Aapo Vienamo 916f26f1c2 thunderbolt: debugfs: Implement asymmetric lane margining
Add support for the RX2 receiver which is used as the third receiver in
asymmetric links. This requires expanding the results array for the
additional third data word of the hardware margining results.

Signed-off-by: Aapo Vienamo <aapo.vienamo@iki.fi>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2024-11-01 07:55:38 +02:00

2506 lines
63 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Debugfs interface
*
* Copyright (C) 2020, Intel Corporation
* Authors: Gil Fine <gil.fine@intel.com>
* Mika Westerberg <mika.westerberg@linux.intel.com>
*/
#include <linux/array_size.h>
#include <linux/bitfield.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/uaccess.h>
#include "tb.h"
#include "sb_regs.h"
#define PORT_CAP_V1_PCIE_LEN 1
#define PORT_CAP_V2_PCIE_LEN 2
#define PORT_CAP_POWER_LEN 2
#define PORT_CAP_LANE_LEN 3
#define PORT_CAP_USB3_LEN 5
#define PORT_CAP_DP_V1_LEN 9
#define PORT_CAP_DP_V2_LEN 14
#define PORT_CAP_TMU_V1_LEN 8
#define PORT_CAP_TMU_V2_LEN 10
#define PORT_CAP_BASIC_LEN 9
#define PORT_CAP_USB4_LEN 20
#define SWITCH_CAP_TMU_LEN 26
#define SWITCH_CAP_BASIC_LEN 27
#define PATH_LEN 2
#define COUNTER_SET_LEN 3
/*
* USB4 spec doesn't specify dwell range, the range of 100 ms to 500 ms
* probed to give good results.
*/
#define MIN_DWELL_TIME 100 /* ms */
#define MAX_DWELL_TIME 500 /* ms */
#define DWELL_SAMPLE_INTERVAL 10
enum usb4_margin_cap_voltage_indp {
USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_2_3_MIN,
USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_2_3_HL,
USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_2_3_BOTH,
USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_4_MIN,
USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_4_BOTH,
USB4_MARGIN_CAP_VOLTAGE_INDP_UNKNOWN,
};
enum usb4_margin_cap_time_indp {
USB4_MARGIN_CAP_TIME_INDP_GEN_2_3_MIN,
USB4_MARGIN_CAP_TIME_INDP_GEN_2_3_LR,
USB4_MARGIN_CAP_TIME_INDP_GEN_2_3_BOTH,
USB4_MARGIN_CAP_TIME_INDP_GEN_4_MIN,
USB4_MARGIN_CAP_TIME_INDP_GEN_4_BOTH,
USB4_MARGIN_CAP_TIME_INDP_UNKNOWN,
};
/* Sideband registers and their sizes as defined in the USB4 spec */
struct sb_reg {
unsigned int reg;
unsigned int size;
};
#define SB_MAX_SIZE 64
/* Sideband registers for router */
static const struct sb_reg port_sb_regs[] = {
{ USB4_SB_VENDOR_ID, 4 },
{ USB4_SB_PRODUCT_ID, 4 },
{ USB4_SB_DEBUG_CONF, 4 },
{ USB4_SB_DEBUG, 54 },
{ USB4_SB_LRD_TUNING, 4 },
{ USB4_SB_OPCODE, 4 },
{ USB4_SB_METADATA, 4 },
{ USB4_SB_LINK_CONF, 3 },
{ USB4_SB_GEN23_TXFFE, 4 },
{ USB4_SB_GEN4_TXFFE, 4 },
{ USB4_SB_VERSION, 4 },
{ USB4_SB_DATA, 64 },
};
/* Sideband registers for retimer */
static const struct sb_reg retimer_sb_regs[] = {
{ USB4_SB_VENDOR_ID, 4 },
{ USB4_SB_PRODUCT_ID, 4 },
{ USB4_SB_FW_VERSION, 4 },
{ USB4_SB_LRD_TUNING, 4 },
{ USB4_SB_OPCODE, 4 },
{ USB4_SB_METADATA, 4 },
{ USB4_SB_GEN23_TXFFE, 4 },
{ USB4_SB_GEN4_TXFFE, 4 },
{ USB4_SB_VERSION, 4 },
{ USB4_SB_DATA, 64 },
};
#define DEBUGFS_ATTR(__space, __write) \
static int __space ## _open(struct inode *inode, struct file *file) \
{ \
return single_open(file, __space ## _show, inode->i_private); \
} \
\
static const struct file_operations __space ## _fops = { \
.owner = THIS_MODULE, \
.open = __space ## _open, \
.release = single_release, \
.read = seq_read, \
.write = __write, \
.llseek = seq_lseek, \
}
#define DEBUGFS_ATTR_RO(__space) \
DEBUGFS_ATTR(__space, NULL)
#define DEBUGFS_ATTR_RW(__space) \
DEBUGFS_ATTR(__space, __space ## _write)
static struct dentry *tb_debugfs_root;
static void *validate_and_copy_from_user(const void __user *user_buf,
size_t *count)
{
size_t nbytes;
void *buf;
if (!*count)
return ERR_PTR(-EINVAL);
if (!access_ok(user_buf, *count))
return ERR_PTR(-EFAULT);
buf = (void *)get_zeroed_page(GFP_KERNEL);
if (!buf)
return ERR_PTR(-ENOMEM);
nbytes = min_t(size_t, *count, PAGE_SIZE);
if (copy_from_user(buf, user_buf, nbytes)) {
free_page((unsigned long)buf);
return ERR_PTR(-EFAULT);
}
*count = nbytes;
return buf;
}
static bool parse_line(char **line, u32 *offs, u32 *val, int short_fmt_len,
int long_fmt_len)
{
char *token;
u32 v[5];
int ret;
token = strsep(line, "\n");
if (!token)
return false;
/*
* For Adapter/Router configuration space:
* Short format is: offset value\n
* v[0] v[1]
* Long format as produced from the read side:
* offset relative_offset cap_id vs_cap_id value\n
* v[0] v[1] v[2] v[3] v[4]
*
* For Counter configuration space:
* Short format is: offset\n
* v[0]
* Long format as produced from the read side:
* offset relative_offset counter_id value\n
* v[0] v[1] v[2] v[3]
*/
ret = sscanf(token, "%i %i %i %i %i", &v[0], &v[1], &v[2], &v[3], &v[4]);
/* In case of Counters, clear counter, "val" content is NA */
if (ret == short_fmt_len) {
*offs = v[0];
*val = v[short_fmt_len - 1];
return true;
} else if (ret == long_fmt_len) {
*offs = v[0];
*val = v[long_fmt_len - 1];
return true;
}
return false;
}
#if IS_ENABLED(CONFIG_USB4_DEBUGFS_WRITE)
static ssize_t regs_write(struct tb_switch *sw, struct tb_port *port,
const char __user *user_buf, size_t count,
loff_t *ppos)
{
struct tb *tb = sw->tb;
char *line, *buf;
u32 val, offset;
int ret = 0;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
/* User did hardware changes behind the driver's back */
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
line = buf;
while (parse_line(&line, &offset, &val, 2, 5)) {
if (port)
ret = tb_port_write(port, &val, TB_CFG_PORT, offset, 1);
else
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, offset, 1);
if (ret)
break;
}
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
static ssize_t port_regs_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
return regs_write(port->sw, port, user_buf, count, ppos);
}
static ssize_t switch_regs_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_switch *sw = s->private;
return regs_write(sw, NULL, user_buf, count, ppos);
}
static bool parse_sb_line(char **line, u8 *reg, u8 *data, size_t data_size,
size_t *bytes_read)
{
char *field, *token;
int i;
token = strsep(line, "\n");
if (!token)
return false;
/* Parse the register first */
field = strsep(&token, " ");
if (!field)
return false;
if (kstrtou8(field, 0, reg))
return false;
/* Then the values for the register, up to data_size */
for (i = 0; i < data_size; i++) {
field = strsep(&token, " ");
if (!field)
break;
if (kstrtou8(field, 0, &data[i]))
return false;
}
*bytes_read = i;
return true;
}
static ssize_t sb_regs_write(struct tb_port *port, const struct sb_reg *sb_regs,
size_t size, enum usb4_sb_target target, u8 index,
char *buf, size_t count, loff_t *ppos)
{
u8 reg, data[SB_MAX_SIZE];
size_t bytes_read;
char *line = buf;
/* User did hardware changes behind the driver's back */
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
/*
* For sideband registers we accept:
* reg b0 b1 b2...\n
*
* Here "reg" is the byte offset of the sideband register and "b0"..
* are the byte values. There can be less byte values than the register
* size. The leftovers will not be overwritten.
*/
while (parse_sb_line(&line, &reg, data, ARRAY_SIZE(data), &bytes_read)) {
const struct sb_reg *sb_reg;
int ret;
/* At least one byte must be passed */
if (bytes_read < 1)
return -EINVAL;
/* Find the register */
sb_reg = NULL;
for (int i = 0; i < size; i++) {
if (sb_regs[i].reg == reg) {
sb_reg = &sb_regs[i];
break;
}
}
if (!sb_reg)
return -EINVAL;
if (bytes_read > sb_regs->size)
return -E2BIG;
ret = usb4_port_sb_write(port, target, index, sb_reg->reg, data,
bytes_read);
if (ret)
return ret;
}
return 0;
}
static ssize_t port_sb_regs_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
char *buf;
int ret;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
ret = sb_regs_write(port, port_sb_regs, ARRAY_SIZE(port_sb_regs),
USB4_SB_TARGET_ROUTER, 0, buf, count, ppos);
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
static ssize_t retimer_sb_regs_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_retimer *rt = s->private;
struct tb *tb = rt->tb;
char *buf;
int ret;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
pm_runtime_get_sync(&rt->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
ret = sb_regs_write(rt->port, retimer_sb_regs, ARRAY_SIZE(retimer_sb_regs),
USB4_SB_TARGET_RETIMER, rt->index, buf, count, ppos);
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&rt->dev);
pm_runtime_put_autosuspend(&rt->dev);
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
#define DEBUGFS_MODE 0600
#else
#define port_regs_write NULL
#define switch_regs_write NULL
#define port_sb_regs_write NULL
#define retimer_sb_regs_write NULL
#define DEBUGFS_MODE 0400
#endif
#if IS_ENABLED(CONFIG_USB4_DEBUGFS_MARGINING)
/**
* struct tb_margining - Lane margining support
* @port: USB4 port through which the margining operations are run
* @target: Sideband target
* @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
* @dev: Pointer to the device that is the target (USB4 port or retimer)
* @gen: Link generation
* @asym_rx: %true% if @port supports asymmetric link with 3 Rx
* @caps: Port lane margining capabilities
* @results: Last lane margining results
* @lanes: %0, %1 or %7 (all)
* @min_ber_level: Minimum supported BER level contour value
* @max_ber_level: Maximum supported BER level contour value
* @ber_level: Current BER level contour value
* @voltage_steps: Number of mandatory voltage steps
* @max_voltage_offset: Maximum mandatory voltage offset (in mV)
* @voltage_steps_optional_range: Number of voltage steps for optional range
* @max_voltage_offset_optional_range: Maximum voltage offset for the optional
* range (in mV).
* @time_steps: Number of time margin steps
* @max_time_offset: Maximum time margin offset (in mUI)
* @voltage_time_offset: Offset for voltage / time for software margining
* @dwell_time: Dwell time for software margining (in ms)
* @error_counter: Error counter operation for software margining
* @optional_voltage_offset_range: Enable optional extended voltage range
* @software: %true if software margining is used instead of hardware
* @time: %true if time margining is used instead of voltage
* @right_high: %false if left/low margin test is performed, %true if
* right/high
* @upper_eye: %false if the lower PAM3 eye is used, %true if the upper
* eye is used
*/
struct tb_margining {
struct tb_port *port;
enum usb4_sb_target target;
u8 index;
struct device *dev;
unsigned int gen;
bool asym_rx;
u32 caps[3];
u32 results[3];
enum usb4_margining_lane lanes;
unsigned int min_ber_level;
unsigned int max_ber_level;
unsigned int ber_level;
unsigned int voltage_steps;
unsigned int max_voltage_offset;
unsigned int voltage_steps_optional_range;
unsigned int max_voltage_offset_optional_range;
unsigned int time_steps;
unsigned int max_time_offset;
unsigned int voltage_time_offset;
unsigned int dwell_time;
enum usb4_margin_sw_error_counter error_counter;
bool optional_voltage_offset_range;
bool software;
bool time;
bool right_high;
bool upper_eye;
};
static int margining_modify_error_counter(struct tb_margining *margining,
u32 lanes, enum usb4_margin_sw_error_counter error_counter)
{
struct usb4_port_margining_params params = { 0 };
struct tb_port *port = margining->port;
u32 result;
if (error_counter != USB4_MARGIN_SW_ERROR_COUNTER_CLEAR &&
error_counter != USB4_MARGIN_SW_ERROR_COUNTER_STOP)
return -EOPNOTSUPP;
params.error_counter = error_counter;
params.lanes = lanes;
return usb4_port_sw_margin(port, margining->target, margining->index,
&params, &result);
}
static bool supports_software(const struct tb_margining *margining)
{
if (margining->gen < 4)
return margining->caps[0] & USB4_MARGIN_CAP_0_MODES_SW;
return margining->caps[2] & USB4_MARGIN_CAP_2_MODES_SW;
}
static bool supports_hardware(const struct tb_margining *margining)
{
if (margining->gen < 4)
return margining->caps[0] & USB4_MARGIN_CAP_0_MODES_HW;
return margining->caps[2] & USB4_MARGIN_CAP_2_MODES_HW;
}
static bool all_lanes(const struct tb_margining *margining)
{
return margining->caps[0] & USB4_MARGIN_CAP_0_ALL_LANES;
}
static enum usb4_margin_cap_voltage_indp
independent_voltage_margins(const struct tb_margining *margining)
{
if (margining->gen < 4) {
switch (FIELD_GET(USB4_MARGIN_CAP_0_VOLTAGE_INDP_MASK, margining->caps[0])) {
case USB4_MARGIN_CAP_0_VOLTAGE_MIN:
return USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_2_3_MIN;
case USB4_MARGIN_CAP_0_VOLTAGE_HL:
return USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_2_3_HL;
case USB4_MARGIN_CAP_1_TIME_BOTH:
return USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_2_3_BOTH;
}
} else {
switch (FIELD_GET(USB4_MARGIN_CAP_2_VOLTAGE_INDP_MASK, margining->caps[2])) {
case USB4_MARGIN_CAP_2_VOLTAGE_MIN:
return USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_4_MIN;
case USB4_MARGIN_CAP_2_VOLTAGE_BOTH:
return USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_4_BOTH;
}
}
return USB4_MARGIN_CAP_VOLTAGE_INDP_UNKNOWN;
}
static bool supports_time(const struct tb_margining *margining)
{
if (margining->gen < 4)
return margining->caps[0] & USB4_MARGIN_CAP_0_TIME;
return margining->caps[2] & USB4_MARGIN_CAP_2_TIME;
}
/* Only applicable if supports_time() returns true */
static enum usb4_margin_cap_time_indp
independent_time_margins(const struct tb_margining *margining)
{
if (margining->gen < 4) {
switch (FIELD_GET(USB4_MARGIN_CAP_1_TIME_INDP_MASK, margining->caps[1])) {
case USB4_MARGIN_CAP_1_TIME_MIN:
return USB4_MARGIN_CAP_TIME_INDP_GEN_2_3_MIN;
case USB4_MARGIN_CAP_1_TIME_LR:
return USB4_MARGIN_CAP_TIME_INDP_GEN_2_3_LR;
case USB4_MARGIN_CAP_1_TIME_BOTH:
return USB4_MARGIN_CAP_TIME_INDP_GEN_2_3_BOTH;
}
} else {
switch (FIELD_GET(USB4_MARGIN_CAP_2_TIME_INDP_MASK, margining->caps[2])) {
case USB4_MARGIN_CAP_2_TIME_MIN:
return USB4_MARGIN_CAP_TIME_INDP_GEN_4_MIN;
case USB4_MARGIN_CAP_2_TIME_BOTH:
return USB4_MARGIN_CAP_TIME_INDP_GEN_4_BOTH;
}
}
return USB4_MARGIN_CAP_TIME_INDP_UNKNOWN;
}
static bool
supports_optional_voltage_offset_range(const struct tb_margining *margining)
{
return margining->caps[0] & USB4_MARGIN_CAP_0_OPT_VOLTAGE_SUPPORT;
}
static ssize_t
margining_ber_level_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
unsigned int val;
int ret = 0;
char *buf;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (margining->software) {
ret = -EINVAL;
goto out_unlock;
}
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf)) {
ret = PTR_ERR(buf);
goto out_unlock;
}
buf[count - 1] = '\0';
ret = kstrtouint(buf, 10, &val);
if (ret)
goto out_free;
if (val < margining->min_ber_level ||
val > margining->max_ber_level) {
ret = -EINVAL;
goto out_free;
}
margining->ber_level = val;
out_free:
free_page((unsigned long)buf);
out_unlock:
mutex_unlock(&tb->lock);
return ret < 0 ? ret : count;
}
static void ber_level_show(struct seq_file *s, unsigned int val)
{
if (val % 2)
seq_printf(s, "3 * 1e%d (%u)\n", -12 + (val + 1) / 2, val);
else
seq_printf(s, "1e%d (%u)\n", -12 + val / 2, val);
}
static int margining_ber_level_show(struct seq_file *s, void *not_used)
{
const struct tb_margining *margining = s->private;
if (margining->software)
return -EINVAL;
ber_level_show(s, margining->ber_level);
return 0;
}
DEBUGFS_ATTR_RW(margining_ber_level);
static int margining_caps_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
int ret = 0;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
/* Dump the raw caps first */
for (int i = 0; i < ARRAY_SIZE(margining->caps); i++)
seq_printf(s, "0x%08x\n", margining->caps[i]);
seq_printf(s, "# software margining: %s\n",
supports_software(margining) ? "yes" : "no");
if (supports_hardware(margining)) {
seq_puts(s, "# hardware margining: yes\n");
seq_puts(s, "# minimum BER level contour: ");
ber_level_show(s, margining->min_ber_level);
seq_puts(s, "# maximum BER level contour: ");
ber_level_show(s, margining->max_ber_level);
} else {
seq_puts(s, "# hardware margining: no\n");
}
seq_printf(s, "# all lanes simultaneously: %s\n",
str_yes_no(all_lanes(margining)));
seq_printf(s, "# voltage margin steps: %u\n",
margining->voltage_steps);
seq_printf(s, "# maximum voltage offset: %u mV\n",
margining->max_voltage_offset);
seq_printf(s, "# optional voltage offset range support: %s\n",
str_yes_no(supports_optional_voltage_offset_range(margining)));
if (supports_optional_voltage_offset_range(margining)) {
seq_printf(s, "# voltage margin steps, optional range: %u\n",
margining->voltage_steps_optional_range);
seq_printf(s, "# maximum voltage offset, optional range: %u mV\n",
margining->max_voltage_offset_optional_range);
}
switch (independent_voltage_margins(margining)) {
case USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_2_3_MIN:
seq_puts(s, "# returns minimum between high and low voltage margins\n");
break;
case USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_2_3_HL:
seq_puts(s, "# returns high or low voltage margin\n");
break;
case USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_2_3_BOTH:
seq_puts(s, "# returns both high and low margins\n");
break;
case USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_4_MIN:
seq_puts(s, "# returns minimum between high and low voltage margins in both lower and upper eye\n");
break;
case USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_4_BOTH:
seq_puts(s, "# returns both high and low margins of both upper and lower eye\n");
break;
case USB4_MARGIN_CAP_VOLTAGE_INDP_UNKNOWN:
tb_port_warn(margining->port,
"failed to parse independent voltage margining capabilities\n");
ret = -EIO;
goto out;
}
if (supports_time(margining)) {
seq_puts(s, "# time margining: yes\n");
seq_printf(s, "# time margining is destructive: %s\n",
str_yes_no(margining->caps[1] & USB4_MARGIN_CAP_1_TIME_DESTR));
switch (independent_time_margins(margining)) {
case USB4_MARGIN_CAP_TIME_INDP_GEN_2_3_MIN:
seq_puts(s, "# returns minimum between left and right time margins\n");
break;
case USB4_MARGIN_CAP_TIME_INDP_GEN_2_3_LR:
seq_puts(s, "# returns left or right margin\n");
break;
case USB4_MARGIN_CAP_TIME_INDP_GEN_2_3_BOTH:
seq_puts(s, "# returns both left and right margins\n");
break;
case USB4_MARGIN_CAP_TIME_INDP_GEN_4_MIN:
seq_puts(s, "# returns minimum between left and right time margins in both lower and upper eye\n");
break;
case USB4_MARGIN_CAP_TIME_INDP_GEN_4_BOTH:
seq_puts(s, "# returns both left and right margins of both upper and lower eye\n");
break;
case USB4_MARGIN_CAP_TIME_INDP_UNKNOWN:
tb_port_warn(margining->port,
"failed to parse independent time margining capabilities\n");
ret = -EIO;
goto out;
}
seq_printf(s, "# time margin steps: %u\n",
margining->time_steps);
seq_printf(s, "# maximum time offset: %u mUI\n",
margining->max_time_offset);
} else {
seq_puts(s, "# time margining: no\n");
}
out:
mutex_unlock(&tb->lock);
return ret;
}
DEBUGFS_ATTR_RO(margining_caps);
static const struct {
enum usb4_margining_lane lane;
const char *name;
} lane_names[] = {
{
.lane = USB4_MARGINING_LANE_RX0,
.name = "0",
},
{
.lane = USB4_MARGINING_LANE_RX1,
.name = "1",
},
{
.lane = USB4_MARGINING_LANE_RX2,
.name = "2",
},
{
.lane = USB4_MARGINING_LANE_ALL,
.name = "all",
},
};
static ssize_t
margining_lanes_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb_port *port = margining->port;
struct tb *tb = port->sw->tb;
int lane = -1;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
for (int i = 0; i < ARRAY_SIZE(lane_names); i++) {
if (!strcmp(buf, lane_names[i].name)) {
lane = lane_names[i].lane;
break;
}
}
free_page((unsigned long)buf);
if (lane == -1)
return -EINVAL;
scoped_cond_guard(mutex_intr, return -ERESTARTSYS, &tb->lock) {
if (lane == USB4_MARGINING_LANE_ALL && !all_lanes(margining))
return -EINVAL;
/*
* Enabling on RX2 requires that it is supported by the
* USB4 port.
*/
if (lane == USB4_MARGINING_LANE_RX2 && !margining->asym_rx)
return -EINVAL;
margining->lanes = lane;
}
return count;
}
static int margining_lanes_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb_port *port = margining->port;
struct tb *tb = port->sw->tb;
scoped_cond_guard(mutex_intr, return -ERESTARTSYS, &tb->lock) {
for (int i = 0; i < ARRAY_SIZE(lane_names); i++) {
if (lane_names[i].lane == USB4_MARGINING_LANE_ALL &&
!all_lanes(margining))
continue;
if (lane_names[i].lane == USB4_MARGINING_LANE_RX2 &&
!margining->asym_rx)
continue;
if (i != 0)
seq_putc(s, ' ');
if (lane_names[i].lane == margining->lanes)
seq_printf(s, "[%s]", lane_names[i].name);
else
seq_printf(s, "%s", lane_names[i].name);
}
seq_puts(s, "\n");
}
return 0;
}
DEBUGFS_ATTR_RW(margining_lanes);
static ssize_t
margining_voltage_time_offset_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
unsigned int max_margin;
unsigned int val;
int ret;
ret = kstrtouint_from_user(user_buf, count, 10, &val);
if (ret)
return ret;
scoped_cond_guard(mutex_intr, return -ERESTARTSYS, &tb->lock) {
if (!margining->software)
return -EOPNOTSUPP;
if (margining->time)
max_margin = margining->time_steps;
else
if (margining->optional_voltage_offset_range)
max_margin = margining->voltage_steps_optional_range;
else
max_margin = margining->voltage_steps;
margining->voltage_time_offset = clamp(val, 0, max_margin);
}
return count;
}
static int margining_voltage_time_offset_show(struct seq_file *s,
void *not_used)
{
const struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
scoped_cond_guard(mutex_intr, return -ERESTARTSYS, &tb->lock) {
if (!margining->software)
return -EOPNOTSUPP;
seq_printf(s, "%d\n", margining->voltage_time_offset);
}
return 0;
}
DEBUGFS_ATTR_RW(margining_voltage_time_offset);
static ssize_t
margining_error_counter_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
enum usb4_margin_sw_error_counter error_counter;
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (!strcmp(buf, "nop"))
error_counter = USB4_MARGIN_SW_ERROR_COUNTER_NOP;
else if (!strcmp(buf, "clear"))
error_counter = USB4_MARGIN_SW_ERROR_COUNTER_CLEAR;
else if (!strcmp(buf, "start"))
error_counter = USB4_MARGIN_SW_ERROR_COUNTER_START;
else if (!strcmp(buf, "stop"))
error_counter = USB4_MARGIN_SW_ERROR_COUNTER_STOP;
else
return -EINVAL;
scoped_cond_guard(mutex_intr, return -ERESTARTSYS, &tb->lock) {
if (!margining->software)
return -EOPNOTSUPP;
margining->error_counter = error_counter;
}
return count;
}
static int margining_error_counter_show(struct seq_file *s, void *not_used)
{
const struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
scoped_cond_guard(mutex_intr, return -ERESTARTSYS, &tb->lock) {
if (!margining->software)
return -EOPNOTSUPP;
switch (margining->error_counter) {
case USB4_MARGIN_SW_ERROR_COUNTER_NOP:
seq_puts(s, "[nop] clear start stop\n");
break;
case USB4_MARGIN_SW_ERROR_COUNTER_CLEAR:
seq_puts(s, "nop [clear] start stop\n");
break;
case USB4_MARGIN_SW_ERROR_COUNTER_START:
seq_puts(s, "nop clear [start] stop\n");
break;
case USB4_MARGIN_SW_ERROR_COUNTER_STOP:
seq_puts(s, "nop clear start [stop]\n");
break;
}
}
return 0;
}
DEBUGFS_ATTR_RW(margining_error_counter);
static ssize_t
margining_dwell_time_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
unsigned int val;
int ret;
ret = kstrtouint_from_user(user_buf, count, 10, &val);
if (ret)
return ret;
scoped_cond_guard(mutex_intr, return -ERESTARTSYS, &tb->lock) {
if (!margining->software)
return -EOPNOTSUPP;
margining->dwell_time = clamp(val, MIN_DWELL_TIME, MAX_DWELL_TIME);
}
return count;
}
static int margining_dwell_time_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
scoped_cond_guard(mutex_intr, return -ERESTARTSYS, &tb->lock) {
if (!margining->software)
return -EOPNOTSUPP;
seq_printf(s, "%d\n", margining->dwell_time);
}
return 0;
}
DEBUGFS_ATTR_RW(margining_dwell_time);
static ssize_t
margining_optional_voltage_offset_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
bool val;
int ret;
ret = kstrtobool_from_user(user_buf, count, &val);
if (ret)
return ret;
scoped_cond_guard(mutex_intr, return -ERESTARTSYS, &tb->lock) {
margining->optional_voltage_offset_range = val;
}
return count;
}
static int margining_optional_voltage_offset_show(struct seq_file *s,
void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
scoped_cond_guard(mutex_intr, return -ERESTARTSYS, &tb->lock) {
seq_printf(s, "%u\n", margining->optional_voltage_offset_range);
}
return 0;
}
DEBUGFS_ATTR_RW(margining_optional_voltage_offset);
static ssize_t margining_mode_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_free;
}
if (!strcmp(buf, "software")) {
if (supports_software(margining))
margining->software = true;
else
ret = -EINVAL;
} else if (!strcmp(buf, "hardware")) {
if (supports_hardware(margining))
margining->software = false;
else
ret = -EINVAL;
} else {
ret = -EINVAL;
}
mutex_unlock(&tb->lock);
out_free:
free_page((unsigned long)buf);
return ret ? ret : count;
}
static int margining_mode_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
const char *space = "";
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (supports_software(margining)) {
if (margining->software)
seq_puts(s, "[software]");
else
seq_puts(s, "software");
space = " ";
}
if (supports_hardware(margining)) {
if (margining->software)
seq_printf(s, "%shardware", space);
else
seq_printf(s, "%s[hardware]", space);
}
mutex_unlock(&tb->lock);
seq_puts(s, "\n");
return 0;
}
DEBUGFS_ATTR_RW(margining_mode);
static int margining_run_sw(struct tb_margining *margining,
struct usb4_port_margining_params *params)
{
u32 nsamples = margining->dwell_time / DWELL_SAMPLE_INTERVAL;
int ret, i;
ret = usb4_port_sw_margin(margining->port, margining->target, margining->index,
params, margining->results);
if (ret)
goto out_stop;
for (i = 0; i <= nsamples; i++) {
u32 errors = 0;
ret = usb4_port_sw_margin_errors(margining->port, margining->target,
margining->index, &margining->results[1]);
if (ret)
break;
if (margining->lanes == USB4_MARGINING_LANE_RX0)
errors = FIELD_GET(USB4_MARGIN_SW_ERR_COUNTER_LANE_0_MASK,
margining->results[1]);
else if (margining->lanes == USB4_MARGINING_LANE_RX1)
errors = FIELD_GET(USB4_MARGIN_SW_ERR_COUNTER_LANE_1_MASK,
margining->results[1]);
else if (margining->lanes == USB4_MARGINING_LANE_RX2)
errors = FIELD_GET(USB4_MARGIN_SW_ERR_COUNTER_LANE_2_MASK,
margining->results[1]);
else if (margining->lanes == USB4_MARGINING_LANE_ALL)
errors = margining->results[1];
/* Any errors stop the test */
if (errors)
break;
fsleep(DWELL_SAMPLE_INTERVAL * USEC_PER_MSEC);
}
out_stop:
/*
* Stop the counters but don't clear them to allow the
* different error counter configurations.
*/
margining_modify_error_counter(margining, margining->lanes,
USB4_MARGIN_SW_ERROR_COUNTER_STOP);
return ret;
}
static int validate_margining(struct tb_margining *margining)
{
/*
* For running on RX2 the link must be asymmetric with 3
* receivers. Because this is can change dynamically, check it
* here before we start the margining and report back error if
* expectations are not met.
*/
if (margining->lanes == USB4_MARGINING_LANE_RX2) {
int ret;
ret = tb_port_get_link_width(margining->port);
if (ret < 0)
return ret;
if (ret != TB_LINK_WIDTH_ASYM_RX) {
tb_port_warn(margining->port, "link is %s expected %s",
tb_width_name(ret),
tb_width_name(TB_LINK_WIDTH_ASYM_RX));
return -EINVAL;
}
}
return 0;
}
static int margining_run_write(void *data, u64 val)
{
struct tb_margining *margining = data;
struct tb_port *port = margining->port;
struct device *dev = margining->dev;
struct tb_switch *sw = port->sw;
struct tb_switch *down_sw;
struct tb *tb = sw->tb;
int ret, clx;
if (val != 1)
return -EINVAL;
pm_runtime_get_sync(dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
ret = validate_margining(margining);
if (ret)
goto out_unlock;
if (tb_is_upstream_port(port))
down_sw = sw;
else if (port->remote)
down_sw = port->remote->sw;
else
down_sw = NULL;
if (down_sw) {
/*
* CL states may interfere with lane margining so
* disable them temporarily now.
*/
ret = tb_switch_clx_disable(down_sw);
if (ret < 0) {
tb_sw_warn(down_sw, "failed to disable CL states\n");
goto out_unlock;
}
clx = ret;
}
/* Clear the results */
memset(margining->results, 0, sizeof(margining->results));
if (margining->software) {
struct usb4_port_margining_params params = {
.error_counter = USB4_MARGIN_SW_ERROR_COUNTER_CLEAR,
.lanes = margining->lanes,
.time = margining->time,
.voltage_time_offset = margining->voltage_time_offset,
.right_high = margining->right_high,
.upper_eye = margining->upper_eye,
.optional_voltage_offset_range = margining->optional_voltage_offset_range,
};
tb_port_dbg(port,
"running software %s lane margining for %s lanes %u\n",
margining->time ? "time" : "voltage", dev_name(dev),
margining->lanes);
ret = margining_run_sw(margining, &params);
} else {
struct usb4_port_margining_params params = {
.ber_level = margining->ber_level,
.lanes = margining->lanes,
.time = margining->time,
.right_high = margining->right_high,
.upper_eye = margining->upper_eye,
.optional_voltage_offset_range = margining->optional_voltage_offset_range,
};
tb_port_dbg(port,
"running hardware %s lane margining for %s lanes %u\n",
margining->time ? "time" : "voltage", dev_name(dev),
margining->lanes);
ret = usb4_port_hw_margin(port, margining->target, margining->index, &params,
margining->results, ARRAY_SIZE(margining->results));
}
if (down_sw)
tb_switch_clx_enable(down_sw, clx);
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
DEFINE_DEBUGFS_ATTRIBUTE(margining_run_fops, NULL, margining_run_write,
"%llu\n");
static ssize_t margining_results_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
/* Just clear the results */
memset(margining->results, 0, sizeof(margining->results));
if (margining->software) {
/* Clear the error counters */
margining_modify_error_counter(margining,
USB4_MARGINING_LANE_ALL,
USB4_MARGIN_SW_ERROR_COUNTER_CLEAR);
}
mutex_unlock(&tb->lock);
return count;
}
static void voltage_margin_show(struct seq_file *s,
const struct tb_margining *margining, u8 val)
{
unsigned int tmp, voltage;
tmp = FIELD_GET(USB4_MARGIN_HW_RES_MARGIN_MASK, val);
voltage = tmp * margining->max_voltage_offset / margining->voltage_steps;
seq_printf(s, "%u mV (%u)", voltage, tmp);
if (val & USB4_MARGIN_HW_RES_EXCEEDS)
seq_puts(s, " exceeds maximum");
seq_puts(s, "\n");
if (margining->optional_voltage_offset_range)
seq_puts(s, " optional voltage offset range enabled\n");
}
static void time_margin_show(struct seq_file *s,
const struct tb_margining *margining, u8 val)
{
unsigned int tmp, interval;
tmp = FIELD_GET(USB4_MARGIN_HW_RES_MARGIN_MASK, val);
interval = tmp * margining->max_time_offset / margining->time_steps;
seq_printf(s, "%u mUI (%u)", interval, tmp);
if (val & USB4_MARGIN_HW_RES_EXCEEDS)
seq_puts(s, " exceeds maximum");
seq_puts(s, "\n");
}
static u8 margining_hw_result_val(const u32 *results,
enum usb4_margining_lane lane,
bool right_high)
{
u32 val;
if (lane == USB4_MARGINING_LANE_RX0)
val = results[1];
else if (lane == USB4_MARGINING_LANE_RX1)
val = results[1] >> USB4_MARGIN_HW_RES_LANE_SHIFT;
else if (lane == USB4_MARGINING_LANE_RX2)
val = results[2];
else
val = 0;
return right_high ? val : val >> USB4_MARGIN_HW_RES_LL_SHIFT;
}
static void margining_hw_result_format(struct seq_file *s,
const struct tb_margining *margining,
enum usb4_margining_lane lane)
{
u8 val;
if (margining->time) {
val = margining_hw_result_val(margining->results, lane, true);
seq_printf(s, "# lane %u right time margin: ", lane);
time_margin_show(s, margining, val);
val = margining_hw_result_val(margining->results, lane, false);
seq_printf(s, "# lane %u left time margin: ", lane);
time_margin_show(s, margining, val);
} else {
val = margining_hw_result_val(margining->results, lane, true);
seq_printf(s, "# lane %u high voltage margin: ", lane);
voltage_margin_show(s, margining, val);
val = margining_hw_result_val(margining->results, lane, false);
seq_printf(s, "# lane %u low voltage margin: ", lane);
voltage_margin_show(s, margining, val);
}
}
static int margining_results_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
/* Dump the raw results first */
seq_printf(s, "0x%08x\n", margining->results[0]);
/* Only the hardware margining has two result dwords */
if (!margining->software) {
for (int i = 1; i < ARRAY_SIZE(margining->results); i++)
seq_printf(s, "0x%08x\n", margining->results[i]);
if (margining->lanes == USB4_MARGINING_LANE_ALL) {
margining_hw_result_format(s, margining,
USB4_MARGINING_LANE_RX0);
margining_hw_result_format(s, margining,
USB4_MARGINING_LANE_RX1);
if (margining->asym_rx)
margining_hw_result_format(s, margining,
USB4_MARGINING_LANE_RX2);
} else {
margining_hw_result_format(s, margining,
margining->lanes);
}
} else {
u32 lane_errors, result;
seq_printf(s, "0x%08x\n", margining->results[1]);
result = FIELD_GET(USB4_MARGIN_SW_LANES_MASK, margining->results[0]);
if (result == USB4_MARGINING_LANE_RX0 ||
result == USB4_MARGINING_LANE_ALL) {
lane_errors = FIELD_GET(USB4_MARGIN_SW_ERR_COUNTER_LANE_0_MASK,
margining->results[1]);
seq_printf(s, "# lane 0 errors: %u\n", lane_errors);
}
if (result == USB4_MARGINING_LANE_RX1 ||
result == USB4_MARGINING_LANE_ALL) {
lane_errors = FIELD_GET(USB4_MARGIN_SW_ERR_COUNTER_LANE_1_MASK,
margining->results[1]);
seq_printf(s, "# lane 1 errors: %u\n", lane_errors);
}
if (margining->asym_rx &&
(result == USB4_MARGINING_LANE_RX2 ||
result == USB4_MARGINING_LANE_ALL)) {
lane_errors = FIELD_GET(USB4_MARGIN_SW_ERR_COUNTER_LANE_2_MASK,
margining->results[1]);
seq_printf(s, "# lane 2 errors: %u\n", lane_errors);
}
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RW(margining_results);
static ssize_t margining_test_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_free;
}
if (!strcmp(buf, "time") && supports_time(margining))
margining->time = true;
else if (!strcmp(buf, "voltage"))
margining->time = false;
else
ret = -EINVAL;
mutex_unlock(&tb->lock);
out_free:
free_page((unsigned long)buf);
return ret ? ret : count;
}
static int margining_test_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (supports_time(margining)) {
if (margining->time)
seq_puts(s, "voltage [time]\n");
else
seq_puts(s, "[voltage] time\n");
} else {
seq_puts(s, "[voltage]\n");
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RW(margining_test);
static ssize_t margining_margin_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_free;
}
if (margining->time) {
if (!strcmp(buf, "left"))
margining->right_high = false;
else if (!strcmp(buf, "right"))
margining->right_high = true;
else
ret = -EINVAL;
} else {
if (!strcmp(buf, "low"))
margining->right_high = false;
else if (!strcmp(buf, "high"))
margining->right_high = true;
else
ret = -EINVAL;
}
mutex_unlock(&tb->lock);
out_free:
free_page((unsigned long)buf);
return ret ? ret : count;
}
static int margining_margin_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (margining->time) {
if (margining->right_high)
seq_puts(s, "left [right]\n");
else
seq_puts(s, "[left] right\n");
} else {
if (margining->right_high)
seq_puts(s, "low [high]\n");
else
seq_puts(s, "[low] high\n");
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RW(margining_margin);
static ssize_t margining_eye_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
scoped_cond_guard(mutex_intr, ret = -ERESTARTSYS, &tb->lock) {
if (!strcmp(buf, "lower"))
usb4->margining->upper_eye = false;
else if (!strcmp(buf, "upper"))
usb4->margining->upper_eye = true;
else
ret = -EINVAL;
}
free_page((unsigned long)buf);
return ret ? ret : count;
}
static int margining_eye_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
scoped_guard(mutex_intr, &tb->lock) {
if (usb4->margining->upper_eye)
seq_puts(s, "lower [upper]\n");
else
seq_puts(s, "[lower] upper\n");
return 0;
}
return -ERESTARTSYS;
}
DEBUGFS_ATTR_RW(margining_eye);
static struct tb_margining *margining_alloc(struct tb_port *port,
struct device *dev,
enum usb4_sb_target target,
u8 index, struct dentry *parent)
{
struct tb_margining *margining;
struct dentry *dir;
unsigned int val;
int ret;
ret = tb_port_get_link_generation(port);
if (ret < 0) {
tb_port_warn(port, "failed to read link generation\n");
return NULL;
}
margining = kzalloc(sizeof(*margining), GFP_KERNEL);
if (!margining)
return NULL;
margining->port = port;
margining->target = target;
margining->index = index;
margining->dev = dev;
margining->gen = ret;
margining->asym_rx = tb_port_width_supported(port, TB_LINK_WIDTH_ASYM_RX);
ret = usb4_port_margining_caps(port, target, index, margining->caps,
ARRAY_SIZE(margining->caps));
if (ret) {
kfree(margining);
return NULL;
}
/* Set the initial mode */
if (supports_software(margining))
margining->software = true;
if (margining->gen < 4) {
val = FIELD_GET(USB4_MARGIN_CAP_0_VOLTAGE_STEPS_MASK, margining->caps[0]);
margining->voltage_steps = val;
val = FIELD_GET(USB4_MARGIN_CAP_0_MAX_VOLTAGE_OFFSET_MASK, margining->caps[0]);
margining->max_voltage_offset = 74 + val * 2;
} else {
val = FIELD_GET(USB4_MARGIN_CAP_2_VOLTAGE_STEPS_MASK, margining->caps[2]);
margining->voltage_steps = val;
val = FIELD_GET(USB4_MARGIN_CAP_2_MAX_VOLTAGE_OFFSET_MASK, margining->caps[2]);
margining->max_voltage_offset = 74 + val * 2;
}
if (supports_optional_voltage_offset_range(margining)) {
val = FIELD_GET(USB4_MARGIN_CAP_0_VOLT_STEPS_OPT_MASK,
margining->caps[0]);
margining->voltage_steps_optional_range = val;
val = FIELD_GET(USB4_MARGIN_CAP_1_MAX_VOLT_OFS_OPT_MASK,
margining->caps[1]);
margining->max_voltage_offset_optional_range = 74 + val * 2;
}
if (supports_time(margining)) {
val = FIELD_GET(USB4_MARGIN_CAP_1_TIME_STEPS_MASK, margining->caps[1]);
margining->time_steps = val;
val = FIELD_GET(USB4_MARGIN_CAP_1_TIME_OFFSET_MASK, margining->caps[1]);
/*
* Store it as mUI (milli Unit Interval) because we want
* to keep it as integer.
*/
margining->max_time_offset = 200 + 10 * val;
}
dir = debugfs_create_dir("margining", parent);
if (supports_hardware(margining)) {
val = FIELD_GET(USB4_MARGIN_CAP_1_MIN_BER_MASK, margining->caps[1]);
margining->min_ber_level = val;
val = FIELD_GET(USB4_MARGIN_CAP_1_MAX_BER_MASK, margining->caps[1]);
margining->max_ber_level = val;
/* Set the default to minimum */
margining->ber_level = margining->min_ber_level;
debugfs_create_file("ber_level_contour", 0400, dir, margining,
&margining_ber_level_fops);
}
debugfs_create_file("caps", 0400, dir, margining, &margining_caps_fops);
debugfs_create_file("lanes", 0600, dir, margining, &margining_lanes_fops);
debugfs_create_file("mode", 0600, dir, margining, &margining_mode_fops);
debugfs_create_file("run", 0600, dir, margining, &margining_run_fops);
debugfs_create_file("results", 0600, dir, margining,
&margining_results_fops);
debugfs_create_file("test", 0600, dir, margining, &margining_test_fops);
if (independent_voltage_margins(margining) == USB4_MARGIN_CAP_VOLTAGE_INDP_GEN_2_3_HL ||
(supports_time(margining) &&
independent_time_margins(margining) == USB4_MARGIN_CAP_TIME_INDP_GEN_2_3_LR))
debugfs_create_file("margin", 0600, dir, margining, &margining_margin_fops);
margining->error_counter = USB4_MARGIN_SW_ERROR_COUNTER_CLEAR;
margining->dwell_time = MIN_DWELL_TIME;
if (supports_optional_voltage_offset_range(margining))
debugfs_create_file("optional_voltage_offset", DEBUGFS_MODE, dir, margining,
&margining_optional_voltage_offset_fops);
if (supports_software(margining)) {
debugfs_create_file("voltage_time_offset", DEBUGFS_MODE, dir, margining,
&margining_voltage_time_offset_fops);
debugfs_create_file("error_counter", DEBUGFS_MODE, dir, margining,
&margining_error_counter_fops);
debugfs_create_file("dwell_time", DEBUGFS_MODE, dir, margining,
&margining_dwell_time_fops);
}
if (margining->gen >= 4)
debugfs_create_file("eye", 0600, dir, port, &margining_eye_fops);
return margining;
}
static void margining_port_init(struct tb_port *port)
{
struct dentry *parent;
char dir_name[10];
if (!port->usb4)
return;
snprintf(dir_name, sizeof(dir_name), "port%d", port->port);
parent = debugfs_lookup(dir_name, port->sw->debugfs_dir);
port->usb4->margining = margining_alloc(port, &port->usb4->dev,
USB4_SB_TARGET_ROUTER, 0,
parent);
}
static void margining_port_remove(struct tb_port *port)
{
struct dentry *parent;
char dir_name[10];
if (!port->usb4)
return;
snprintf(dir_name, sizeof(dir_name), "port%d", port->port);
parent = debugfs_lookup(dir_name, port->sw->debugfs_dir);
if (parent)
debugfs_lookup_and_remove("margining", parent);
kfree(port->usb4->margining);
port->usb4->margining = NULL;
}
static void margining_switch_init(struct tb_switch *sw)
{
struct tb_port *upstream, *downstream;
struct tb_switch *parent_sw;
u64 route = tb_route(sw);
if (!route)
return;
upstream = tb_upstream_port(sw);
parent_sw = tb_switch_parent(sw);
downstream = tb_port_at(route, parent_sw);
margining_port_init(downstream);
margining_port_init(upstream);
}
static void margining_switch_remove(struct tb_switch *sw)
{
struct tb_port *upstream, *downstream;
struct tb_switch *parent_sw;
u64 route = tb_route(sw);
if (!route)
return;
upstream = tb_upstream_port(sw);
parent_sw = tb_switch_parent(sw);
downstream = tb_port_at(route, parent_sw);
margining_port_remove(upstream);
margining_port_remove(downstream);
}
static void margining_xdomain_init(struct tb_xdomain *xd)
{
struct tb_switch *parent_sw;
struct tb_port *downstream;
parent_sw = tb_xdomain_parent(xd);
downstream = tb_port_at(xd->route, parent_sw);
margining_port_init(downstream);
}
static void margining_xdomain_remove(struct tb_xdomain *xd)
{
struct tb_switch *parent_sw;
struct tb_port *downstream;
parent_sw = tb_xdomain_parent(xd);
downstream = tb_port_at(xd->route, parent_sw);
margining_port_remove(downstream);
}
static void margining_retimer_init(struct tb_retimer *rt, struct dentry *debugfs_dir)
{
rt->margining = margining_alloc(rt->port, &rt->dev,
USB4_SB_TARGET_RETIMER, rt->index,
debugfs_dir);
}
static void margining_retimer_remove(struct tb_retimer *rt)
{
kfree(rt->margining);
rt->margining = NULL;
}
#else
static inline void margining_switch_init(struct tb_switch *sw) { }
static inline void margining_switch_remove(struct tb_switch *sw) { }
static inline void margining_xdomain_init(struct tb_xdomain *xd) { }
static inline void margining_xdomain_remove(struct tb_xdomain *xd) { }
static inline void margining_retimer_init(struct tb_retimer *rt,
struct dentry *debugfs_dir) { }
static inline void margining_retimer_remove(struct tb_retimer *rt) { }
#endif
static int port_clear_all_counters(struct tb_port *port)
{
u32 *buf;
int ret;
buf = kcalloc(COUNTER_SET_LEN * port->config.max_counters, sizeof(u32),
GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = tb_port_write(port, buf, TB_CFG_COUNTERS, 0,
COUNTER_SET_LEN * port->config.max_counters);
kfree(buf);
return ret;
}
static ssize_t counters_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = port->sw->tb;
char *buf;
int ret;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
/* If written delimiter only, clear all counters in one shot */
if (buf[0] == '\n') {
ret = port_clear_all_counters(port);
} else {
char *line = buf;
u32 val, offset;
ret = -EINVAL;
while (parse_line(&line, &offset, &val, 1, 4)) {
ret = tb_port_write(port, &val, TB_CFG_COUNTERS,
offset, 1);
if (ret)
break;
}
}
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
static void cap_show_by_dw(struct seq_file *s, struct tb_switch *sw,
struct tb_port *port, unsigned int cap,
unsigned int offset, u8 cap_id, u8 vsec_id,
int dwords)
{
int i, ret;
u32 data;
for (i = 0; i < dwords; i++) {
if (port)
ret = tb_port_read(port, &data, TB_CFG_PORT, cap + offset + i, 1);
else
ret = tb_sw_read(sw, &data, TB_CFG_SWITCH, cap + offset + i, 1);
if (ret) {
seq_printf(s, "0x%04x <not accessible>\n", cap + offset + i);
continue;
}
seq_printf(s, "0x%04x %4d 0x%02x 0x%02x 0x%08x\n", cap + offset + i,
offset + i, cap_id, vsec_id, data);
}
}
static void cap_show(struct seq_file *s, struct tb_switch *sw,
struct tb_port *port, unsigned int cap, u8 cap_id,
u8 vsec_id, int length)
{
int ret, offset = 0;
while (length > 0) {
int i, dwords = min(length, TB_MAX_CONFIG_RW_LENGTH);
u32 data[TB_MAX_CONFIG_RW_LENGTH];
if (port)
ret = tb_port_read(port, data, TB_CFG_PORT, cap + offset,
dwords);
else
ret = tb_sw_read(sw, data, TB_CFG_SWITCH, cap + offset, dwords);
if (ret) {
cap_show_by_dw(s, sw, port, cap, offset, cap_id, vsec_id, length);
return;
}
for (i = 0; i < dwords; i++) {
seq_printf(s, "0x%04x %4d 0x%02x 0x%02x 0x%08x\n",
cap + offset + i, offset + i,
cap_id, vsec_id, data[i]);
}
length -= dwords;
offset += dwords;
}
}
static void port_cap_show(struct tb_port *port, struct seq_file *s,
unsigned int cap)
{
struct tb_cap_any header;
u8 vsec_id = 0;
size_t length;
int ret;
ret = tb_port_read(port, &header, TB_CFG_PORT, cap, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n", cap);
return;
}
switch (header.basic.cap) {
case TB_PORT_CAP_PHY:
length = PORT_CAP_LANE_LEN;
break;
case TB_PORT_CAP_TIME1:
if (usb4_switch_version(port->sw) < 2)
length = PORT_CAP_TMU_V1_LEN;
else
length = PORT_CAP_TMU_V2_LEN;
break;
case TB_PORT_CAP_POWER:
length = PORT_CAP_POWER_LEN;
break;
case TB_PORT_CAP_ADAP:
if (tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) {
if (usb4_switch_version(port->sw) < 2)
length = PORT_CAP_V1_PCIE_LEN;
else
length = PORT_CAP_V2_PCIE_LEN;
} else if (tb_port_is_dpin(port)) {
if (usb4_switch_version(port->sw) < 2)
length = PORT_CAP_DP_V1_LEN;
else
length = PORT_CAP_DP_V2_LEN;
} else if (tb_port_is_dpout(port)) {
length = PORT_CAP_DP_V1_LEN;
} else if (tb_port_is_usb3_down(port) ||
tb_port_is_usb3_up(port)) {
length = PORT_CAP_USB3_LEN;
} else {
seq_printf(s, "0x%04x <unsupported capability 0x%02x>\n",
cap, header.basic.cap);
return;
}
break;
case TB_PORT_CAP_VSE:
if (!header.extended_short.length) {
ret = tb_port_read(port, (u32 *)&header + 1, TB_CFG_PORT,
cap + 1, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n",
cap + 1);
return;
}
length = header.extended_long.length;
vsec_id = header.extended_short.vsec_id;
} else {
length = header.extended_short.length;
vsec_id = header.extended_short.vsec_id;
}
break;
case TB_PORT_CAP_USB4:
length = PORT_CAP_USB4_LEN;
break;
default:
seq_printf(s, "0x%04x <unsupported capability 0x%02x>\n",
cap, header.basic.cap);
return;
}
cap_show(s, NULL, port, cap, header.basic.cap, vsec_id, length);
}
static void port_caps_show(struct tb_port *port, struct seq_file *s)
{
int cap;
cap = tb_port_next_cap(port, 0);
while (cap > 0) {
port_cap_show(port, s, cap);
cap = tb_port_next_cap(port, cap);
}
}
static int port_basic_regs_show(struct tb_port *port, struct seq_file *s)
{
u32 data[PORT_CAP_BASIC_LEN];
int ret, i;
ret = tb_port_read(port, data, TB_CFG_PORT, 0, ARRAY_SIZE(data));
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(data); i++)
seq_printf(s, "0x%04x %4d 0x00 0x00 0x%08x\n", i, i, data[i]);
return 0;
}
static int port_regs_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
int ret;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
seq_puts(s, "# offset relative_offset cap_id vs_cap_id value\n");
ret = port_basic_regs_show(port, s);
if (ret)
goto out_unlock;
port_caps_show(port, s);
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RW(port_regs);
static void switch_cap_show(struct tb_switch *sw, struct seq_file *s,
unsigned int cap)
{
struct tb_cap_any header;
int ret, length;
u8 vsec_id = 0;
ret = tb_sw_read(sw, &header, TB_CFG_SWITCH, cap, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n", cap);
return;
}
if (header.basic.cap == TB_SWITCH_CAP_VSE) {
if (!header.extended_short.length) {
ret = tb_sw_read(sw, (u32 *)&header + 1, TB_CFG_SWITCH,
cap + 1, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n",
cap + 1);
return;
}
length = header.extended_long.length;
} else {
length = header.extended_short.length;
}
vsec_id = header.extended_short.vsec_id;
} else {
if (header.basic.cap == TB_SWITCH_CAP_TMU) {
length = SWITCH_CAP_TMU_LEN;
} else {
seq_printf(s, "0x%04x <unknown capability 0x%02x>\n",
cap, header.basic.cap);
return;
}
}
cap_show(s, sw, NULL, cap, header.basic.cap, vsec_id, length);
}
static void switch_caps_show(struct tb_switch *sw, struct seq_file *s)
{
int cap;
cap = tb_switch_next_cap(sw, 0);
while (cap > 0) {
switch_cap_show(sw, s, cap);
cap = tb_switch_next_cap(sw, cap);
}
}
static int switch_basic_regs_show(struct tb_switch *sw, struct seq_file *s)
{
u32 data[SWITCH_CAP_BASIC_LEN];
size_t dwords;
int ret, i;
/* Only USB4 has the additional registers */
if (tb_switch_is_usb4(sw))
dwords = ARRAY_SIZE(data);
else
dwords = 5;
ret = tb_sw_read(sw, data, TB_CFG_SWITCH, 0, dwords);
if (ret)
return ret;
for (i = 0; i < dwords; i++)
seq_printf(s, "0x%04x %4d 0x00 0x00 0x%08x\n", i, i, data[i]);
return 0;
}
static int switch_regs_show(struct seq_file *s, void *not_used)
{
struct tb_switch *sw = s->private;
struct tb *tb = sw->tb;
int ret;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
seq_puts(s, "# offset relative_offset cap_id vs_cap_id value\n");
ret = switch_basic_regs_show(sw, s);
if (ret)
goto out_unlock;
switch_caps_show(sw, s);
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RW(switch_regs);
static int path_show_one(struct tb_port *port, struct seq_file *s, int hopid)
{
u32 data[PATH_LEN];
int ret, i;
ret = tb_port_read(port, data, TB_CFG_HOPS, hopid * PATH_LEN,
ARRAY_SIZE(data));
if (ret) {
seq_printf(s, "0x%04x <not accessible>\n", hopid * PATH_LEN);
return ret;
}
for (i = 0; i < ARRAY_SIZE(data); i++) {
seq_printf(s, "0x%04x %4d 0x%02x 0x%08x\n",
hopid * PATH_LEN + i, i, hopid, data[i]);
}
return 0;
}
static int path_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
int start, i, ret = 0;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
seq_puts(s, "# offset relative_offset in_hop_id value\n");
/* NHI and lane adapters have entry for path 0 */
if (tb_port_is_null(port) || tb_port_is_nhi(port)) {
ret = path_show_one(port, s, 0);
if (ret)
goto out_unlock;
}
start = tb_port_is_nhi(port) ? 1 : TB_PATH_MIN_HOPID;
for (i = start; i <= port->config.max_in_hop_id; i++) {
ret = path_show_one(port, s, i);
if (ret)
break;
}
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RO(path);
static int counter_set_regs_show(struct tb_port *port, struct seq_file *s,
int counter)
{
u32 data[COUNTER_SET_LEN];
int ret, i;
ret = tb_port_read(port, data, TB_CFG_COUNTERS,
counter * COUNTER_SET_LEN, ARRAY_SIZE(data));
if (ret) {
seq_printf(s, "0x%04x <not accessible>\n",
counter * COUNTER_SET_LEN);
return ret;
}
for (i = 0; i < ARRAY_SIZE(data); i++) {
seq_printf(s, "0x%04x %4d 0x%02x 0x%08x\n",
counter * COUNTER_SET_LEN + i, i, counter, data[i]);
}
return 0;
}
static int counters_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
int i, ret = 0;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
seq_puts(s, "# offset relative_offset counter_id value\n");
for (i = 0; i < port->config.max_counters; i++) {
ret = counter_set_regs_show(port, s, i);
if (ret)
break;
}
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RW(counters);
static int sb_regs_show(struct tb_port *port, const struct sb_reg *sb_regs,
size_t size, enum usb4_sb_target target, u8 index,
struct seq_file *s)
{
int ret, i;
seq_puts(s, "# register value\n");
for (i = 0; i < size; i++) {
const struct sb_reg *regs = &sb_regs[i];
u8 data[64];
int j;
memset(data, 0, sizeof(data));
ret = usb4_port_sb_read(port, target, index, regs->reg, data,
regs->size);
if (ret)
return ret;
seq_printf(s, "0x%02x", regs->reg);
for (j = 0; j < regs->size; j++)
seq_printf(s, " 0x%02x", data[j]);
seq_puts(s, "\n");
}
return 0;
}
static int port_sb_regs_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
int ret;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
ret = sb_regs_show(port, port_sb_regs, ARRAY_SIZE(port_sb_regs),
USB4_SB_TARGET_ROUTER, 0, s);
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RW(port_sb_regs);
/**
* tb_switch_debugfs_init() - Add debugfs entries for router
* @sw: Pointer to the router
*
* Adds debugfs directories and files for given router.
*/
void tb_switch_debugfs_init(struct tb_switch *sw)
{
struct dentry *debugfs_dir;
struct tb_port *port;
debugfs_dir = debugfs_create_dir(dev_name(&sw->dev), tb_debugfs_root);
sw->debugfs_dir = debugfs_dir;
debugfs_create_file("regs", DEBUGFS_MODE, debugfs_dir, sw,
&switch_regs_fops);
tb_switch_for_each_port(sw, port) {
struct dentry *debugfs_dir;
char dir_name[10];
if (port->disabled)
continue;
if (port->config.type == TB_TYPE_INACTIVE)
continue;
snprintf(dir_name, sizeof(dir_name), "port%d", port->port);
debugfs_dir = debugfs_create_dir(dir_name, sw->debugfs_dir);
debugfs_create_file("regs", DEBUGFS_MODE, debugfs_dir,
port, &port_regs_fops);
debugfs_create_file("path", 0400, debugfs_dir, port,
&path_fops);
if (port->config.counters_support)
debugfs_create_file("counters", 0600, debugfs_dir, port,
&counters_fops);
if (port->usb4)
debugfs_create_file("sb_regs", DEBUGFS_MODE, debugfs_dir,
port, &port_sb_regs_fops);
}
margining_switch_init(sw);
}
/**
* tb_switch_debugfs_remove() - Remove all router debugfs entries
* @sw: Pointer to the router
*
* Removes all previously added debugfs entries under this router.
*/
void tb_switch_debugfs_remove(struct tb_switch *sw)
{
margining_switch_remove(sw);
debugfs_remove_recursive(sw->debugfs_dir);
}
void tb_xdomain_debugfs_init(struct tb_xdomain *xd)
{
margining_xdomain_init(xd);
}
void tb_xdomain_debugfs_remove(struct tb_xdomain *xd)
{
margining_xdomain_remove(xd);
}
/**
* tb_service_debugfs_init() - Add debugfs directory for service
* @svc: Thunderbolt service pointer
*
* Adds debugfs directory for service.
*/
void tb_service_debugfs_init(struct tb_service *svc)
{
svc->debugfs_dir = debugfs_create_dir(dev_name(&svc->dev),
tb_debugfs_root);
}
/**
* tb_service_debugfs_remove() - Remove service debugfs directory
* @svc: Thunderbolt service pointer
*
* Removes the previously created debugfs directory for @svc.
*/
void tb_service_debugfs_remove(struct tb_service *svc)
{
debugfs_remove_recursive(svc->debugfs_dir);
svc->debugfs_dir = NULL;
}
static int retimer_sb_regs_show(struct seq_file *s, void *not_used)
{
struct tb_retimer *rt = s->private;
struct tb *tb = rt->tb;
int ret;
pm_runtime_get_sync(&rt->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
ret = sb_regs_show(rt->port, retimer_sb_regs, ARRAY_SIZE(retimer_sb_regs),
USB4_SB_TARGET_RETIMER, rt->index, s);
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&rt->dev);
pm_runtime_put_autosuspend(&rt->dev);
return ret;
}
DEBUGFS_ATTR_RW(retimer_sb_regs);
/**
* tb_retimer_debugfs_init() - Add debugfs directory for retimer
* @rt: Pointer to retimer structure
*
* Adds and populates retimer debugfs directory.
*/
void tb_retimer_debugfs_init(struct tb_retimer *rt)
{
struct dentry *debugfs_dir;
debugfs_dir = debugfs_create_dir(dev_name(&rt->dev), tb_debugfs_root);
debugfs_create_file("sb_regs", DEBUGFS_MODE, debugfs_dir, rt,
&retimer_sb_regs_fops);
margining_retimer_init(rt, debugfs_dir);
}
/**
* tb_retimer_debugfs_remove() - Remove retimer debugfs directory
* @rt: Pointer to retimer structure
*
* Removes the retimer debugfs directory along with its contents.
*/
void tb_retimer_debugfs_remove(struct tb_retimer *rt)
{
debugfs_lookup_and_remove(dev_name(&rt->dev), tb_debugfs_root);
margining_retimer_remove(rt);
}
void tb_debugfs_init(void)
{
tb_debugfs_root = debugfs_create_dir("thunderbolt", NULL);
}
void tb_debugfs_exit(void)
{
debugfs_remove_recursive(tb_debugfs_root);
}