linux-next/include/linux/cpu.h
Linus Torvalds 527eff227d - In the series "treewide: Refactor heap related implementation",
Kuan-Wei Chiu has significantly reworked the min_heap library code and
   has taught bcachefs to use the new more generic implementation.
 
 - Yury Norov's series "Cleanup cpumask.h inclusion in core headers"
   reworks the cpumask and nodemask headers to make things generally more
   rational.
 
 - Kuan-Wei Chiu has sent along some maintenance work against our sorting
   library code in the series "lib/sort: Optimizations and cleanups".
 
 - More library maintainance work from Christophe Jaillet in the series
   "Remove usage of the deprecated ida_simple_xx() API".
 
 - Ryusuke Konishi continues with the nilfs2 fixes and clanups in the
   series "nilfs2: eliminate the call to inode_attach_wb()".
 
 - Kuan-Ying Lee has some fixes to the gdb scripts in the series "Fix GDB
   command error".
 
 - Plus the usual shower of singleton patches all over the place.  Please
   see the relevant changelogs for details.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2GvwAKCRDdBJ7gKXxA
 jlf/AP48xP5ilIHbtpAKm2z+MvGuTxJQ5VSC0UXFacuCbc93lAEA+Yo+vOVRmh6j
 fQF2nVKyKLYfSz7yqmCyAaHWohIYLgg=
 =Stxz
 -----END PGP SIGNATURE-----

Merge tag 'mm-nonmm-stable-2024-07-21-15-07' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull non-MM updates from Andrew Morton:

 - In the series "treewide: Refactor heap related implementation",
   Kuan-Wei Chiu has significantly reworked the min_heap library code
   and has taught bcachefs to use the new more generic implementation.

 - Yury Norov's series "Cleanup cpumask.h inclusion in core headers"
   reworks the cpumask and nodemask headers to make things generally
   more rational.

 - Kuan-Wei Chiu has sent along some maintenance work against our
   sorting library code in the series "lib/sort: Optimizations and
   cleanups".

 - More library maintainance work from Christophe Jaillet in the series
   "Remove usage of the deprecated ida_simple_xx() API".

 - Ryusuke Konishi continues with the nilfs2 fixes and clanups in the
   series "nilfs2: eliminate the call to inode_attach_wb()".

 - Kuan-Ying Lee has some fixes to the gdb scripts in the series "Fix
   GDB command error".

 - Plus the usual shower of singleton patches all over the place. Please
   see the relevant changelogs for details.

* tag 'mm-nonmm-stable-2024-07-21-15-07' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (98 commits)
  ia64: scrub ia64 from poison.h
  watchdog/perf: properly initialize the turbo mode timestamp and rearm counter
  tsacct: replace strncpy() with strscpy()
  lib/bch.c: use swap() to improve code
  test_bpf: convert comma to semicolon
  init/modpost: conditionally check section mismatch to __meminit*
  init: remove unused __MEMINIT* macros
  nilfs2: Constify struct kobj_type
  nilfs2: avoid undefined behavior in nilfs_cnt32_ge macro
  math: rational: add missing MODULE_DESCRIPTION() macro
  lib/zlib: add missing MODULE_DESCRIPTION() macro
  fs: ufs: add MODULE_DESCRIPTION()
  lib/rbtree.c: fix the example typo
  ocfs2: add bounds checking to ocfs2_check_dir_entry()
  fs: add kernel-doc comments to ocfs2_prepare_orphan_dir()
  coredump: simplify zap_process()
  selftests/fpu: add missing MODULE_DESCRIPTION() macro
  compiler.h: simplify data_race() macro
  build-id: require program headers to be right after ELF header
  resource: add missing MODULE_DESCRIPTION()
  ...
2024-07-21 17:56:22 -07:00

207 lines
6.3 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* include/linux/cpu.h - generic cpu definition
*
* This is mainly for topological representation. We define the
* basic 'struct cpu' here, which can be embedded in per-arch
* definitions of processors.
*
* Basic handling of the devices is done in drivers/base/cpu.c
*
* CPUs are exported via sysfs in the devices/system/cpu
* directory.
*/
#ifndef _LINUX_CPU_H_
#define _LINUX_CPU_H_
#include <linux/node.h>
#include <linux/compiler.h>
#include <linux/cpuhotplug.h>
#include <linux/cpuhplock.h>
#include <linux/cpu_smt.h>
struct device;
struct device_node;
struct attribute_group;
struct cpu {
int node_id; /* The node which contains the CPU */
int hotpluggable; /* creates sysfs control file if hotpluggable */
struct device dev;
};
extern void boot_cpu_init(void);
extern void boot_cpu_hotplug_init(void);
extern void cpu_init(void);
extern void trap_init(void);
extern int register_cpu(struct cpu *cpu, int num);
extern struct device *get_cpu_device(unsigned cpu);
extern bool cpu_is_hotpluggable(unsigned cpu);
extern bool arch_match_cpu_phys_id(int cpu, u64 phys_id);
extern bool arch_find_n_match_cpu_physical_id(struct device_node *cpun,
int cpu, unsigned int *thread);
extern int cpu_add_dev_attr(struct device_attribute *attr);
extern void cpu_remove_dev_attr(struct device_attribute *attr);
extern int cpu_add_dev_attr_group(struct attribute_group *attrs);
extern void cpu_remove_dev_attr_group(struct attribute_group *attrs);
extern ssize_t cpu_show_meltdown(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_spectre_v1(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_spectre_v2(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_spec_store_bypass(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_l1tf(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_mds(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_tsx_async_abort(struct device *dev,
struct device_attribute *attr,
char *buf);
extern ssize_t cpu_show_itlb_multihit(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_mmio_stale_data(struct device *dev,
struct device_attribute *attr,
char *buf);
extern ssize_t cpu_show_retbleed(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_spec_rstack_overflow(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_gds(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_reg_file_data_sampling(struct device *dev,
struct device_attribute *attr, char *buf);
extern __printf(4, 5)
struct device *cpu_device_create(struct device *parent, void *drvdata,
const struct attribute_group **groups,
const char *fmt, ...);
extern bool arch_cpu_is_hotpluggable(int cpu);
extern int arch_register_cpu(int cpu);
extern void arch_unregister_cpu(int cpu);
#ifdef CONFIG_HOTPLUG_CPU
extern void unregister_cpu(struct cpu *cpu);
extern ssize_t arch_cpu_probe(const char *, size_t);
extern ssize_t arch_cpu_release(const char *, size_t);
#endif
#ifdef CONFIG_GENERIC_CPU_DEVICES
DECLARE_PER_CPU(struct cpu, cpu_devices);
#endif
/*
* These states are not related to the core CPU hotplug mechanism. They are
* used by various (sub)architectures to track internal state
*/
#define CPU_ONLINE 0x0002 /* CPU is up */
#define CPU_UP_PREPARE 0x0003 /* CPU coming up */
#define CPU_DEAD 0x0007 /* CPU dead */
#define CPU_DEAD_FROZEN 0x0008 /* CPU timed out on unplug */
#define CPU_POST_DEAD 0x0009 /* CPU successfully unplugged */
#define CPU_BROKEN 0x000B /* CPU did not die properly */
#ifdef CONFIG_SMP
extern bool cpuhp_tasks_frozen;
int add_cpu(unsigned int cpu);
int cpu_device_up(struct device *dev);
void notify_cpu_starting(unsigned int cpu);
extern void cpu_maps_update_begin(void);
extern void cpu_maps_update_done(void);
int bringup_hibernate_cpu(unsigned int sleep_cpu);
void bringup_nonboot_cpus(unsigned int max_cpus);
#else /* CONFIG_SMP */
#define cpuhp_tasks_frozen 0
static inline void cpu_maps_update_begin(void)
{
}
static inline void cpu_maps_update_done(void)
{
}
static inline int add_cpu(unsigned int cpu) { return 0;}
#endif /* CONFIG_SMP */
extern const struct bus_type cpu_subsys;
#ifdef CONFIG_PM_SLEEP_SMP
extern int freeze_secondary_cpus(int primary);
extern void thaw_secondary_cpus(void);
static inline int suspend_disable_secondary_cpus(void)
{
int cpu = 0;
if (IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU))
cpu = -1;
return freeze_secondary_cpus(cpu);
}
static inline void suspend_enable_secondary_cpus(void)
{
return thaw_secondary_cpus();
}
#else /* !CONFIG_PM_SLEEP_SMP */
static inline void thaw_secondary_cpus(void) {}
static inline int suspend_disable_secondary_cpus(void) { return 0; }
static inline void suspend_enable_secondary_cpus(void) { }
#endif /* !CONFIG_PM_SLEEP_SMP */
void __noreturn cpu_startup_entry(enum cpuhp_state state);
void cpu_idle_poll_ctrl(bool enable);
bool cpu_in_idle(unsigned long pc);
void arch_cpu_idle(void);
void arch_cpu_idle_prepare(void);
void arch_cpu_idle_enter(void);
void arch_cpu_idle_exit(void);
void arch_tick_broadcast_enter(void);
void arch_tick_broadcast_exit(void);
void __noreturn arch_cpu_idle_dead(void);
#ifdef CONFIG_ARCH_HAS_CPU_FINALIZE_INIT
void arch_cpu_finalize_init(void);
#else
static inline void arch_cpu_finalize_init(void) { }
#endif
void play_idle_precise(u64 duration_ns, u64 latency_ns);
static inline void play_idle(unsigned long duration_us)
{
play_idle_precise(duration_us * NSEC_PER_USEC, U64_MAX);
}
#ifdef CONFIG_HOTPLUG_CPU
void cpuhp_report_idle_dead(void);
#else
static inline void cpuhp_report_idle_dead(void) { }
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
#ifdef CONFIG_CPU_MITIGATIONS
extern bool cpu_mitigations_off(void);
extern bool cpu_mitigations_auto_nosmt(void);
#else
static inline bool cpu_mitigations_off(void)
{
return true;
}
static inline bool cpu_mitigations_auto_nosmt(void)
{
return false;
}
#endif
#endif /* _LINUX_CPU_H_ */