position of 2nd word. * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit * values in memory as it usually does. But for BE we need to swap hi and lo * words manually. * * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps * hi and lo words, as is expected by bitmap. */ #if __BITS_PER_LONG == 64 #define BITMAP_FROM_U64(n) (n) #else #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ ((unsigned long) ((u64)(n) >> 32)) #endif /** * bitmap_from_u64 - Check and swap words within u64. * @mask: source bitmap * @dst: destination bitmap * * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` * to read u64 mask, we will get the wrong word. * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, * but we expect the lower 32-bits of u64. */ static __always_inline void bitmap_from_u64(unsigned long *dst, u64 mask) { bitmap_from_arr64(dst, &mask, 64); } /** * bitmap_read - read a value of n-bits from the memory region * @map: address to the bitmap memory region * @start: bit offset of the n-bit value * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG * * Returns: value of @nbits bits located at the @start bit offset within the * @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return * value is undefined. */ static __always_inline unsigned long bitmap_read(const unsigned long *map, unsigned long start, unsigned long nbits) { size_t index = BIT_WORD(start); unsigned long offset = start % BITS_PER_LONG; unsigned long space = BITS_PER_LONG - offset; unsigned long value_low, value_high; if (unlikely(!nbits || nbits > BITS_PER_LONG)) return 0; if (space >= nbits) return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits); value_low = map[index] & BITMAP_FIRST_WORD_MASK(start); value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits); return (value_low >> offset) | (value_high << space); } /** * bitmap_write - write n-bit value within a memory region * @map: address to the bitmap memory region * @value: value to write, clamped to nbits * @start: bit offset of the n-bit value * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG. * * bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(), * i.e. bits beyond @nbits are ignored: * * for (bit = 0; bit < nbits; bit++) * __assign_bit(start + bit, bitmap, val & BIT(bit)); * * For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed. */ static __always_inline void bitmap_write(unsigned long *map, unsigned long value, unsigned long start, unsigned long nbits) { size_t index; unsigned long offset; unsigned long space; unsigned long mask; bool fit; if (unlikely(!nbits || nbits > BITS_PER_LONG)) return; mask = BITMAP_LAST_WORD_MASK(nbits); value &= mask; offset = start % BITS_PER_LONG; space = BITS_PER_LONG - offset; fit = space >= nbits; index = BIT_WORD(start); map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start)); map[index] |= value << offset; if (fit) return; map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits); map[index + 1] |= (value >> space); } #define bitmap_get_value8(map, start) \ bitmap_read(map, start, BITS_PER_BYTE) #define bitmap_set_value8(map, value, start) \ bitmap_write(map, value, start, BITS_PER_BYTE) #endif /* __ASSEMBLY__ */ #endif /* __LINUX_BITMAP_H */