linux-next/drivers/clocksource/sh_cmt.c
Niklas Söderlund db19d3aa77 clocksource/drivers/sh_cmt: Address race condition for clock events
There is a race condition in the CMT interrupt handler. In the interrupt
handler the driver sets a driver private flag, FLAG_IRQCONTEXT. This
flag is used to indicate any call to set_next_event() should not be
directly propagated to the device, but instead cached. This is done as
the interrupt handler itself reprograms the device when needed before it
completes and this avoids this operation to take place twice.

It is unclear why this design was chosen, my suspicion is to allow the
struct clock_event_device.event_handler callback, which is called while
the FLAG_IRQCONTEXT is set, can update the next event without having to
write to the device twice.

Unfortunately there is a race between when the FLAG_IRQCONTEXT flag is
set and later cleared where the interrupt handler have already started to
write the next event to the device. If set_next_event() is called in
this window the value is only cached in the driver but not written. This
leads to the board to misbehave, or worse lockup and produce a splat.

   rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
   rcu:     0-...!: (0 ticks this GP) idle=f5e0/0/0x0 softirq=519/519 fqs=0 (false positive?)
   rcu:     (detected by 1, t=6502 jiffies, g=-595, q=77 ncpus=2)
   Sending NMI from CPU 1 to CPUs 0:
   NMI backtrace for cpu 0
   CPU: 0 PID: 0 Comm: swapper/0 Not tainted 6.10.0-rc5-arm64-renesas-00019-g74a6f86eaf1c-dirty #20
   Hardware name: Renesas Salvator-X 2nd version board based on r8a77965 (DT)
   pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
   pc : tick_check_broadcast_expired+0xc/0x40
   lr : cpu_idle_poll.isra.0+0x8c/0x168
   sp : ffff800081c63d70
   x29: ffff800081c63d70 x28: 00000000580000c8 x27: 00000000bfee5610
   x26: 0000000000000027 x25: 0000000000000000 x24: 0000000000000000
   x23: ffff00007fbb9100 x22: ffff8000818f1008 x21: ffff8000800ef07c
   x20: ffff800081c79ec0 x19: ffff800081c70c28 x18: 0000000000000000
   x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffc2c717d8
   x14: 0000000000000000 x13: ffff000009c18080 x12: ffff8000825f7fc0
   x11: 0000000000000000 x10: ffff8000818f3cd4 x9 : 0000000000000028
   x8 : ffff800081c79ec0 x7 : ffff800081c73000 x6 : 0000000000000000
   x5 : 0000000000000000 x4 : ffff7ffffe286000 x3 : 0000000000000000
   x2 : ffff7ffffe286000 x1 : ffff800082972900 x0 : ffff8000818f1008
   Call trace:
    tick_check_broadcast_expired+0xc/0x40
    do_idle+0x9c/0x280
    cpu_startup_entry+0x34/0x40
    kernel_init+0x0/0x11c
    do_one_initcall+0x0/0x260
    __primary_switched+0x80/0x88
   rcu: rcu_preempt kthread timer wakeup didn't happen for 6501 jiffies! g-595 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402
   rcu:     Possible timer handling issue on cpu=0 timer-softirq=262
   rcu: rcu_preempt kthread starved for 6502 jiffies! g-595 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402 ->cpu=0
   rcu:     Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior.
   rcu: RCU grace-period kthread stack dump:
   task:rcu_preempt     state:I stack:0     pid:15    tgid:15    ppid:2      flags:0x00000008
   Call trace:
    __switch_to+0xbc/0x100
    __schedule+0x358/0xbe0
    schedule+0x48/0x148
    schedule_timeout+0xc4/0x138
    rcu_gp_fqs_loop+0x12c/0x764
    rcu_gp_kthread+0x208/0x298
    kthread+0x10c/0x110
    ret_from_fork+0x10/0x20

The design have been part of the driver since it was first merged in
early 2009. It becomes increasingly harder to trigger the issue the
older kernel version one tries. It only takes a few boots on v6.10-rc5,
while hundreds of boots are needed to trigger it on v5.10.

Close the race condition by using the CMT channel lock for the two
competing sections. The channel lock was added to the driver after its
initial design.

Signed-off-by: Niklas Söderlund <niklas.soderlund+renesas@ragnatech.se>
Link: https://lore.kernel.org/r/20240702190230.3825292-1-niklas.soderlund+renesas@ragnatech.se
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2024-07-12 16:07:05 +02:00

1187 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* SuperH Timer Support - CMT
*
* Copyright (C) 2008 Magnus Damm
*/
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/sh_timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#ifdef CONFIG_SUPERH
#include <asm/platform_early.h>
#endif
struct sh_cmt_device;
/*
* The CMT comes in 5 different identified flavours, depending not only on the
* SoC but also on the particular instance. The following table lists the main
* characteristics of those flavours.
*
* 16B 32B 32B-F 48B R-Car Gen2
* -----------------------------------------------------------------------------
* Channels 2 1/4 1 6 2/8
* Control Width 16 16 16 16 32
* Counter Width 16 32 32 32/48 32/48
* Shared Start/Stop Y Y Y Y N
*
* The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
* located in the channel registers block. All other versions have a shared
* start/stop register located in the global space.
*
* Channels are indexed from 0 to N-1 in the documentation. The channel index
* infers the start/stop bit position in the control register and the channel
* registers block address. Some CMT instances have a subset of channels
* available, in which case the index in the documentation doesn't match the
* "real" index as implemented in hardware. This is for instance the case with
* CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
* in the documentation but using start/stop bit 5 and having its registers
* block at 0x60.
*
* Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
* channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
*/
enum sh_cmt_model {
SH_CMT_16BIT,
SH_CMT_32BIT,
SH_CMT_48BIT,
SH_CMT0_RCAR_GEN2,
SH_CMT1_RCAR_GEN2,
};
struct sh_cmt_info {
enum sh_cmt_model model;
unsigned int channels_mask;
unsigned long width; /* 16 or 32 bit version of hardware block */
u32 overflow_bit;
u32 clear_bits;
/* callbacks for CMSTR and CMCSR access */
u32 (*read_control)(void __iomem *base, unsigned long offs);
void (*write_control)(void __iomem *base, unsigned long offs,
u32 value);
/* callbacks for CMCNT and CMCOR access */
u32 (*read_count)(void __iomem *base, unsigned long offs);
void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
};
struct sh_cmt_channel {
struct sh_cmt_device *cmt;
unsigned int index; /* Index in the documentation */
unsigned int hwidx; /* Real hardware index */
void __iomem *iostart;
void __iomem *ioctrl;
unsigned int timer_bit;
unsigned long flags;
u32 match_value;
u32 next_match_value;
u32 max_match_value;
raw_spinlock_t lock;
struct clock_event_device ced;
struct clocksource cs;
u64 total_cycles;
bool cs_enabled;
};
struct sh_cmt_device {
struct platform_device *pdev;
const struct sh_cmt_info *info;
void __iomem *mapbase;
struct clk *clk;
unsigned long rate;
unsigned int reg_delay;
raw_spinlock_t lock; /* Protect the shared start/stop register */
struct sh_cmt_channel *channels;
unsigned int num_channels;
unsigned int hw_channels;
bool has_clockevent;
bool has_clocksource;
};
#define SH_CMT16_CMCSR_CMF (1 << 7)
#define SH_CMT16_CMCSR_CMIE (1 << 6)
#define SH_CMT16_CMCSR_CKS8 (0 << 0)
#define SH_CMT16_CMCSR_CKS32 (1 << 0)
#define SH_CMT16_CMCSR_CKS128 (2 << 0)
#define SH_CMT16_CMCSR_CKS512 (3 << 0)
#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
#define SH_CMT32_CMCSR_CMF (1 << 15)
#define SH_CMT32_CMCSR_OVF (1 << 14)
#define SH_CMT32_CMCSR_WRFLG (1 << 13)
#define SH_CMT32_CMCSR_STTF (1 << 12)
#define SH_CMT32_CMCSR_STPF (1 << 11)
#define SH_CMT32_CMCSR_SSIE (1 << 10)
#define SH_CMT32_CMCSR_CMS (1 << 9)
#define SH_CMT32_CMCSR_CMM (1 << 8)
#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
{
return ioread16(base + (offs << 1));
}
static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
{
return ioread32(base + (offs << 2));
}
static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
{
iowrite16(value, base + (offs << 1));
}
static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
{
iowrite32(value, base + (offs << 2));
}
static const struct sh_cmt_info sh_cmt_info[] = {
[SH_CMT_16BIT] = {
.model = SH_CMT_16BIT,
.width = 16,
.overflow_bit = SH_CMT16_CMCSR_CMF,
.clear_bits = ~SH_CMT16_CMCSR_CMF,
.read_control = sh_cmt_read16,
.write_control = sh_cmt_write16,
.read_count = sh_cmt_read16,
.write_count = sh_cmt_write16,
},
[SH_CMT_32BIT] = {
.model = SH_CMT_32BIT,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read16,
.write_control = sh_cmt_write16,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
[SH_CMT_48BIT] = {
.model = SH_CMT_48BIT,
.channels_mask = 0x3f,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read32,
.write_control = sh_cmt_write32,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
[SH_CMT0_RCAR_GEN2] = {
.model = SH_CMT0_RCAR_GEN2,
.channels_mask = 0x60,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read32,
.write_control = sh_cmt_write32,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
[SH_CMT1_RCAR_GEN2] = {
.model = SH_CMT1_RCAR_GEN2,
.channels_mask = 0xff,
.width = 32,
.overflow_bit = SH_CMT32_CMCSR_CMF,
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
.read_control = sh_cmt_read32,
.write_control = sh_cmt_write32,
.read_count = sh_cmt_read32,
.write_count = sh_cmt_write32,
},
};
#define CMCSR 0 /* channel register */
#define CMCNT 1 /* channel register */
#define CMCOR 2 /* channel register */
#define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
{
if (ch->iostart)
return ch->cmt->info->read_control(ch->iostart, 0);
else
return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
}
static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
{
u32 old_value = sh_cmt_read_cmstr(ch);
if (value != old_value) {
if (ch->iostart) {
ch->cmt->info->write_control(ch->iostart, 0, value);
udelay(ch->cmt->reg_delay);
} else {
ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
udelay(ch->cmt->reg_delay);
}
}
}
static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
{
return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
}
static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
{
u32 old_value = sh_cmt_read_cmcsr(ch);
if (value != old_value) {
ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
udelay(ch->cmt->reg_delay);
}
}
static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
{
return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
}
static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
{
/* Tests showed that we need to wait 3 clocks here */
unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
u32 reg;
if (ch->cmt->info->model > SH_CMT_16BIT) {
int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
!(reg & SH_CMT32_CMCSR_WRFLG),
1, cmcnt_delay, false, ch);
if (ret < 0)
return ret;
}
ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
udelay(cmcnt_delay);
return 0;
}
static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
{
u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
if (value != old_value) {
ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
udelay(ch->cmt->reg_delay);
}
}
static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
{
u32 v1, v2, v3;
u32 o1, o2;
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
/* Make sure the timer value is stable. Stolen from acpi_pm.c */
do {
o2 = o1;
v1 = sh_cmt_read_cmcnt(ch);
v2 = sh_cmt_read_cmcnt(ch);
v3 = sh_cmt_read_cmcnt(ch);
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
|| (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
*has_wrapped = o1;
return v2;
}
static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
{
unsigned long flags;
u32 value;
/* start stop register shared by multiple timer channels */
raw_spin_lock_irqsave(&ch->cmt->lock, flags);
value = sh_cmt_read_cmstr(ch);
if (start)
value |= 1 << ch->timer_bit;
else
value &= ~(1 << ch->timer_bit);
sh_cmt_write_cmstr(ch, value);
raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
}
static int sh_cmt_enable(struct sh_cmt_channel *ch)
{
int ret;
dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
/* enable clock */
ret = clk_enable(ch->cmt->clk);
if (ret) {
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
ch->index);
goto err0;
}
/* make sure channel is disabled */
sh_cmt_start_stop_ch(ch, 0);
/* configure channel, periodic mode and maximum timeout */
if (ch->cmt->info->width == 16) {
sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
SH_CMT16_CMCSR_CKS512);
} else {
u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
SH_CMT32_CMCSR_CMTOUT_IE : 0;
sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
SH_CMT32_CMCSR_CMR_IRQ |
SH_CMT32_CMCSR_CKS_RCLK8);
}
sh_cmt_write_cmcor(ch, 0xffffffff);
ret = sh_cmt_write_cmcnt(ch, 0);
if (ret || sh_cmt_read_cmcnt(ch)) {
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
ch->index);
ret = -ETIMEDOUT;
goto err1;
}
/* enable channel */
sh_cmt_start_stop_ch(ch, 1);
return 0;
err1:
/* stop clock */
clk_disable(ch->cmt->clk);
err0:
return ret;
}
static void sh_cmt_disable(struct sh_cmt_channel *ch)
{
/* disable channel */
sh_cmt_start_stop_ch(ch, 0);
/* disable interrupts in CMT block */
sh_cmt_write_cmcsr(ch, 0);
/* stop clock */
clk_disable(ch->cmt->clk);
dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
}
/* private flags */
#define FLAG_CLOCKEVENT (1 << 0)
#define FLAG_CLOCKSOURCE (1 << 1)
#define FLAG_REPROGRAM (1 << 2)
#define FLAG_SKIPEVENT (1 << 3)
#define FLAG_IRQCONTEXT (1 << 4)
static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
int absolute)
{
u32 value = ch->next_match_value;
u32 new_match;
u32 delay = 0;
u32 now = 0;
u32 has_wrapped;
now = sh_cmt_get_counter(ch, &has_wrapped);
ch->flags |= FLAG_REPROGRAM; /* force reprogram */
if (has_wrapped) {
/* we're competing with the interrupt handler.
* -> let the interrupt handler reprogram the timer.
* -> interrupt number two handles the event.
*/
ch->flags |= FLAG_SKIPEVENT;
return;
}
if (absolute)
now = 0;
do {
/* reprogram the timer hardware,
* but don't save the new match value yet.
*/
new_match = now + value + delay;
if (new_match > ch->max_match_value)
new_match = ch->max_match_value;
sh_cmt_write_cmcor(ch, new_match);
now = sh_cmt_get_counter(ch, &has_wrapped);
if (has_wrapped && (new_match > ch->match_value)) {
/* we are changing to a greater match value,
* so this wrap must be caused by the counter
* matching the old value.
* -> first interrupt reprograms the timer.
* -> interrupt number two handles the event.
*/
ch->flags |= FLAG_SKIPEVENT;
break;
}
if (has_wrapped) {
/* we are changing to a smaller match value,
* so the wrap must be caused by the counter
* matching the new value.
* -> save programmed match value.
* -> let isr handle the event.
*/
ch->match_value = new_match;
break;
}
/* be safe: verify hardware settings */
if (now < new_match) {
/* timer value is below match value, all good.
* this makes sure we won't miss any match events.
* -> save programmed match value.
* -> let isr handle the event.
*/
ch->match_value = new_match;
break;
}
/* the counter has reached a value greater
* than our new match value. and since the
* has_wrapped flag isn't set we must have
* programmed a too close event.
* -> increase delay and retry.
*/
if (delay)
delay <<= 1;
else
delay = 1;
if (!delay)
dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
ch->index);
} while (delay);
}
static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
{
if (delta > ch->max_match_value)
dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
ch->index);
ch->next_match_value = delta;
sh_cmt_clock_event_program_verify(ch, 0);
}
static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
{
unsigned long flags;
raw_spin_lock_irqsave(&ch->lock, flags);
__sh_cmt_set_next(ch, delta);
raw_spin_unlock_irqrestore(&ch->lock, flags);
}
static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
{
struct sh_cmt_channel *ch = dev_id;
unsigned long flags;
/* clear flags */
sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
ch->cmt->info->clear_bits);
/* update clock source counter to begin with if enabled
* the wrap flag should be cleared by the timer specific
* isr before we end up here.
*/
if (ch->flags & FLAG_CLOCKSOURCE)
ch->total_cycles += ch->match_value + 1;
if (!(ch->flags & FLAG_REPROGRAM))
ch->next_match_value = ch->max_match_value;
ch->flags |= FLAG_IRQCONTEXT;
if (ch->flags & FLAG_CLOCKEVENT) {
if (!(ch->flags & FLAG_SKIPEVENT)) {
if (clockevent_state_oneshot(&ch->ced)) {
ch->next_match_value = ch->max_match_value;
ch->flags |= FLAG_REPROGRAM;
}
ch->ced.event_handler(&ch->ced);
}
}
ch->flags &= ~FLAG_SKIPEVENT;
raw_spin_lock_irqsave(&ch->lock, flags);
if (ch->flags & FLAG_REPROGRAM) {
ch->flags &= ~FLAG_REPROGRAM;
sh_cmt_clock_event_program_verify(ch, 1);
if (ch->flags & FLAG_CLOCKEVENT)
if ((clockevent_state_shutdown(&ch->ced))
|| (ch->match_value == ch->next_match_value))
ch->flags &= ~FLAG_REPROGRAM;
}
ch->flags &= ~FLAG_IRQCONTEXT;
raw_spin_unlock_irqrestore(&ch->lock, flags);
return IRQ_HANDLED;
}
static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
{
int ret = 0;
unsigned long flags;
if (flag & FLAG_CLOCKSOURCE)
pm_runtime_get_sync(&ch->cmt->pdev->dev);
raw_spin_lock_irqsave(&ch->lock, flags);
if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
if (flag & FLAG_CLOCKEVENT)
pm_runtime_get_sync(&ch->cmt->pdev->dev);
ret = sh_cmt_enable(ch);
}
if (ret)
goto out;
ch->flags |= flag;
/* setup timeout if no clockevent */
if (ch->cmt->num_channels == 1 &&
flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
__sh_cmt_set_next(ch, ch->max_match_value);
out:
raw_spin_unlock_irqrestore(&ch->lock, flags);
return ret;
}
static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
{
unsigned long flags;
unsigned long f;
raw_spin_lock_irqsave(&ch->lock, flags);
f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
ch->flags &= ~flag;
if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
sh_cmt_disable(ch);
if (flag & FLAG_CLOCKEVENT)
pm_runtime_put(&ch->cmt->pdev->dev);
}
/* adjust the timeout to maximum if only clocksource left */
if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
__sh_cmt_set_next(ch, ch->max_match_value);
raw_spin_unlock_irqrestore(&ch->lock, flags);
if (flag & FLAG_CLOCKSOURCE)
pm_runtime_put(&ch->cmt->pdev->dev);
}
static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
{
return container_of(cs, struct sh_cmt_channel, cs);
}
static u64 sh_cmt_clocksource_read(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
u32 has_wrapped;
if (ch->cmt->num_channels == 1) {
unsigned long flags;
u64 value;
u32 raw;
raw_spin_lock_irqsave(&ch->lock, flags);
value = ch->total_cycles;
raw = sh_cmt_get_counter(ch, &has_wrapped);
if (unlikely(has_wrapped))
raw += ch->match_value + 1;
raw_spin_unlock_irqrestore(&ch->lock, flags);
return value + raw;
}
return sh_cmt_get_counter(ch, &has_wrapped);
}
static int sh_cmt_clocksource_enable(struct clocksource *cs)
{
int ret;
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
WARN_ON(ch->cs_enabled);
ch->total_cycles = 0;
ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
if (!ret)
ch->cs_enabled = true;
return ret;
}
static void sh_cmt_clocksource_disable(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
WARN_ON(!ch->cs_enabled);
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
ch->cs_enabled = false;
}
static void sh_cmt_clocksource_suspend(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
if (!ch->cs_enabled)
return;
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
}
static void sh_cmt_clocksource_resume(struct clocksource *cs)
{
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
if (!ch->cs_enabled)
return;
dev_pm_genpd_resume(&ch->cmt->pdev->dev);
sh_cmt_start(ch, FLAG_CLOCKSOURCE);
}
static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
const char *name)
{
struct clocksource *cs = &ch->cs;
cs->name = name;
cs->rating = 125;
cs->read = sh_cmt_clocksource_read;
cs->enable = sh_cmt_clocksource_enable;
cs->disable = sh_cmt_clocksource_disable;
cs->suspend = sh_cmt_clocksource_suspend;
cs->resume = sh_cmt_clocksource_resume;
cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
ch->index);
clocksource_register_hz(cs, ch->cmt->rate);
return 0;
}
static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
{
return container_of(ced, struct sh_cmt_channel, ced);
}
static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
{
sh_cmt_start(ch, FLAG_CLOCKEVENT);
if (periodic)
sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
else
sh_cmt_set_next(ch, ch->max_match_value);
}
static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
return 0;
}
static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
int periodic)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
/* deal with old setting first */
if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
ch->index, periodic ? "periodic" : "oneshot");
sh_cmt_clock_event_start(ch, periodic);
return 0;
}
static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
{
return sh_cmt_clock_event_set_state(ced, 0);
}
static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
{
return sh_cmt_clock_event_set_state(ced, 1);
}
static int sh_cmt_clock_event_next(unsigned long delta,
struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
unsigned long flags;
BUG_ON(!clockevent_state_oneshot(ced));
raw_spin_lock_irqsave(&ch->lock, flags);
if (likely(ch->flags & FLAG_IRQCONTEXT))
ch->next_match_value = delta - 1;
else
__sh_cmt_set_next(ch, delta - 1);
raw_spin_unlock_irqrestore(&ch->lock, flags);
return 0;
}
static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
clk_unprepare(ch->cmt->clk);
}
static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
{
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
clk_prepare(ch->cmt->clk);
dev_pm_genpd_resume(&ch->cmt->pdev->dev);
}
static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
const char *name)
{
struct clock_event_device *ced = &ch->ced;
int irq;
int ret;
irq = platform_get_irq(ch->cmt->pdev, ch->index);
if (irq < 0)
return irq;
ret = request_irq(irq, sh_cmt_interrupt,
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
dev_name(&ch->cmt->pdev->dev), ch);
if (ret) {
dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
ch->index, irq);
return ret;
}
ced->name = name;
ced->features = CLOCK_EVT_FEAT_PERIODIC;
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
ced->rating = 125;
ced->cpumask = cpu_possible_mask;
ced->set_next_event = sh_cmt_clock_event_next;
ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
ced->suspend = sh_cmt_clock_event_suspend;
ced->resume = sh_cmt_clock_event_resume;
/* TODO: calculate good shift from rate and counter bit width */
ced->shift = 32;
ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
ced->max_delta_ticks = ch->max_match_value;
ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
ced->min_delta_ticks = 0x1f;
dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
ch->index);
clockevents_register_device(ced);
return 0;
}
static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
bool clockevent, bool clocksource)
{
int ret;
if (clockevent) {
ch->cmt->has_clockevent = true;
ret = sh_cmt_register_clockevent(ch, name);
if (ret < 0)
return ret;
}
if (clocksource) {
ch->cmt->has_clocksource = true;
sh_cmt_register_clocksource(ch, name);
}
return 0;
}
static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
unsigned int hwidx, bool clockevent,
bool clocksource, struct sh_cmt_device *cmt)
{
u32 value;
int ret;
/* Skip unused channels. */
if (!clockevent && !clocksource)
return 0;
ch->cmt = cmt;
ch->index = index;
ch->hwidx = hwidx;
ch->timer_bit = hwidx;
/*
* Compute the address of the channel control register block. For the
* timers with a per-channel start/stop register, compute its address
* as well.
*/
switch (cmt->info->model) {
case SH_CMT_16BIT:
ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
break;
case SH_CMT_32BIT:
case SH_CMT_48BIT:
ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
break;
case SH_CMT0_RCAR_GEN2:
case SH_CMT1_RCAR_GEN2:
ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
ch->ioctrl = ch->iostart + 0x10;
ch->timer_bit = 0;
/* Enable the clock supply to the channel */
value = ioread32(cmt->mapbase + CMCLKE);
value |= BIT(hwidx);
iowrite32(value, cmt->mapbase + CMCLKE);
break;
}
if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
ch->max_match_value = ~0;
else
ch->max_match_value = (1 << cmt->info->width) - 1;
ch->match_value = ch->max_match_value;
raw_spin_lock_init(&ch->lock);
ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
clockevent, clocksource);
if (ret) {
dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
ch->index);
return ret;
}
ch->cs_enabled = false;
return 0;
}
static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
{
struct resource *mem;
mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
return -ENXIO;
}
cmt->mapbase = ioremap(mem->start, resource_size(mem));
if (cmt->mapbase == NULL) {
dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
return -ENXIO;
}
return 0;
}
static const struct platform_device_id sh_cmt_id_table[] = {
{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
{ }
};
MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
{
/* deprecated, preserved for backward compatibility */
.compatible = "renesas,cmt-48",
.data = &sh_cmt_info[SH_CMT_48BIT]
},
{
/* deprecated, preserved for backward compatibility */
.compatible = "renesas,cmt-48-gen2",
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
},
{
.compatible = "renesas,r8a7740-cmt1",
.data = &sh_cmt_info[SH_CMT_48BIT]
},
{
.compatible = "renesas,sh73a0-cmt1",
.data = &sh_cmt_info[SH_CMT_48BIT]
},
{
.compatible = "renesas,rcar-gen2-cmt0",
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
},
{
.compatible = "renesas,rcar-gen2-cmt1",
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
},
{
.compatible = "renesas,rcar-gen3-cmt0",
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
},
{
.compatible = "renesas,rcar-gen3-cmt1",
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
},
{
.compatible = "renesas,rcar-gen4-cmt0",
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
},
{
.compatible = "renesas,rcar-gen4-cmt1",
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
},
{ }
};
MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
{
unsigned int mask, i;
unsigned long rate;
int ret;
cmt->pdev = pdev;
raw_spin_lock_init(&cmt->lock);
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
cmt->info = of_device_get_match_data(&pdev->dev);
cmt->hw_channels = cmt->info->channels_mask;
} else if (pdev->dev.platform_data) {
struct sh_timer_config *cfg = pdev->dev.platform_data;
const struct platform_device_id *id = pdev->id_entry;
cmt->info = (const struct sh_cmt_info *)id->driver_data;
cmt->hw_channels = cfg->channels_mask;
} else {
dev_err(&cmt->pdev->dev, "missing platform data\n");
return -ENXIO;
}
/* Get hold of clock. */
cmt->clk = clk_get(&cmt->pdev->dev, "fck");
if (IS_ERR(cmt->clk)) {
dev_err(&cmt->pdev->dev, "cannot get clock\n");
return PTR_ERR(cmt->clk);
}
ret = clk_prepare(cmt->clk);
if (ret < 0)
goto err_clk_put;
/* Determine clock rate. */
ret = clk_enable(cmt->clk);
if (ret < 0)
goto err_clk_unprepare;
rate = clk_get_rate(cmt->clk);
if (!rate) {
ret = -EINVAL;
goto err_clk_disable;
}
/* We shall wait 2 input clks after register writes */
if (cmt->info->model >= SH_CMT_48BIT)
cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
/* Map the memory resource(s). */
ret = sh_cmt_map_memory(cmt);
if (ret < 0)
goto err_clk_disable;
/* Allocate and setup the channels. */
cmt->num_channels = hweight8(cmt->hw_channels);
cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
GFP_KERNEL);
if (cmt->channels == NULL) {
ret = -ENOMEM;
goto err_unmap;
}
/*
* Use the first channel as a clock event device and the second channel
* as a clock source. If only one channel is available use it for both.
*/
for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
unsigned int hwidx = ffs(mask) - 1;
bool clocksource = i == 1 || cmt->num_channels == 1;
bool clockevent = i == 0;
ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
clockevent, clocksource, cmt);
if (ret < 0)
goto err_unmap;
mask &= ~(1 << hwidx);
}
clk_disable(cmt->clk);
platform_set_drvdata(pdev, cmt);
return 0;
err_unmap:
kfree(cmt->channels);
iounmap(cmt->mapbase);
err_clk_disable:
clk_disable(cmt->clk);
err_clk_unprepare:
clk_unprepare(cmt->clk);
err_clk_put:
clk_put(cmt->clk);
return ret;
}
static int sh_cmt_probe(struct platform_device *pdev)
{
struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
int ret;
if (!is_sh_early_platform_device(pdev)) {
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
}
if (cmt) {
dev_info(&pdev->dev, "kept as earlytimer\n");
goto out;
}
cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
if (cmt == NULL)
return -ENOMEM;
ret = sh_cmt_setup(cmt, pdev);
if (ret) {
kfree(cmt);
pm_runtime_idle(&pdev->dev);
return ret;
}
if (is_sh_early_platform_device(pdev))
return 0;
out:
if (cmt->has_clockevent || cmt->has_clocksource)
pm_runtime_irq_safe(&pdev->dev);
else
pm_runtime_idle(&pdev->dev);
return 0;
}
static struct platform_driver sh_cmt_device_driver = {
.probe = sh_cmt_probe,
.driver = {
.name = "sh_cmt",
.of_match_table = of_match_ptr(sh_cmt_of_table),
.suppress_bind_attrs = true,
},
.id_table = sh_cmt_id_table,
};
static int __init sh_cmt_init(void)
{
return platform_driver_register(&sh_cmt_device_driver);
}
static void __exit sh_cmt_exit(void)
{
platform_driver_unregister(&sh_cmt_device_driver);
}
#ifdef CONFIG_SUPERH
sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
#endif
subsys_initcall(sh_cmt_init);
module_exit(sh_cmt_exit);
MODULE_AUTHOR("Magnus Damm");
MODULE_DESCRIPTION("SuperH CMT Timer Driver");