linux-next/drivers/spi/spi-amlogic-spifc-a1.c
Miquel Raynal 5baa189789
spi: amlogic-spifc-a1: Support per spi-mem operation frequency switches
Every ->exec_op() call correctly configures the spi bus speed to the
maximum allowed frequency for the memory using the constant spi default
parameter. Since we can now have per-operation constraints, let's use
the value that comes from the spi-mem operation structure instead. In
case there is no specific limitation for this operation, the default spi
device value will be given anyway.

The per-operation frequency capability is thus advertised to the spi-mem
core.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://patch.msgid.link/20241224-winbond-6-11-rc1-quad-support-v2-5-ad218dbc406f@bootlin.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2025-01-09 20:16:26 +00:00

466 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Amlogic A1 SPI flash controller (SPIFC)
*
* Copyright (c) 2023, SberDevices. All Rights Reserved.
*
* Author: Martin Kurbanov <mmkurbanov@sberdevices.ru>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/types.h>
#define SPIFC_A1_AHB_CTRL_REG 0x0
#define SPIFC_A1_AHB_BUS_EN BIT(31)
#define SPIFC_A1_USER_CTRL0_REG 0x200
#define SPIFC_A1_USER_REQUEST_ENABLE BIT(31)
#define SPIFC_A1_USER_REQUEST_FINISH BIT(30)
#define SPIFC_A1_USER_DATA_UPDATED BIT(0)
#define SPIFC_A1_USER_CTRL1_REG 0x204
#define SPIFC_A1_USER_CMD_ENABLE BIT(30)
#define SPIFC_A1_USER_CMD_MODE GENMASK(29, 28)
#define SPIFC_A1_USER_CMD_CODE GENMASK(27, 20)
#define SPIFC_A1_USER_ADDR_ENABLE BIT(19)
#define SPIFC_A1_USER_ADDR_MODE GENMASK(18, 17)
#define SPIFC_A1_USER_ADDR_BYTES GENMASK(16, 15)
#define SPIFC_A1_USER_DOUT_ENABLE BIT(14)
#define SPIFC_A1_USER_DOUT_MODE GENMASK(11, 10)
#define SPIFC_A1_USER_DOUT_BYTES GENMASK(9, 0)
#define SPIFC_A1_USER_CTRL2_REG 0x208
#define SPIFC_A1_USER_DUMMY_ENABLE BIT(31)
#define SPIFC_A1_USER_DUMMY_MODE GENMASK(30, 29)
#define SPIFC_A1_USER_DUMMY_CLK_SYCLES GENMASK(28, 23)
#define SPIFC_A1_USER_CTRL3_REG 0x20c
#define SPIFC_A1_USER_DIN_ENABLE BIT(31)
#define SPIFC_A1_USER_DIN_MODE GENMASK(28, 27)
#define SPIFC_A1_USER_DIN_BYTES GENMASK(25, 16)
#define SPIFC_A1_USER_ADDR_REG 0x210
#define SPIFC_A1_AHB_REQ_CTRL_REG 0x214
#define SPIFC_A1_AHB_REQ_ENABLE BIT(31)
#define SPIFC_A1_ACTIMING0_REG (0x0088 << 2)
#define SPIFC_A1_TSLCH GENMASK(31, 30)
#define SPIFC_A1_TCLSH GENMASK(29, 28)
#define SPIFC_A1_TSHWL GENMASK(20, 16)
#define SPIFC_A1_TSHSL2 GENMASK(15, 12)
#define SPIFC_A1_TSHSL1 GENMASK(11, 8)
#define SPIFC_A1_TWHSL GENMASK(7, 0)
#define SPIFC_A1_DBUF_CTRL_REG 0x240
#define SPIFC_A1_DBUF_DIR BIT(31)
#define SPIFC_A1_DBUF_AUTO_UPDATE_ADDR BIT(30)
#define SPIFC_A1_DBUF_ADDR GENMASK(7, 0)
#define SPIFC_A1_DBUF_DATA_REG 0x244
#define SPIFC_A1_USER_DBUF_ADDR_REG 0x248
#define SPIFC_A1_BUFFER_SIZE 512U
#define SPIFC_A1_MAX_HZ 200000000
#define SPIFC_A1_MIN_HZ 1000000
#define SPIFC_A1_USER_CMD(op) ( \
SPIFC_A1_USER_CMD_ENABLE | \
FIELD_PREP(SPIFC_A1_USER_CMD_CODE, (op)->cmd.opcode) | \
FIELD_PREP(SPIFC_A1_USER_CMD_MODE, ilog2((op)->cmd.buswidth)))
#define SPIFC_A1_USER_ADDR(op) ( \
SPIFC_A1_USER_ADDR_ENABLE | \
FIELD_PREP(SPIFC_A1_USER_ADDR_MODE, ilog2((op)->addr.buswidth)) | \
FIELD_PREP(SPIFC_A1_USER_ADDR_BYTES, (op)->addr.nbytes - 1))
#define SPIFC_A1_USER_DUMMY(op) ( \
SPIFC_A1_USER_DUMMY_ENABLE | \
FIELD_PREP(SPIFC_A1_USER_DUMMY_MODE, ilog2((op)->dummy.buswidth)) | \
FIELD_PREP(SPIFC_A1_USER_DUMMY_CLK_SYCLES, (op)->dummy.nbytes << 3))
#define SPIFC_A1_TSLCH_VAL FIELD_PREP(SPIFC_A1_TSLCH, 1)
#define SPIFC_A1_TCLSH_VAL FIELD_PREP(SPIFC_A1_TCLSH, 1)
#define SPIFC_A1_TSHWL_VAL FIELD_PREP(SPIFC_A1_TSHWL, 7)
#define SPIFC_A1_TSHSL2_VAL FIELD_PREP(SPIFC_A1_TSHSL2, 7)
#define SPIFC_A1_TSHSL1_VAL FIELD_PREP(SPIFC_A1_TSHSL1, 7)
#define SPIFC_A1_TWHSL_VAL FIELD_PREP(SPIFC_A1_TWHSL, 2)
#define SPIFC_A1_ACTIMING0_VAL (SPIFC_A1_TSLCH_VAL | SPIFC_A1_TCLSH_VAL | \
SPIFC_A1_TSHWL_VAL | SPIFC_A1_TSHSL2_VAL | \
SPIFC_A1_TSHSL1_VAL | SPIFC_A1_TWHSL_VAL)
struct amlogic_spifc_a1 {
struct spi_controller *ctrl;
struct clk *clk;
struct device *dev;
void __iomem *base;
u32 curr_speed_hz;
};
static int amlogic_spifc_a1_request(struct amlogic_spifc_a1 *spifc, bool read)
{
u32 mask = SPIFC_A1_USER_REQUEST_FINISH |
(read ? SPIFC_A1_USER_DATA_UPDATED : 0);
u32 val;
writel(SPIFC_A1_USER_REQUEST_ENABLE,
spifc->base + SPIFC_A1_USER_CTRL0_REG);
return readl_poll_timeout(spifc->base + SPIFC_A1_USER_CTRL0_REG,
val, (val & mask) == mask, 0,
200 * USEC_PER_MSEC);
}
static void amlogic_spifc_a1_drain_buffer(struct amlogic_spifc_a1 *spifc,
char *buf, u32 len)
{
u32 data;
const u32 count = len / sizeof(data);
const u32 pad = len % sizeof(data);
writel(SPIFC_A1_DBUF_AUTO_UPDATE_ADDR,
spifc->base + SPIFC_A1_DBUF_CTRL_REG);
ioread32_rep(spifc->base + SPIFC_A1_DBUF_DATA_REG, buf, count);
if (pad) {
data = readl(spifc->base + SPIFC_A1_DBUF_DATA_REG);
memcpy(buf + len - pad, &data, pad);
}
}
static void amlogic_spifc_a1_fill_buffer(struct amlogic_spifc_a1 *spifc,
const char *buf, u32 len)
{
u32 data;
const u32 count = len / sizeof(data);
const u32 pad = len % sizeof(data);
writel(SPIFC_A1_DBUF_DIR | SPIFC_A1_DBUF_AUTO_UPDATE_ADDR,
spifc->base + SPIFC_A1_DBUF_CTRL_REG);
iowrite32_rep(spifc->base + SPIFC_A1_DBUF_DATA_REG, buf, count);
if (pad) {
memcpy(&data, buf + len - pad, pad);
writel(data, spifc->base + SPIFC_A1_DBUF_DATA_REG);
}
}
static void amlogic_spifc_a1_user_init(struct amlogic_spifc_a1 *spifc)
{
writel(0, spifc->base + SPIFC_A1_USER_CTRL0_REG);
writel(0, spifc->base + SPIFC_A1_USER_CTRL1_REG);
writel(0, spifc->base + SPIFC_A1_USER_CTRL2_REG);
writel(0, spifc->base + SPIFC_A1_USER_CTRL3_REG);
}
static void amlogic_spifc_a1_set_cmd(struct amlogic_spifc_a1 *spifc,
u32 cmd_cfg)
{
u32 val;
val = readl(spifc->base + SPIFC_A1_USER_CTRL1_REG);
val &= ~(SPIFC_A1_USER_CMD_MODE | SPIFC_A1_USER_CMD_CODE);
val |= cmd_cfg;
writel(val, spifc->base + SPIFC_A1_USER_CTRL1_REG);
}
static void amlogic_spifc_a1_set_addr(struct amlogic_spifc_a1 *spifc, u32 addr,
u32 addr_cfg)
{
u32 val;
writel(addr, spifc->base + SPIFC_A1_USER_ADDR_REG);
val = readl(spifc->base + SPIFC_A1_USER_CTRL1_REG);
val &= ~(SPIFC_A1_USER_ADDR_MODE | SPIFC_A1_USER_ADDR_BYTES);
val |= addr_cfg;
writel(val, spifc->base + SPIFC_A1_USER_CTRL1_REG);
}
static void amlogic_spifc_a1_set_dummy(struct amlogic_spifc_a1 *spifc,
u32 dummy_cfg)
{
u32 val = readl(spifc->base + SPIFC_A1_USER_CTRL2_REG);
val &= ~(SPIFC_A1_USER_DUMMY_MODE | SPIFC_A1_USER_DUMMY_CLK_SYCLES);
val |= dummy_cfg;
writel(val, spifc->base + SPIFC_A1_USER_CTRL2_REG);
}
static int amlogic_spifc_a1_read(struct amlogic_spifc_a1 *spifc, void *buf,
u32 size, u32 mode)
{
u32 val = readl(spifc->base + SPIFC_A1_USER_CTRL3_REG);
int ret;
val &= ~(SPIFC_A1_USER_DIN_MODE | SPIFC_A1_USER_DIN_BYTES);
val |= SPIFC_A1_USER_DIN_ENABLE;
val |= FIELD_PREP(SPIFC_A1_USER_DIN_MODE, mode);
val |= FIELD_PREP(SPIFC_A1_USER_DIN_BYTES, size);
writel(val, spifc->base + SPIFC_A1_USER_CTRL3_REG);
ret = amlogic_spifc_a1_request(spifc, true);
if (!ret)
amlogic_spifc_a1_drain_buffer(spifc, buf, size);
return ret;
}
static int amlogic_spifc_a1_write(struct amlogic_spifc_a1 *spifc,
const void *buf, u32 size, u32 mode)
{
u32 val;
amlogic_spifc_a1_fill_buffer(spifc, buf, size);
val = readl(spifc->base + SPIFC_A1_USER_CTRL1_REG);
val &= ~(SPIFC_A1_USER_DOUT_MODE | SPIFC_A1_USER_DOUT_BYTES);
val |= FIELD_PREP(SPIFC_A1_USER_DOUT_MODE, mode);
val |= FIELD_PREP(SPIFC_A1_USER_DOUT_BYTES, size);
val |= SPIFC_A1_USER_DOUT_ENABLE;
writel(val, spifc->base + SPIFC_A1_USER_CTRL1_REG);
return amlogic_spifc_a1_request(spifc, false);
}
static int amlogic_spifc_a1_set_freq(struct amlogic_spifc_a1 *spifc, u32 freq)
{
int ret;
if (freq == spifc->curr_speed_hz)
return 0;
ret = clk_set_rate(spifc->clk, freq);
if (ret)
return ret;
spifc->curr_speed_hz = freq;
return 0;
}
static int amlogic_spifc_a1_exec_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct amlogic_spifc_a1 *spifc =
spi_controller_get_devdata(mem->spi->controller);
size_t data_size = op->data.nbytes;
int ret;
ret = amlogic_spifc_a1_set_freq(spifc, op->max_freq);
if (ret)
return ret;
amlogic_spifc_a1_user_init(spifc);
amlogic_spifc_a1_set_cmd(spifc, SPIFC_A1_USER_CMD(op));
if (op->addr.nbytes)
amlogic_spifc_a1_set_addr(spifc, op->addr.val,
SPIFC_A1_USER_ADDR(op));
if (op->dummy.nbytes)
amlogic_spifc_a1_set_dummy(spifc, SPIFC_A1_USER_DUMMY(op));
if (data_size) {
u32 mode = ilog2(op->data.buswidth);
writel(0, spifc->base + SPIFC_A1_USER_DBUF_ADDR_REG);
if (op->data.dir == SPI_MEM_DATA_IN)
ret = amlogic_spifc_a1_read(spifc, op->data.buf.in,
data_size, mode);
else
ret = amlogic_spifc_a1_write(spifc, op->data.buf.out,
data_size, mode);
} else {
ret = amlogic_spifc_a1_request(spifc, false);
}
return ret;
}
static int amlogic_spifc_a1_adjust_op_size(struct spi_mem *mem,
struct spi_mem_op *op)
{
op->data.nbytes = min(op->data.nbytes, SPIFC_A1_BUFFER_SIZE);
return 0;
}
static void amlogic_spifc_a1_hw_init(struct amlogic_spifc_a1 *spifc)
{
u32 regv;
regv = readl(spifc->base + SPIFC_A1_AHB_REQ_CTRL_REG);
regv &= ~(SPIFC_A1_AHB_REQ_ENABLE);
writel(regv, spifc->base + SPIFC_A1_AHB_REQ_CTRL_REG);
regv = readl(spifc->base + SPIFC_A1_AHB_CTRL_REG);
regv &= ~(SPIFC_A1_AHB_BUS_EN);
writel(regv, spifc->base + SPIFC_A1_AHB_CTRL_REG);
writel(SPIFC_A1_ACTIMING0_VAL, spifc->base + SPIFC_A1_ACTIMING0_REG);
writel(0, spifc->base + SPIFC_A1_USER_DBUF_ADDR_REG);
}
static const struct spi_controller_mem_ops amlogic_spifc_a1_mem_ops = {
.exec_op = amlogic_spifc_a1_exec_op,
.adjust_op_size = amlogic_spifc_a1_adjust_op_size,
};
static const struct spi_controller_mem_caps amlogic_spifc_a1_mem_caps = {
.per_op_freq = true,
};
static int amlogic_spifc_a1_probe(struct platform_device *pdev)
{
struct spi_controller *ctrl;
struct amlogic_spifc_a1 *spifc;
int ret;
ctrl = devm_spi_alloc_host(&pdev->dev, sizeof(*spifc));
if (!ctrl)
return -ENOMEM;
spifc = spi_controller_get_devdata(ctrl);
platform_set_drvdata(pdev, spifc);
spifc->dev = &pdev->dev;
spifc->ctrl = ctrl;
spifc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(spifc->base))
return PTR_ERR(spifc->base);
spifc->clk = devm_clk_get_enabled(spifc->dev, NULL);
if (IS_ERR(spifc->clk))
return dev_err_probe(spifc->dev, PTR_ERR(spifc->clk),
"unable to get clock\n");
amlogic_spifc_a1_hw_init(spifc);
pm_runtime_set_autosuspend_delay(spifc->dev, 500);
pm_runtime_use_autosuspend(spifc->dev);
devm_pm_runtime_enable(spifc->dev);
ctrl->num_chipselect = 1;
ctrl->dev.of_node = pdev->dev.of_node;
ctrl->bits_per_word_mask = SPI_BPW_MASK(8);
ctrl->auto_runtime_pm = true;
ctrl->mem_ops = &amlogic_spifc_a1_mem_ops;
ctrl->mem_caps = &amlogic_spifc_a1_mem_caps;
ctrl->min_speed_hz = SPIFC_A1_MIN_HZ;
ctrl->max_speed_hz = SPIFC_A1_MAX_HZ;
ctrl->mode_bits = (SPI_RX_DUAL | SPI_TX_DUAL |
SPI_RX_QUAD | SPI_TX_QUAD);
ret = devm_spi_register_controller(spifc->dev, ctrl);
if (ret)
return dev_err_probe(spifc->dev, ret,
"failed to register spi controller\n");
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int amlogic_spifc_a1_suspend(struct device *dev)
{
struct amlogic_spifc_a1 *spifc = dev_get_drvdata(dev);
int ret;
ret = spi_controller_suspend(spifc->ctrl);
if (ret)
return ret;
if (!pm_runtime_suspended(dev))
clk_disable_unprepare(spifc->clk);
return 0;
}
static int amlogic_spifc_a1_resume(struct device *dev)
{
struct amlogic_spifc_a1 *spifc = dev_get_drvdata(dev);
int ret = 0;
if (!pm_runtime_suspended(dev)) {
ret = clk_prepare_enable(spifc->clk);
if (ret)
return ret;
}
amlogic_spifc_a1_hw_init(spifc);
ret = spi_controller_resume(spifc->ctrl);
if (ret)
clk_disable_unprepare(spifc->clk);
return ret;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM
static int amlogic_spifc_a1_runtime_suspend(struct device *dev)
{
struct amlogic_spifc_a1 *spifc = dev_get_drvdata(dev);
clk_disable_unprepare(spifc->clk);
return 0;
}
static int amlogic_spifc_a1_runtime_resume(struct device *dev)
{
struct amlogic_spifc_a1 *spifc = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(spifc->clk);
if (!ret)
amlogic_spifc_a1_hw_init(spifc);
return ret;
}
#endif /* CONFIG_PM */
static const struct dev_pm_ops amlogic_spifc_a1_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(amlogic_spifc_a1_suspend,
amlogic_spifc_a1_resume)
SET_RUNTIME_PM_OPS(amlogic_spifc_a1_runtime_suspend,
amlogic_spifc_a1_runtime_resume,
NULL)
};
#ifdef CONFIG_OF
static const struct of_device_id amlogic_spifc_a1_dt_match[] = {
{ .compatible = "amlogic,a1-spifc", },
{ },
};
MODULE_DEVICE_TABLE(of, amlogic_spifc_a1_dt_match);
#endif /* CONFIG_OF */
static struct platform_driver amlogic_spifc_a1_driver = {
.probe = amlogic_spifc_a1_probe,
.driver = {
.name = "amlogic-spifc-a1",
.of_match_table = of_match_ptr(amlogic_spifc_a1_dt_match),
.pm = &amlogic_spifc_a1_pm_ops,
},
};
module_platform_driver(amlogic_spifc_a1_driver);
MODULE_AUTHOR("Martin Kurbanov <mmkurbanov@sberdevices.ru>");
MODULE_DESCRIPTION("Amlogic A1 SPIFC driver");
MODULE_LICENSE("GPL");