linux-next/drivers/platform/cznic/turris-omnia-mcu-gpio.c
Marek Behún f335e01577
platform: cznic: turris-omnia-mcu: Rename variable holding GPIO line names
Rename the `omnia_mcu_gpio_templates` variable to
`omnia_mcu_gpio_names`. The array contained templates for the names
during the development of the driver, but the template prefix `gpio%u.`
was dropped before the driver was merged, since this functionality was
broken in gpiolib.

Signed-off-by: Marek Behún <kabel@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2024-11-12 16:05:16 +01:00

1096 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* CZ.NIC's Turris Omnia MCU GPIO and IRQ driver
*
* 2024 by Marek Behún <kabel@kernel.org>
*/
#include <linux/array_size.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/cleanup.h>
#include <linux/device.h>
#include <linux/devm-helpers.h>
#include <linux/errno.h>
#include <linux/gpio/driver.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <linux/unaligned.h>
#include <linux/turris-omnia-mcu-interface.h>
#include "turris-omnia-mcu.h"
#define OMNIA_CMD_INT_ARG_LEN 8
#define FRONT_BUTTON_RELEASE_DELAY_MS 50
static const char * const omnia_mcu_gpio_names[64] = {
/* GPIOs with value read from the 16-bit wide status */
[4] = "MiniPCIe0 Card Detect",
[5] = "MiniPCIe0 mSATA Indicator",
[6] = "Front USB3 port over-current",
[7] = "Rear USB3 port over-current",
[8] = "Front USB3 port power",
[9] = "Rear USB3 port power",
[12] = "Front Button",
/* GPIOs with value read from the 32-bit wide extended status */
[16] = "SFP nDET",
[28] = "MiniPCIe0 LED",
[29] = "MiniPCIe1 LED",
[30] = "MiniPCIe2 LED",
[31] = "MiniPCIe0 PAN LED",
[32] = "MiniPCIe1 PAN LED",
[33] = "MiniPCIe2 PAN LED",
[34] = "WAN PHY LED0",
[35] = "WAN PHY LED1",
[36] = "LAN switch p0 LED0",
[37] = "LAN switch p0 LED1",
[38] = "LAN switch p1 LED0",
[39] = "LAN switch p1 LED1",
[40] = "LAN switch p2 LED0",
[41] = "LAN switch p2 LED1",
[42] = "LAN switch p3 LED0",
[43] = "LAN switch p3 LED1",
[44] = "LAN switch p4 LED0",
[45] = "LAN switch p4 LED1",
[46] = "LAN switch p5 LED0",
[47] = "LAN switch p5 LED1",
/* GPIOs with value read from the 16-bit wide extended control status */
[48] = "eMMC nRESET",
[49] = "LAN switch nRESET",
[50] = "WAN PHY nRESET",
[51] = "MiniPCIe0 nPERST",
[52] = "MiniPCIe1 nPERST",
[53] = "MiniPCIe2 nPERST",
[54] = "WAN PHY SFP mux",
[56] = "VHV power disable",
};
struct omnia_gpio {
u8 cmd;
u8 ctl_cmd;
u8 bit;
u8 ctl_bit;
u8 int_bit;
u16 feat;
u16 feat_mask;
};
#define OMNIA_GPIO_INVALID_INT_BIT 0xff
#define _DEF_GPIO(_cmd, _ctl_cmd, _bit, _ctl_bit, _int_bit, _feat, _feat_mask) \
{ \
.cmd = _cmd, \
.ctl_cmd = _ctl_cmd, \
.bit = _bit, \
.ctl_bit = _ctl_bit, \
.int_bit = (_int_bit) < 0 ? OMNIA_GPIO_INVALID_INT_BIT \
: (_int_bit), \
.feat = _feat, \
.feat_mask = _feat_mask, \
}
#define _DEF_GPIO_STS(_name) \
_DEF_GPIO(OMNIA_CMD_GET_STATUS_WORD, 0, __bf_shf(OMNIA_STS_ ## _name), \
0, __bf_shf(OMNIA_INT_ ## _name), 0, 0)
#define _DEF_GPIO_CTL(_name) \
_DEF_GPIO(OMNIA_CMD_GET_STATUS_WORD, OMNIA_CMD_GENERAL_CONTROL, \
__bf_shf(OMNIA_STS_ ## _name), __bf_shf(OMNIA_CTL_ ## _name), \
-1, 0, 0)
#define _DEF_GPIO_EXT_STS(_name, _feat) \
_DEF_GPIO(OMNIA_CMD_GET_EXT_STATUS_DWORD, 0, \
__bf_shf(OMNIA_EXT_STS_ ## _name), 0, \
__bf_shf(OMNIA_INT_ ## _name), \
OMNIA_FEAT_ ## _feat | OMNIA_FEAT_EXT_CMDS, \
OMNIA_FEAT_ ## _feat | OMNIA_FEAT_EXT_CMDS)
#define _DEF_GPIO_EXT_STS_LED(_name, _ledext) \
_DEF_GPIO(OMNIA_CMD_GET_EXT_STATUS_DWORD, 0, \
__bf_shf(OMNIA_EXT_STS_ ## _name), 0, \
__bf_shf(OMNIA_INT_ ## _name), \
OMNIA_FEAT_LED_STATE_ ## _ledext, \
OMNIA_FEAT_LED_STATE_EXT_MASK)
#define _DEF_GPIO_EXT_STS_LEDALL(_name) \
_DEF_GPIO(OMNIA_CMD_GET_EXT_STATUS_DWORD, 0, \
__bf_shf(OMNIA_EXT_STS_ ## _name), 0, \
__bf_shf(OMNIA_INT_ ## _name), \
OMNIA_FEAT_LED_STATE_EXT_MASK, 0)
#define _DEF_GPIO_EXT_CTL(_name, _feat) \
_DEF_GPIO(OMNIA_CMD_GET_EXT_CONTROL_STATUS, OMNIA_CMD_EXT_CONTROL, \
__bf_shf(OMNIA_EXT_CTL_ ## _name), \
__bf_shf(OMNIA_EXT_CTL_ ## _name), -1, \
OMNIA_FEAT_ ## _feat | OMNIA_FEAT_EXT_CMDS, \
OMNIA_FEAT_ ## _feat | OMNIA_FEAT_EXT_CMDS)
#define _DEF_INT(_name) \
_DEF_GPIO(0, 0, 0, 0, __bf_shf(OMNIA_INT_ ## _name), 0, 0)
static inline bool is_int_bit_valid(const struct omnia_gpio *gpio)
{
return gpio->int_bit != OMNIA_GPIO_INVALID_INT_BIT;
}
static const struct omnia_gpio omnia_gpios[64] = {
/* GPIOs with value read from the 16-bit wide status */
[4] = _DEF_GPIO_STS(CARD_DET),
[5] = _DEF_GPIO_STS(MSATA_IND),
[6] = _DEF_GPIO_STS(USB30_OVC),
[7] = _DEF_GPIO_STS(USB31_OVC),
[8] = _DEF_GPIO_CTL(USB30_PWRON),
[9] = _DEF_GPIO_CTL(USB31_PWRON),
/* brightness changed interrupt, no GPIO */
[11] = _DEF_INT(BRIGHTNESS_CHANGED),
[12] = _DEF_GPIO_STS(BUTTON_PRESSED),
/* TRNG interrupt, no GPIO */
[13] = _DEF_INT(TRNG),
/* MESSAGE_SIGNED interrupt, no GPIO */
[14] = _DEF_INT(MESSAGE_SIGNED),
/* GPIOs with value read from the 32-bit wide extended status */
[16] = _DEF_GPIO_EXT_STS(SFP_nDET, PERIPH_MCU),
[28] = _DEF_GPIO_EXT_STS_LEDALL(WLAN0_MSATA_LED),
[29] = _DEF_GPIO_EXT_STS_LEDALL(WLAN1_LED),
[30] = _DEF_GPIO_EXT_STS_LEDALL(WLAN2_LED),
[31] = _DEF_GPIO_EXT_STS_LED(WPAN0_LED, EXT),
[32] = _DEF_GPIO_EXT_STS_LED(WPAN1_LED, EXT),
[33] = _DEF_GPIO_EXT_STS_LED(WPAN2_LED, EXT),
[34] = _DEF_GPIO_EXT_STS_LEDALL(WAN_LED0),
[35] = _DEF_GPIO_EXT_STS_LED(WAN_LED1, EXT_V32),
[36] = _DEF_GPIO_EXT_STS_LEDALL(LAN0_LED0),
[37] = _DEF_GPIO_EXT_STS_LEDALL(LAN0_LED1),
[38] = _DEF_GPIO_EXT_STS_LEDALL(LAN1_LED0),
[39] = _DEF_GPIO_EXT_STS_LEDALL(LAN1_LED1),
[40] = _DEF_GPIO_EXT_STS_LEDALL(LAN2_LED0),
[41] = _DEF_GPIO_EXT_STS_LEDALL(LAN2_LED1),
[42] = _DEF_GPIO_EXT_STS_LEDALL(LAN3_LED0),
[43] = _DEF_GPIO_EXT_STS_LEDALL(LAN3_LED1),
[44] = _DEF_GPIO_EXT_STS_LEDALL(LAN4_LED0),
[45] = _DEF_GPIO_EXT_STS_LEDALL(LAN4_LED1),
[46] = _DEF_GPIO_EXT_STS_LEDALL(LAN5_LED0),
[47] = _DEF_GPIO_EXT_STS_LEDALL(LAN5_LED1),
/* GPIOs with value read from the 16-bit wide extended control status */
[48] = _DEF_GPIO_EXT_CTL(nRES_MMC, PERIPH_MCU),
[49] = _DEF_GPIO_EXT_CTL(nRES_LAN, PERIPH_MCU),
[50] = _DEF_GPIO_EXT_CTL(nRES_PHY, PERIPH_MCU),
[51] = _DEF_GPIO_EXT_CTL(nPERST0, PERIPH_MCU),
[52] = _DEF_GPIO_EXT_CTL(nPERST1, PERIPH_MCU),
[53] = _DEF_GPIO_EXT_CTL(nPERST2, PERIPH_MCU),
[54] = _DEF_GPIO_EXT_CTL(PHY_SFP, PERIPH_MCU),
[56] = _DEF_GPIO_EXT_CTL(nVHV_CTRL, PERIPH_MCU),
};
/* mapping from interrupts to indexes of GPIOs in the omnia_gpios array */
const u8 omnia_int_to_gpio_idx[32] = {
[__bf_shf(OMNIA_INT_CARD_DET)] = 4,
[__bf_shf(OMNIA_INT_MSATA_IND)] = 5,
[__bf_shf(OMNIA_INT_USB30_OVC)] = 6,
[__bf_shf(OMNIA_INT_USB31_OVC)] = 7,
[__bf_shf(OMNIA_INT_BUTTON_PRESSED)] = 12,
[__bf_shf(OMNIA_INT_TRNG)] = 13,
[__bf_shf(OMNIA_INT_MESSAGE_SIGNED)] = 14,
[__bf_shf(OMNIA_INT_SFP_nDET)] = 16,
[__bf_shf(OMNIA_INT_BRIGHTNESS_CHANGED)] = 11,
[__bf_shf(OMNIA_INT_WLAN0_MSATA_LED)] = 28,
[__bf_shf(OMNIA_INT_WLAN1_LED)] = 29,
[__bf_shf(OMNIA_INT_WLAN2_LED)] = 30,
[__bf_shf(OMNIA_INT_WPAN0_LED)] = 31,
[__bf_shf(OMNIA_INT_WPAN1_LED)] = 32,
[__bf_shf(OMNIA_INT_WPAN2_LED)] = 33,
[__bf_shf(OMNIA_INT_WAN_LED0)] = 34,
[__bf_shf(OMNIA_INT_WAN_LED1)] = 35,
[__bf_shf(OMNIA_INT_LAN0_LED0)] = 36,
[__bf_shf(OMNIA_INT_LAN0_LED1)] = 37,
[__bf_shf(OMNIA_INT_LAN1_LED0)] = 38,
[__bf_shf(OMNIA_INT_LAN1_LED1)] = 39,
[__bf_shf(OMNIA_INT_LAN2_LED0)] = 40,
[__bf_shf(OMNIA_INT_LAN2_LED1)] = 41,
[__bf_shf(OMNIA_INT_LAN3_LED0)] = 42,
[__bf_shf(OMNIA_INT_LAN3_LED1)] = 43,
[__bf_shf(OMNIA_INT_LAN4_LED0)] = 44,
[__bf_shf(OMNIA_INT_LAN4_LED1)] = 45,
[__bf_shf(OMNIA_INT_LAN5_LED0)] = 46,
[__bf_shf(OMNIA_INT_LAN5_LED1)] = 47,
};
/* index of PHY_SFP GPIO in the omnia_gpios array */
#define OMNIA_GPIO_PHY_SFP_OFFSET 54
static int omnia_ctl_cmd_locked(struct omnia_mcu *mcu, u8 cmd, u16 val, u16 mask)
{
unsigned int len;
u8 buf[5];
buf[0] = cmd;
switch (cmd) {
case OMNIA_CMD_GENERAL_CONTROL:
buf[1] = val;
buf[2] = mask;
len = 3;
break;
case OMNIA_CMD_EXT_CONTROL:
put_unaligned_le16(val, &buf[1]);
put_unaligned_le16(mask, &buf[3]);
len = 5;
break;
default:
BUG();
}
return omnia_cmd_write(mcu->client, buf, len);
}
static int omnia_ctl_cmd(struct omnia_mcu *mcu, u8 cmd, u16 val, u16 mask)
{
guard(mutex)(&mcu->lock);
return omnia_ctl_cmd_locked(mcu, cmd, val, mask);
}
static int omnia_gpio_request(struct gpio_chip *gc, unsigned int offset)
{
if (!omnia_gpios[offset].cmd)
return -EINVAL;
return 0;
}
static int omnia_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
{
struct omnia_mcu *mcu = gpiochip_get_data(gc);
if (offset == OMNIA_GPIO_PHY_SFP_OFFSET) {
int val;
scoped_guard(mutex, &mcu->lock) {
val = omnia_cmd_read_bit(mcu->client,
OMNIA_CMD_GET_EXT_CONTROL_STATUS,
OMNIA_EXT_CTL_PHY_SFP_AUTO);
if (val < 0)
return val;
}
if (val)
return GPIO_LINE_DIRECTION_IN;
return GPIO_LINE_DIRECTION_OUT;
}
if (omnia_gpios[offset].ctl_cmd)
return GPIO_LINE_DIRECTION_OUT;
return GPIO_LINE_DIRECTION_IN;
}
static int omnia_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
{
const struct omnia_gpio *gpio = &omnia_gpios[offset];
struct omnia_mcu *mcu = gpiochip_get_data(gc);
if (offset == OMNIA_GPIO_PHY_SFP_OFFSET)
return omnia_ctl_cmd(mcu, OMNIA_CMD_EXT_CONTROL,
OMNIA_EXT_CTL_PHY_SFP_AUTO,
OMNIA_EXT_CTL_PHY_SFP_AUTO);
if (gpio->ctl_cmd)
return -ENOTSUPP;
return 0;
}
static int omnia_gpio_direction_output(struct gpio_chip *gc,
unsigned int offset, int value)
{
const struct omnia_gpio *gpio = &omnia_gpios[offset];
struct omnia_mcu *mcu = gpiochip_get_data(gc);
u16 val, mask;
if (!gpio->ctl_cmd)
return -ENOTSUPP;
mask = BIT(gpio->ctl_bit);
val = value ? mask : 0;
if (offset == OMNIA_GPIO_PHY_SFP_OFFSET)
mask |= OMNIA_EXT_CTL_PHY_SFP_AUTO;
return omnia_ctl_cmd(mcu, gpio->ctl_cmd, val, mask);
}
static int omnia_gpio_get(struct gpio_chip *gc, unsigned int offset)
{
const struct omnia_gpio *gpio = &omnia_gpios[offset];
struct omnia_mcu *mcu = gpiochip_get_data(gc);
/*
* If firmware does not support the new interrupt API, we are informed
* of every change of the status word by an interrupt from MCU and save
* its value in the interrupt service routine. Simply return the saved
* value.
*/
if (gpio->cmd == OMNIA_CMD_GET_STATUS_WORD &&
!(mcu->features & OMNIA_FEAT_NEW_INT_API))
return test_bit(gpio->bit, &mcu->last_status);
guard(mutex)(&mcu->lock);
/*
* If firmware does support the new interrupt API, we may have cached
* the value of a GPIO in the interrupt service routine. If not, read
* the relevant bit now.
*/
if (is_int_bit_valid(gpio) && test_bit(gpio->int_bit, &mcu->is_cached))
return test_bit(gpio->int_bit, &mcu->cached);
return omnia_cmd_read_bit(mcu->client, gpio->cmd, BIT(gpio->bit));
}
static unsigned long *
_relevant_field_for_sts_cmd(u8 cmd, unsigned long *sts, unsigned long *ext_sts,
unsigned long *ext_ctl)
{
switch (cmd) {
case OMNIA_CMD_GET_STATUS_WORD:
return sts;
case OMNIA_CMD_GET_EXT_STATUS_DWORD:
return ext_sts;
case OMNIA_CMD_GET_EXT_CONTROL_STATUS:
return ext_ctl;
default:
return NULL;
}
}
static int omnia_gpio_get_multiple(struct gpio_chip *gc, unsigned long *mask,
unsigned long *bits)
{
unsigned long sts = 0, ext_sts = 0, ext_ctl = 0, *field;
struct omnia_mcu *mcu = gpiochip_get_data(gc);
struct i2c_client *client = mcu->client;
unsigned int i;
int err;
/* determine which bits to read from the 3 possible commands */
for_each_set_bit(i, mask, ARRAY_SIZE(omnia_gpios)) {
field = _relevant_field_for_sts_cmd(omnia_gpios[i].cmd,
&sts, &ext_sts, &ext_ctl);
if (!field)
continue;
__set_bit(omnia_gpios[i].bit, field);
}
guard(mutex)(&mcu->lock);
if (mcu->features & OMNIA_FEAT_NEW_INT_API) {
/* read relevant bits from status */
err = omnia_cmd_read_bits(client, OMNIA_CMD_GET_STATUS_WORD,
sts, &sts);
if (err)
return err;
} else {
/*
* Use status word value cached in the interrupt service routine
* if firmware does not support the new interrupt API.
*/
sts = mcu->last_status;
}
/* read relevant bits from extended status */
err = omnia_cmd_read_bits(client, OMNIA_CMD_GET_EXT_STATUS_DWORD,
ext_sts, &ext_sts);
if (err)
return err;
/* read relevant bits from extended control */
err = omnia_cmd_read_bits(client, OMNIA_CMD_GET_EXT_CONTROL_STATUS,
ext_ctl, &ext_ctl);
if (err)
return err;
/* assign relevant bits in result */
for_each_set_bit(i, mask, ARRAY_SIZE(omnia_gpios)) {
field = _relevant_field_for_sts_cmd(omnia_gpios[i].cmd,
&sts, &ext_sts, &ext_ctl);
if (!field)
continue;
__assign_bit(i, bits, test_bit(omnia_gpios[i].bit, field));
}
return 0;
}
static void omnia_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
{
const struct omnia_gpio *gpio = &omnia_gpios[offset];
struct omnia_mcu *mcu = gpiochip_get_data(gc);
u16 val, mask;
if (!gpio->ctl_cmd)
return;
mask = BIT(gpio->ctl_bit);
val = value ? mask : 0;
omnia_ctl_cmd(mcu, gpio->ctl_cmd, val, mask);
}
static void omnia_gpio_set_multiple(struct gpio_chip *gc, unsigned long *mask,
unsigned long *bits)
{
unsigned long ctl = 0, ctl_mask = 0, ext_ctl = 0, ext_ctl_mask = 0;
struct omnia_mcu *mcu = gpiochip_get_data(gc);
unsigned int i;
for_each_set_bit(i, mask, ARRAY_SIZE(omnia_gpios)) {
unsigned long *field, *field_mask;
u8 bit = omnia_gpios[i].ctl_bit;
switch (omnia_gpios[i].ctl_cmd) {
case OMNIA_CMD_GENERAL_CONTROL:
field = &ctl;
field_mask = &ctl_mask;
break;
case OMNIA_CMD_EXT_CONTROL:
field = &ext_ctl;
field_mask = &ext_ctl_mask;
break;
default:
field = field_mask = NULL;
break;
}
if (!field)
continue;
__set_bit(bit, field_mask);
__assign_bit(bit, field, test_bit(i, bits));
}
guard(mutex)(&mcu->lock);
if (ctl_mask)
omnia_ctl_cmd_locked(mcu, OMNIA_CMD_GENERAL_CONTROL,
ctl, ctl_mask);
if (ext_ctl_mask)
omnia_ctl_cmd_locked(mcu, OMNIA_CMD_EXT_CONTROL,
ext_ctl, ext_ctl_mask);
}
static bool omnia_gpio_available(struct omnia_mcu *mcu,
const struct omnia_gpio *gpio)
{
if (gpio->feat_mask)
return (mcu->features & gpio->feat_mask) == gpio->feat;
if (gpio->feat)
return mcu->features & gpio->feat;
return true;
}
static int omnia_gpio_init_valid_mask(struct gpio_chip *gc,
unsigned long *valid_mask,
unsigned int ngpios)
{
struct omnia_mcu *mcu = gpiochip_get_data(gc);
for (unsigned int i = 0; i < ngpios; i++) {
const struct omnia_gpio *gpio = &omnia_gpios[i];
if (gpio->cmd || is_int_bit_valid(gpio))
__assign_bit(i, valid_mask,
omnia_gpio_available(mcu, gpio));
else
__clear_bit(i, valid_mask);
}
return 0;
}
static int omnia_gpio_of_xlate(struct gpio_chip *gc,
const struct of_phandle_args *gpiospec,
u32 *flags)
{
u32 bank, gpio;
if (WARN_ON(gpiospec->args_count != 3))
return -EINVAL;
if (flags)
*flags = gpiospec->args[2];
bank = gpiospec->args[0];
gpio = gpiospec->args[1];
switch (bank) {
case 0:
return gpio < 16 ? gpio : -EINVAL;
case 1:
return gpio < 32 ? 16 + gpio : -EINVAL;
case 2:
return gpio < 16 ? 48 + gpio : -EINVAL;
default:
return -EINVAL;
}
}
static void omnia_irq_shutdown(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct omnia_mcu *mcu = gpiochip_get_data(gc);
irq_hw_number_t hwirq = irqd_to_hwirq(d);
u8 bit = omnia_gpios[hwirq].int_bit;
__clear_bit(bit, &mcu->rising);
__clear_bit(bit, &mcu->falling);
}
static void omnia_irq_mask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct omnia_mcu *mcu = gpiochip_get_data(gc);
irq_hw_number_t hwirq = irqd_to_hwirq(d);
u8 bit = omnia_gpios[hwirq].int_bit;
if (!omnia_gpios[hwirq].cmd)
__clear_bit(bit, &mcu->rising);
__clear_bit(bit, &mcu->mask);
gpiochip_disable_irq(gc, hwirq);
}
static void omnia_irq_unmask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct omnia_mcu *mcu = gpiochip_get_data(gc);
irq_hw_number_t hwirq = irqd_to_hwirq(d);
u8 bit = omnia_gpios[hwirq].int_bit;
gpiochip_enable_irq(gc, hwirq);
__set_bit(bit, &mcu->mask);
if (!omnia_gpios[hwirq].cmd)
__set_bit(bit, &mcu->rising);
}
static int omnia_irq_set_type(struct irq_data *d, unsigned int type)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct omnia_mcu *mcu = gpiochip_get_data(gc);
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct device *dev = &mcu->client->dev;
u8 bit = omnia_gpios[hwirq].int_bit;
if (!(type & IRQ_TYPE_EDGE_BOTH)) {
dev_err(dev, "irq %u: unsupported type %u\n", d->irq, type);
return -EINVAL;
}
__assign_bit(bit, &mcu->rising, type & IRQ_TYPE_EDGE_RISING);
__assign_bit(bit, &mcu->falling, type & IRQ_TYPE_EDGE_FALLING);
return 0;
}
static void omnia_irq_bus_lock(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct omnia_mcu *mcu = gpiochip_get_data(gc);
/* nothing to do if MCU firmware does not support new interrupt API */
if (!(mcu->features & OMNIA_FEAT_NEW_INT_API))
return;
mutex_lock(&mcu->lock);
}
/**
* omnia_mask_interleave - Interleaves the bytes from @rising and @falling
* @dst: the destination u8 array of interleaved bytes
* @rising: rising mask
* @falling: falling mask
*
* Interleaves the little-endian bytes from @rising and @falling words.
*
* If @rising = (r0, r1, r2, r3) and @falling = (f0, f1, f2, f3), the result is
* @dst = (r0, f0, r1, f1, r2, f2, r3, f3).
*
* The MCU receives an interrupt mask and reports a pending interrupt bitmap in
* this interleaved format. The rationale behind this is that the low-indexed
* bits are more important - in many cases, the user will be interested only in
* interrupts with indexes 0 to 7, and so the system can stop reading after
* first 2 bytes (r0, f0), to save time on the slow I2C bus.
*
* Feel free to remove this function and its inverse, omnia_mask_deinterleave,
* and use an appropriate bitmap_*() function once such a function exists.
*/
static void
omnia_mask_interleave(u8 *dst, unsigned long rising, unsigned long falling)
{
for (unsigned int i = 0; i < sizeof(u32); i++) {
dst[2 * i] = rising >> (8 * i);
dst[2 * i + 1] = falling >> (8 * i);
}
}
/**
* omnia_mask_deinterleave - Deinterleaves the bytes into @rising and @falling
* @src: the source u8 array containing the interleaved bytes
* @rising: pointer where to store the rising mask gathered from @src
* @falling: pointer where to store the falling mask gathered from @src
*
* This is the inverse function to omnia_mask_interleave.
*/
static void omnia_mask_deinterleave(const u8 *src, unsigned long *rising,
unsigned long *falling)
{
*rising = *falling = 0;
for (unsigned int i = 0; i < sizeof(u32); i++) {
*rising |= src[2 * i] << (8 * i);
*falling |= src[2 * i + 1] << (8 * i);
}
}
static void omnia_irq_bus_sync_unlock(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct omnia_mcu *mcu = gpiochip_get_data(gc);
struct device *dev = &mcu->client->dev;
u8 cmd[1 + OMNIA_CMD_INT_ARG_LEN];
unsigned long rising, falling;
int err;
/* nothing to do if MCU firmware does not support new interrupt API */
if (!(mcu->features & OMNIA_FEAT_NEW_INT_API))
return;
cmd[0] = OMNIA_CMD_SET_INT_MASK;
rising = mcu->rising & mcu->mask;
falling = mcu->falling & mcu->mask;
/* interleave the rising and falling bytes into the command arguments */
omnia_mask_interleave(&cmd[1], rising, falling);
dev_dbg(dev, "set int mask %8ph\n", &cmd[1]);
err = omnia_cmd_write(mcu->client, cmd, sizeof(cmd));
if (err) {
dev_err(dev, "Cannot set mask: %d\n", err);
goto unlock;
}
/*
* Remember which GPIOs have both rising and falling interrupts enabled.
* For those we will cache their value so that .get() method is faster.
* We also need to forget cached values of GPIOs that aren't cached
* anymore.
*/
mcu->both = rising & falling;
mcu->is_cached &= mcu->both;
unlock:
mutex_unlock(&mcu->lock);
}
static const struct irq_chip omnia_mcu_irq_chip = {
.name = "Turris Omnia MCU interrupts",
.irq_shutdown = omnia_irq_shutdown,
.irq_mask = omnia_irq_mask,
.irq_unmask = omnia_irq_unmask,
.irq_set_type = omnia_irq_set_type,
.irq_bus_lock = omnia_irq_bus_lock,
.irq_bus_sync_unlock = omnia_irq_bus_sync_unlock,
.flags = IRQCHIP_IMMUTABLE,
GPIOCHIP_IRQ_RESOURCE_HELPERS,
};
static void omnia_irq_init_valid_mask(struct gpio_chip *gc,
unsigned long *valid_mask,
unsigned int ngpios)
{
struct omnia_mcu *mcu = gpiochip_get_data(gc);
for (unsigned int i = 0; i < ngpios; i++) {
const struct omnia_gpio *gpio = &omnia_gpios[i];
if (is_int_bit_valid(gpio))
__assign_bit(i, valid_mask,
omnia_gpio_available(mcu, gpio));
else
__clear_bit(i, valid_mask);
}
}
static int omnia_irq_init_hw(struct gpio_chip *gc)
{
struct omnia_mcu *mcu = gpiochip_get_data(gc);
u8 cmd[1 + OMNIA_CMD_INT_ARG_LEN] = {};
cmd[0] = OMNIA_CMD_SET_INT_MASK;
return omnia_cmd_write(mcu->client, cmd, sizeof(cmd));
}
/*
* Determine how many bytes we need to read from the reply to the
* OMNIA_CMD_GET_INT_AND_CLEAR command in order to retrieve all unmasked
* interrupts.
*/
static unsigned int
omnia_irq_compute_pending_length(unsigned long rising, unsigned long falling)
{
return max(omnia_compute_reply_length(rising, true, 0),
omnia_compute_reply_length(falling, true, 1));
}
static bool omnia_irq_read_pending_new(struct omnia_mcu *mcu,
unsigned long *pending)
{
struct device *dev = &mcu->client->dev;
u8 reply[OMNIA_CMD_INT_ARG_LEN] = {};
unsigned long rising, falling;
unsigned int len;
int err;
len = omnia_irq_compute_pending_length(mcu->rising & mcu->mask,
mcu->falling & mcu->mask);
if (!len)
return false;
guard(mutex)(&mcu->lock);
err = omnia_cmd_read(mcu->client, OMNIA_CMD_GET_INT_AND_CLEAR, reply,
len);
if (err) {
dev_err(dev, "Cannot read pending IRQs: %d\n", err);
return false;
}
/* deinterleave the reply bytes into rising and falling */
omnia_mask_deinterleave(reply, &rising, &falling);
rising &= mcu->mask;
falling &= mcu->mask;
*pending = rising | falling;
/* cache values for GPIOs that have both edges enabled */
mcu->is_cached &= ~(rising & falling);
mcu->is_cached |= mcu->both & (rising ^ falling);
mcu->cached = (mcu->cached | rising) & ~falling;
return true;
}
static int omnia_read_status_word_old_fw(struct omnia_mcu *mcu,
unsigned long *status)
{
u16 raw_status;
int err;
err = omnia_cmd_read_u16(mcu->client, OMNIA_CMD_GET_STATUS_WORD,
&raw_status);
if (err)
return err;
/*
* Old firmware has a bug wherein it never resets the USB port
* overcurrent bits back to zero. Ignore them.
*/
*status = raw_status & ~(OMNIA_STS_USB30_OVC | OMNIA_STS_USB31_OVC);
return 0;
}
static void button_release_emul_fn(struct work_struct *work)
{
struct omnia_mcu *mcu = container_of(to_delayed_work(work),
struct omnia_mcu,
button_release_emul_work);
mcu->button_pressed_emul = false;
generic_handle_irq_safe(mcu->client->irq);
}
static void
fill_int_from_sts(unsigned long *rising, unsigned long *falling,
unsigned long rising_sts, unsigned long falling_sts,
unsigned long sts_bit, unsigned long int_bit)
{
if (rising_sts & sts_bit)
*rising |= int_bit;
if (falling_sts & sts_bit)
*falling |= int_bit;
}
static bool omnia_irq_read_pending_old(struct omnia_mcu *mcu,
unsigned long *pending)
{
unsigned long status, rising_sts, falling_sts, rising, falling;
struct device *dev = &mcu->client->dev;
int err;
guard(mutex)(&mcu->lock);
err = omnia_read_status_word_old_fw(mcu, &status);
if (err) {
dev_err(dev, "Cannot read pending IRQs: %d\n", err);
return false;
}
/*
* The old firmware triggers an interrupt whenever status word changes,
* but does not inform about which bits rose or fell. We need to compute
* this here by comparing with the last status word value.
*
* The OMNIA_STS_BUTTON_PRESSED bit needs special handling, because the
* old firmware clears the OMNIA_STS_BUTTON_PRESSED bit on successful
* completion of the OMNIA_CMD_GET_STATUS_WORD command, resulting in
* another interrupt:
* - first we get an interrupt, we read the status word where
* OMNIA_STS_BUTTON_PRESSED is present,
* - MCU clears the OMNIA_STS_BUTTON_PRESSED bit because we read the
* status word,
* - we get another interrupt because the status word changed again
* (the OMNIA_STS_BUTTON_PRESSED bit was cleared).
*
* The gpiolib-cdev, gpiolib-sysfs and gpio-keys input driver all call
* the gpiochip's .get() method after an edge event on a requested GPIO
* occurs.
*
* We ensure that the .get() method reads 1 for the button GPIO for some
* time.
*/
if (status & OMNIA_STS_BUTTON_PRESSED) {
mcu->button_pressed_emul = true;
mod_delayed_work(system_wq, &mcu->button_release_emul_work,
msecs_to_jiffies(FRONT_BUTTON_RELEASE_DELAY_MS));
} else if (mcu->button_pressed_emul) {
status |= OMNIA_STS_BUTTON_PRESSED;
}
rising_sts = ~mcu->last_status & status;
falling_sts = mcu->last_status & ~status;
mcu->last_status = status;
/*
* Fill in the relevant interrupt bits from status bits for CARD_DET,
* MSATA_IND and BUTTON_PRESSED.
*/
rising = 0;
falling = 0;
fill_int_from_sts(&rising, &falling, rising_sts, falling_sts,
OMNIA_STS_CARD_DET, OMNIA_INT_CARD_DET);
fill_int_from_sts(&rising, &falling, rising_sts, falling_sts,
OMNIA_STS_MSATA_IND, OMNIA_INT_MSATA_IND);
fill_int_from_sts(&rising, &falling, rising_sts, falling_sts,
OMNIA_STS_BUTTON_PRESSED, OMNIA_INT_BUTTON_PRESSED);
/* Use only bits that are enabled */
rising &= mcu->rising & mcu->mask;
falling &= mcu->falling & mcu->mask;
*pending = rising | falling;
return true;
}
static bool omnia_irq_read_pending(struct omnia_mcu *mcu,
unsigned long *pending)
{
if (mcu->features & OMNIA_FEAT_NEW_INT_API)
return omnia_irq_read_pending_new(mcu, pending);
else
return omnia_irq_read_pending_old(mcu, pending);
}
static irqreturn_t omnia_irq_thread_handler(int irq, void *dev_id)
{
struct omnia_mcu *mcu = dev_id;
struct irq_domain *domain;
unsigned long pending;
unsigned int i;
if (!omnia_irq_read_pending(mcu, &pending))
return IRQ_NONE;
domain = mcu->gc.irq.domain;
for_each_set_bit(i, &pending, 32) {
unsigned int nested_irq;
nested_irq = irq_find_mapping(domain, omnia_int_to_gpio_idx[i]);
handle_nested_irq(nested_irq);
}
return IRQ_RETVAL(pending);
}
static const char * const front_button_modes[] = { "mcu", "cpu" };
static ssize_t front_button_mode_show(struct device *dev,
struct device_attribute *a, char *buf)
{
struct omnia_mcu *mcu = dev_get_drvdata(dev);
int val;
if (mcu->features & OMNIA_FEAT_NEW_INT_API) {
val = omnia_cmd_read_bit(mcu->client, OMNIA_CMD_GET_STATUS_WORD,
OMNIA_STS_BUTTON_MODE);
if (val < 0)
return val;
} else {
val = !!(mcu->last_status & OMNIA_STS_BUTTON_MODE);
}
return sysfs_emit(buf, "%s\n", front_button_modes[val]);
}
static ssize_t front_button_mode_store(struct device *dev,
struct device_attribute *a,
const char *buf, size_t count)
{
struct omnia_mcu *mcu = dev_get_drvdata(dev);
int err, i;
i = sysfs_match_string(front_button_modes, buf);
if (i < 0)
return i;
err = omnia_ctl_cmd_locked(mcu, OMNIA_CMD_GENERAL_CONTROL,
i ? OMNIA_CTL_BUTTON_MODE : 0,
OMNIA_CTL_BUTTON_MODE);
if (err)
return err;
return count;
}
static DEVICE_ATTR_RW(front_button_mode);
static struct attribute *omnia_mcu_gpio_attrs[] = {
&dev_attr_front_button_mode.attr,
NULL
};
const struct attribute_group omnia_mcu_gpio_group = {
.attrs = omnia_mcu_gpio_attrs,
};
int omnia_mcu_register_gpiochip(struct omnia_mcu *mcu)
{
bool new_api = mcu->features & OMNIA_FEAT_NEW_INT_API;
struct device *dev = &mcu->client->dev;
unsigned long irqflags;
int err;
err = devm_mutex_init(dev, &mcu->lock);
if (err)
return err;
mcu->gc.request = omnia_gpio_request;
mcu->gc.get_direction = omnia_gpio_get_direction;
mcu->gc.direction_input = omnia_gpio_direction_input;
mcu->gc.direction_output = omnia_gpio_direction_output;
mcu->gc.get = omnia_gpio_get;
mcu->gc.get_multiple = omnia_gpio_get_multiple;
mcu->gc.set = omnia_gpio_set;
mcu->gc.set_multiple = omnia_gpio_set_multiple;
mcu->gc.init_valid_mask = omnia_gpio_init_valid_mask;
mcu->gc.can_sleep = true;
mcu->gc.names = omnia_mcu_gpio_names;
mcu->gc.base = -1;
mcu->gc.ngpio = ARRAY_SIZE(omnia_gpios);
mcu->gc.label = "Turris Omnia MCU GPIOs";
mcu->gc.parent = dev;
mcu->gc.owner = THIS_MODULE;
mcu->gc.of_gpio_n_cells = 3;
mcu->gc.of_xlate = omnia_gpio_of_xlate;
gpio_irq_chip_set_chip(&mcu->gc.irq, &omnia_mcu_irq_chip);
/* This will let us handle the parent IRQ in the driver */
mcu->gc.irq.parent_handler = NULL;
mcu->gc.irq.num_parents = 0;
mcu->gc.irq.parents = NULL;
mcu->gc.irq.default_type = IRQ_TYPE_NONE;
mcu->gc.irq.handler = handle_bad_irq;
mcu->gc.irq.threaded = true;
if (new_api)
mcu->gc.irq.init_hw = omnia_irq_init_hw;
mcu->gc.irq.init_valid_mask = omnia_irq_init_valid_mask;
err = devm_gpiochip_add_data(dev, &mcu->gc, mcu);
if (err)
return dev_err_probe(dev, err, "Cannot add GPIO chip\n");
/*
* Before requesting the interrupt, if firmware does not support the new
* interrupt API, we need to cache the value of the status word, so that
* when it changes, we may compare the new value with the cached one in
* the interrupt handler.
*/
if (!new_api) {
err = omnia_read_status_word_old_fw(mcu, &mcu->last_status);
if (err)
return dev_err_probe(dev, err,
"Cannot read status word\n");
INIT_DELAYED_WORK(&mcu->button_release_emul_work,
button_release_emul_fn);
}
irqflags = IRQF_ONESHOT;
if (new_api)
irqflags |= IRQF_TRIGGER_LOW;
else
irqflags |= IRQF_TRIGGER_FALLING;
err = devm_request_threaded_irq(dev, mcu->client->irq, NULL,
omnia_irq_thread_handler, irqflags,
"turris-omnia-mcu", mcu);
if (err)
return dev_err_probe(dev, err, "Cannot request IRQ\n");
if (!new_api) {
/*
* The button_release_emul_work has to be initialized before the
* thread is requested, and on driver remove it needs to be
* canceled before the thread is freed. Therefore we can't use
* devm_delayed_work_autocancel() directly, because the order
* devm_delayed_work_autocancel();
* devm_request_threaded_irq();
* would cause improper release order:
* free_irq();
* cancel_delayed_work_sync();
* Instead we first initialize the work above, and only now
* after IRQ is requested we add the work devm action.
*/
err = devm_add_action(dev, devm_delayed_work_drop,
&mcu->button_release_emul_work);
if (err)
return err;
}
return 0;
}