linux-next/include/linux/fortify-string.h
Kees Cook 239d87327d fortify: Hide run-time copy size from value range tracking
GCC performs value range tracking for variables as a way to provide better
diagnostics. One place this is regularly seen is with warnings associated
with bounds-checking, e.g. -Wstringop-overflow, -Wstringop-overread,
-Warray-bounds, etc. In order to keep the signal-to-noise ratio high,
warnings aren't emitted when a value range spans the entire value range
representable by a given variable. For example:

	unsigned int len;
	char dst[8];
	...
	memcpy(dst, src, len);

If len's value is unknown, it has the full "unsigned int" range of [0,
UINT_MAX], and GCC's compile-time bounds checks against memcpy() will
be ignored. However, when a code path has been able to narrow the range:

	if (len > 16)
		return;
	memcpy(dst, src, len);

Then the range will be updated for the execution path. Above, len is
now [0, 16] when reading memcpy(), so depending on other optimizations,
we might see a -Wstringop-overflow warning like:

	error: '__builtin_memcpy' writing between 9 and 16 bytes into region of size 8 [-Werror=stringop-overflow]

When building with CONFIG_FORTIFY_SOURCE, the fortified run-time bounds
checking can appear to narrow value ranges of lengths for memcpy(),
depending on how the compiler constructs the execution paths during
optimization passes, due to the checks against the field sizes. For
example:

	if (p_size_field != SIZE_MAX &&
	    p_size != p_size_field && p_size_field < size)

As intentionally designed, these checks only affect the kernel warnings
emitted at run-time and do not block the potentially overflowing memcpy(),
so GCC thinks it needs to produce a warning about the resulting value
range that might be reaching the memcpy().

We have seen this manifest a few times now, with the most recent being
with cpumasks:

In function ‘bitmap_copy’,
    inlined from ‘cpumask_copy’ at ./include/linux/cpumask.h:839:2,
    inlined from ‘__padata_set_cpumasks’ at kernel/padata.c:730:2:
./include/linux/fortify-string.h:114:33: error: ‘__builtin_memcpy’ reading between 257 and 536870904 bytes from a region of size 256 [-Werror=stringop-overread]
  114 | #define __underlying_memcpy     __builtin_memcpy
      |                                 ^
./include/linux/fortify-string.h:633:9: note: in expansion of macro ‘__underlying_memcpy’
  633 |         __underlying_##op(p, q, __fortify_size);                        \
      |         ^~~~~~~~~~~~~
./include/linux/fortify-string.h:678:26: note: in expansion of macro ‘__fortify_memcpy_chk’
  678 | #define memcpy(p, q, s)  __fortify_memcpy_chk(p, q, s,                  \
      |                          ^~~~~~~~~~~~~~~~~~~~
./include/linux/bitmap.h:259:17: note: in expansion of macro ‘memcpy’
  259 |                 memcpy(dst, src, len);
      |                 ^~~~~~
kernel/padata.c: In function ‘__padata_set_cpumasks’:
kernel/padata.c:713:48: note: source object ‘pcpumask’ of size [0, 256]
  713 |                                  cpumask_var_t pcpumask,
      |                                  ~~~~~~~~~~~~~~^~~~~~~~

This warning is _not_ emitted when CONFIG_FORTIFY_SOURCE is disabled,
and with the recent -fdiagnostics-details we can confirm the origin of
the warning is due to FORTIFY's bounds checking:

../include/linux/bitmap.h:259:17: note: in expansion of macro 'memcpy'
  259 |                 memcpy(dst, src, len);
      |                 ^~~~~~
  '__padata_set_cpumasks': events 1-2
../include/linux/fortify-string.h:613:36:
  612 |         if (p_size_field != SIZE_MAX &&
      |             ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  613 |             p_size != p_size_field && p_size_field < size)
      |             ~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
      |                                    |
      |                                    (1) when the condition is evaluated to false
      |                                    (2) when the condition is evaluated to true
  '__padata_set_cpumasks': event 3
  114 | #define __underlying_memcpy     __builtin_memcpy
      |                                 ^
      |                                 |
      |                                 (3) out of array bounds here

Note that the cpumask warning started appearing since bitmap functions
were recently marked __always_inline in commit ed8cd2b3bd ("bitmap:
Switch from inline to __always_inline"), which allowed GCC to gain
visibility into the variables as they passed through the FORTIFY
implementation.

In order to silence these false positives but keep otherwise deterministic
compile-time warnings intact, hide the length variable from GCC with
OPTIMIZE_HIDE_VAR() before calling the builtin memcpy.

Additionally add a comment about why all the macro args have copies with
const storage.

Reported-by: "Thomas Weißschuh" <linux@weissschuh.net>
Closes: https://lore.kernel.org/all/db7190c8-d17f-4a0d-bc2f-5903c79f36c2@t-8ch.de/
Reported-by: Nilay Shroff <nilay@linux.ibm.com>
Closes: https://lore.kernel.org/all/20241112124127.1666300-1-nilay@linux.ibm.com/
Tested-by: Nilay Shroff <nilay@linux.ibm.com>
Acked-by: Yury Norov <yury.norov@gmail.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Kees Cook <kees@kernel.org>
2024-12-16 16:23:07 -08:00

820 lines
29 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_FORTIFY_STRING_H_
#define _LINUX_FORTIFY_STRING_H_
#include <linux/bitfield.h>
#include <linux/bug.h>
#include <linux/const.h>
#include <linux/limits.h>
#define __FORTIFY_INLINE extern __always_inline __gnu_inline __overloadable
#define __RENAME(x) __asm__(#x)
#define FORTIFY_REASON_DIR(r) FIELD_GET(BIT(0), r)
#define FORTIFY_REASON_FUNC(r) FIELD_GET(GENMASK(7, 1), r)
#define FORTIFY_REASON(func, write) (FIELD_PREP(BIT(0), write) | \
FIELD_PREP(GENMASK(7, 1), func))
/* Overridden by KUnit tests. */
#ifndef fortify_panic
# define fortify_panic(func, write, avail, size, retfail) \
__fortify_panic(FORTIFY_REASON(func, write), avail, size)
#endif
#ifndef fortify_warn_once
# define fortify_warn_once(x...) WARN_ONCE(x)
#endif
#define FORTIFY_READ 0
#define FORTIFY_WRITE 1
#define EACH_FORTIFY_FUNC(macro) \
macro(strncpy), \
macro(strnlen), \
macro(strlen), \
macro(strscpy), \
macro(strlcat), \
macro(strcat), \
macro(strncat), \
macro(memset), \
macro(memcpy), \
macro(memmove), \
macro(memscan), \
macro(memcmp), \
macro(memchr), \
macro(memchr_inv), \
macro(kmemdup), \
macro(strcpy), \
macro(UNKNOWN),
#define MAKE_FORTIFY_FUNC(func) FORTIFY_FUNC_##func
enum fortify_func {
EACH_FORTIFY_FUNC(MAKE_FORTIFY_FUNC)
};
void __fortify_report(const u8 reason, const size_t avail, const size_t size);
void __fortify_panic(const u8 reason, const size_t avail, const size_t size) __cold __noreturn;
void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)");
void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)");
void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?");
void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)");
void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?");
#define __compiletime_strlen(p) \
({ \
char *__p = (char *)(p); \
size_t __ret = SIZE_MAX; \
const size_t __p_size = __member_size(p); \
if (__p_size != SIZE_MAX && \
__builtin_constant_p(*__p)) { \
size_t __p_len = __p_size - 1; \
if (__builtin_constant_p(__p[__p_len]) && \
__p[__p_len] == '\0') \
__ret = __builtin_strlen(__p); \
} \
__ret; \
})
#if defined(__SANITIZE_ADDRESS__)
#if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset);
extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove);
extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy);
#elif defined(CONFIG_KASAN_GENERIC)
extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(__asan_memset);
extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(__asan_memmove);
extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(__asan_memcpy);
#else /* CONFIG_KASAN_SW_TAGS */
extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(__hwasan_memset);
extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(__hwasan_memmove);
extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(__hwasan_memcpy);
#endif
extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr);
extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp);
extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat);
extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy);
extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen);
extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat);
extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy);
#else
#if defined(__SANITIZE_MEMORY__)
/*
* For KMSAN builds all memcpy/memset/memmove calls should be replaced by the
* corresponding __msan_XXX functions.
*/
#include <linux/kmsan_string.h>
#define __underlying_memcpy __msan_memcpy
#define __underlying_memmove __msan_memmove
#define __underlying_memset __msan_memset
#else
#define __underlying_memcpy __builtin_memcpy
#define __underlying_memmove __builtin_memmove
#define __underlying_memset __builtin_memset
#endif
#define __underlying_memchr __builtin_memchr
#define __underlying_memcmp __builtin_memcmp
#define __underlying_strcat __builtin_strcat
#define __underlying_strcpy __builtin_strcpy
#define __underlying_strlen __builtin_strlen
#define __underlying_strncat __builtin_strncat
#define __underlying_strncpy __builtin_strncpy
#endif
/**
* unsafe_memcpy - memcpy implementation with no FORTIFY bounds checking
*
* @dst: Destination memory address to write to
* @src: Source memory address to read from
* @bytes: How many bytes to write to @dst from @src
* @justification: Free-form text or comment describing why the use is needed
*
* This should be used for corner cases where the compiler cannot do the
* right thing, or during transitions between APIs, etc. It should be used
* very rarely, and includes a place for justification detailing where bounds
* checking has happened, and why existing solutions cannot be employed.
*/
#define unsafe_memcpy(dst, src, bytes, justification) \
__underlying_memcpy(dst, src, bytes)
/*
* Clang's use of __builtin_*object_size() within inlines needs hinting via
* __pass_*object_size(). The preference is to only ever use type 1 (member
* size, rather than struct size), but there remain some stragglers using
* type 0 that will be converted in the future.
*/
#if __has_builtin(__builtin_dynamic_object_size)
#define POS __pass_dynamic_object_size(1)
#define POS0 __pass_dynamic_object_size(0)
#else
#define POS __pass_object_size(1)
#define POS0 __pass_object_size(0)
#endif
#define __compiletime_lessthan(bounds, length) ( \
__builtin_constant_p((bounds) < (length)) && \
(bounds) < (length) \
)
/**
* strncpy - Copy a string to memory with non-guaranteed NUL padding
*
* @p: pointer to destination of copy
* @q: pointer to NUL-terminated source string to copy
* @size: bytes to write at @p
*
* If strlen(@q) >= @size, the copy of @q will stop after @size bytes,
* and @p will NOT be NUL-terminated
*
* If strlen(@q) < @size, following the copy of @q, trailing NUL bytes
* will be written to @p until @size total bytes have been written.
*
* Do not use this function. While FORTIFY_SOURCE tries to avoid
* over-reads of @q, it cannot defend against writing unterminated
* results to @p. Using strncpy() remains ambiguous and fragile.
* Instead, please choose an alternative, so that the expectation
* of @p's contents is unambiguous:
*
* +--------------------+--------------------+------------+
* | **p** needs to be: | padded to **size** | not padded |
* +====================+====================+============+
* | NUL-terminated | strscpy_pad() | strscpy() |
* +--------------------+--------------------+------------+
* | not NUL-terminated | strtomem_pad() | strtomem() |
* +--------------------+--------------------+------------+
*
* Note strscpy*()'s differing return values for detecting truncation,
* and strtomem*()'s expectation that the destination is marked with
* __nonstring when it is a character array.
*
*/
__FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3)
char *strncpy(char * const POS p, const char *q, __kernel_size_t size)
{
const size_t p_size = __member_size(p);
if (__compiletime_lessthan(p_size, size))
__write_overflow();
if (p_size < size)
fortify_panic(FORTIFY_FUNC_strncpy, FORTIFY_WRITE, p_size, size, p);
return __underlying_strncpy(p, q, size);
}
extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen);
/**
* strnlen - Return bounded count of characters in a NUL-terminated string
*
* @p: pointer to NUL-terminated string to count.
* @maxlen: maximum number of characters to count.
*
* Returns number of characters in @p (NOT including the final NUL), or
* @maxlen, if no NUL has been found up to there.
*
*/
__FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen)
{
const size_t p_size = __member_size(p);
const size_t p_len = __compiletime_strlen(p);
size_t ret;
/* We can take compile-time actions when maxlen is const. */
if (__builtin_constant_p(maxlen) && p_len != SIZE_MAX) {
/* If p is const, we can use its compile-time-known len. */
if (maxlen >= p_size)
return p_len;
}
/* Do not check characters beyond the end of p. */
ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size);
if (p_size <= ret && maxlen != ret)
fortify_panic(FORTIFY_FUNC_strnlen, FORTIFY_READ, p_size, ret + 1, ret);
return ret;
}
/*
* Defined after fortified strnlen to reuse it. However, it must still be
* possible for strlen() to be used on compile-time strings for use in
* static initializers (i.e. as a constant expression).
*/
/**
* strlen - Return count of characters in a NUL-terminated string
*
* @p: pointer to NUL-terminated string to count.
*
* Do not use this function unless the string length is known at
* compile-time. When @p is unterminated, this function may crash
* or return unexpected counts that could lead to memory content
* exposures. Prefer strnlen().
*
* Returns number of characters in @p (NOT including the final NUL).
*
*/
#define strlen(p) \
__builtin_choose_expr(__is_constexpr(__builtin_strlen(p)), \
__builtin_strlen(p), __fortify_strlen(p))
__FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1)
__kernel_size_t __fortify_strlen(const char * const POS p)
{
const size_t p_size = __member_size(p);
__kernel_size_t ret;
/* Give up if we don't know how large p is. */
if (p_size == SIZE_MAX)
return __underlying_strlen(p);
ret = strnlen(p, p_size);
if (p_size <= ret)
fortify_panic(FORTIFY_FUNC_strlen, FORTIFY_READ, p_size, ret + 1, ret);
return ret;
}
/* Defined after fortified strnlen() to reuse it. */
extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(sized_strscpy);
__FORTIFY_INLINE ssize_t sized_strscpy(char * const POS p, const char * const POS q, size_t size)
{
/* Use string size rather than possible enclosing struct size. */
const size_t p_size = __member_size(p);
const size_t q_size = __member_size(q);
size_t len;
/* If we cannot get size of p and q default to call strscpy. */
if (p_size == SIZE_MAX && q_size == SIZE_MAX)
return __real_strscpy(p, q, size);
/*
* If size can be known at compile time and is greater than
* p_size, generate a compile time write overflow error.
*/
if (__compiletime_lessthan(p_size, size))
__write_overflow();
/* Short-circuit for compile-time known-safe lengths. */
if (__compiletime_lessthan(p_size, SIZE_MAX)) {
len = __compiletime_strlen(q);
if (len < SIZE_MAX && __compiletime_lessthan(len, size)) {
__underlying_memcpy(p, q, len + 1);
return len;
}
}
/*
* This call protects from read overflow, because len will default to q
* length if it smaller than size.
*/
len = strnlen(q, size);
/*
* If len equals size, we will copy only size bytes which leads to
* -E2BIG being returned.
* Otherwise we will copy len + 1 because of the final '\O'.
*/
len = len == size ? size : len + 1;
/*
* Generate a runtime write overflow error if len is greater than
* p_size.
*/
if (p_size < len)
fortify_panic(FORTIFY_FUNC_strscpy, FORTIFY_WRITE, p_size, len, -E2BIG);
/*
* We can now safely call vanilla strscpy because we are protected from:
* 1. Read overflow thanks to call to strnlen().
* 2. Write overflow thanks to above ifs.
*/
return __real_strscpy(p, q, len);
}
/* Defined after fortified strlen() to reuse it. */
extern size_t __real_strlcat(char *p, const char *q, size_t avail) __RENAME(strlcat);
/**
* strlcat - Append a string to an existing string
*
* @p: pointer to %NUL-terminated string to append to
* @q: pointer to %NUL-terminated string to append from
* @avail: Maximum bytes available in @p
*
* Appends %NUL-terminated string @q after the %NUL-terminated
* string at @p, but will not write beyond @avail bytes total,
* potentially truncating the copy from @q. @p will stay
* %NUL-terminated only if a %NUL already existed within
* the @avail bytes of @p. If so, the resulting number of
* bytes copied from @q will be at most "@avail - strlen(@p) - 1".
*
* Do not use this function. While FORTIFY_SOURCE tries to avoid
* read and write overflows, this is only possible when the sizes
* of @p and @q are known to the compiler. Prefer building the
* string with formatting, via scnprintf(), seq_buf, or similar.
*
* Returns total bytes that _would_ have been contained by @p
* regardless of truncation, similar to snprintf(). If return
* value is >= @avail, the string has been truncated.
*
*/
__FORTIFY_INLINE
size_t strlcat(char * const POS p, const char * const POS q, size_t avail)
{
const size_t p_size = __member_size(p);
const size_t q_size = __member_size(q);
size_t p_len, copy_len;
size_t actual, wanted;
/* Give up immediately if both buffer sizes are unknown. */
if (p_size == SIZE_MAX && q_size == SIZE_MAX)
return __real_strlcat(p, q, avail);
p_len = strnlen(p, avail);
copy_len = strlen(q);
wanted = actual = p_len + copy_len;
/* Cannot append any more: report truncation. */
if (avail <= p_len)
return wanted;
/* Give up if string is already overflowed. */
if (p_size <= p_len)
fortify_panic(FORTIFY_FUNC_strlcat, FORTIFY_READ, p_size, p_len + 1, wanted);
if (actual >= avail) {
copy_len = avail - p_len - 1;
actual = p_len + copy_len;
}
/* Give up if copy will overflow. */
if (p_size <= actual)
fortify_panic(FORTIFY_FUNC_strlcat, FORTIFY_WRITE, p_size, actual + 1, wanted);
__underlying_memcpy(p + p_len, q, copy_len);
p[actual] = '\0';
return wanted;
}
/* Defined after fortified strlcat() to reuse it. */
/**
* strcat - Append a string to an existing string
*
* @p: pointer to NUL-terminated string to append to
* @q: pointer to NUL-terminated source string to append from
*
* Do not use this function. While FORTIFY_SOURCE tries to avoid
* read and write overflows, this is only possible when the
* destination buffer size is known to the compiler. Prefer
* building the string with formatting, via scnprintf() or similar.
* At the very least, use strncat().
*
* Returns @p.
*
*/
__FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2)
char *strcat(char * const POS p, const char *q)
{
const size_t p_size = __member_size(p);
const size_t wanted = strlcat(p, q, p_size);
if (p_size <= wanted)
fortify_panic(FORTIFY_FUNC_strcat, FORTIFY_WRITE, p_size, wanted + 1, p);
return p;
}
/**
* strncat - Append a string to an existing string
*
* @p: pointer to NUL-terminated string to append to
* @q: pointer to source string to append from
* @count: Maximum bytes to read from @q
*
* Appends at most @count bytes from @q (stopping at the first
* NUL byte) after the NUL-terminated string at @p. @p will be
* NUL-terminated.
*
* Do not use this function. While FORTIFY_SOURCE tries to avoid
* read and write overflows, this is only possible when the sizes
* of @p and @q are known to the compiler. Prefer building the
* string with formatting, via scnprintf() or similar.
*
* Returns @p.
*
*/
/* Defined after fortified strlen() and strnlen() to reuse them. */
__FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3)
char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count)
{
const size_t p_size = __member_size(p);
const size_t q_size = __member_size(q);
size_t p_len, copy_len, total;
if (p_size == SIZE_MAX && q_size == SIZE_MAX)
return __underlying_strncat(p, q, count);
p_len = strlen(p);
copy_len = strnlen(q, count);
total = p_len + copy_len + 1;
if (p_size < total)
fortify_panic(FORTIFY_FUNC_strncat, FORTIFY_WRITE, p_size, total, p);
__underlying_memcpy(p + p_len, q, copy_len);
p[p_len + copy_len] = '\0';
return p;
}
__FORTIFY_INLINE bool fortify_memset_chk(__kernel_size_t size,
const size_t p_size,
const size_t p_size_field)
{
if (__builtin_constant_p(size)) {
/*
* Length argument is a constant expression, so we
* can perform compile-time bounds checking where
* buffer sizes are also known at compile time.
*/
/* Error when size is larger than enclosing struct. */
if (__compiletime_lessthan(p_size_field, p_size) &&
__compiletime_lessthan(p_size, size))
__write_overflow();
/* Warn when write size is larger than dest field. */
if (__compiletime_lessthan(p_size_field, size))
__write_overflow_field(p_size_field, size);
}
/*
* At this point, length argument may not be a constant expression,
* so run-time bounds checking can be done where buffer sizes are
* known. (This is not an "else" because the above checks may only
* be compile-time warnings, and we want to still warn for run-time
* overflows.)
*/
/*
* Always stop accesses beyond the struct that contains the
* field, when the buffer's remaining size is known.
* (The SIZE_MAX test is to optimize away checks where the buffer
* lengths are unknown.)
*/
if (p_size != SIZE_MAX && p_size < size)
fortify_panic(FORTIFY_FUNC_memset, FORTIFY_WRITE, p_size, size, true);
return false;
}
#define __fortify_memset_chk(p, c, size, p_size, p_size_field) ({ \
size_t __fortify_size = (size_t)(size); \
fortify_memset_chk(__fortify_size, p_size, p_size_field), \
__underlying_memset(p, c, __fortify_size); \
})
/*
* __struct_size() vs __member_size() must be captured here to avoid
* evaluating argument side-effects further into the macro layers.
*/
#ifndef CONFIG_KMSAN
#define memset(p, c, s) __fortify_memset_chk(p, c, s, \
__struct_size(p), __member_size(p))
#endif
/*
* To make sure the compiler can enforce protection against buffer overflows,
* memcpy(), memmove(), and memset() must not be used beyond individual
* struct members. If you need to copy across multiple members, please use
* struct_group() to create a named mirror of an anonymous struct union.
* (e.g. see struct sk_buff.) Read overflow checking is currently only
* done when a write overflow is also present, or when building with W=1.
*
* Mitigation coverage matrix
* Bounds checking at:
* +-------+-------+-------+-------+
* | Compile time | Run time |
* memcpy() argument sizes: | write | read | write | read |
* dest source length +-------+-------+-------+-------+
* memcpy(known, known, constant) | y | y | n/a | n/a |
* memcpy(known, unknown, constant) | y | n | n/a | V |
* memcpy(known, known, dynamic) | n | n | B | B |
* memcpy(known, unknown, dynamic) | n | n | B | V |
* memcpy(unknown, known, constant) | n | y | V | n/a |
* memcpy(unknown, unknown, constant) | n | n | V | V |
* memcpy(unknown, known, dynamic) | n | n | V | B |
* memcpy(unknown, unknown, dynamic) | n | n | V | V |
* +-------+-------+-------+-------+
*
* y = perform deterministic compile-time bounds checking
* n = cannot perform deterministic compile-time bounds checking
* n/a = no run-time bounds checking needed since compile-time deterministic
* B = can perform run-time bounds checking (currently unimplemented)
* V = vulnerable to run-time overflow (will need refactoring to solve)
*
*/
__FORTIFY_INLINE bool fortify_memcpy_chk(__kernel_size_t size,
const size_t p_size,
const size_t q_size,
const size_t p_size_field,
const size_t q_size_field,
const u8 func)
{
if (__builtin_constant_p(size)) {
/*
* Length argument is a constant expression, so we
* can perform compile-time bounds checking where
* buffer sizes are also known at compile time.
*/
/* Error when size is larger than enclosing struct. */
if (__compiletime_lessthan(p_size_field, p_size) &&
__compiletime_lessthan(p_size, size))
__write_overflow();
if (__compiletime_lessthan(q_size_field, q_size) &&
__compiletime_lessthan(q_size, size))
__read_overflow2();
/* Warn when write size argument larger than dest field. */
if (__compiletime_lessthan(p_size_field, size))
__write_overflow_field(p_size_field, size);
/*
* Warn for source field over-read when building with W=1
* or when an over-write happened, so both can be fixed at
* the same time.
*/
if ((IS_ENABLED(KBUILD_EXTRA_WARN1) ||
__compiletime_lessthan(p_size_field, size)) &&
__compiletime_lessthan(q_size_field, size))
__read_overflow2_field(q_size_field, size);
}
/*
* At this point, length argument may not be a constant expression,
* so run-time bounds checking can be done where buffer sizes are
* known. (This is not an "else" because the above checks may only
* be compile-time warnings, and we want to still warn for run-time
* overflows.)
*/
/*
* Always stop accesses beyond the struct that contains the
* field, when the buffer's remaining size is known.
* (The SIZE_MAX test is to optimize away checks where the buffer
* lengths are unknown.)
*/
if (p_size != SIZE_MAX && p_size < size)
fortify_panic(func, FORTIFY_WRITE, p_size, size, true);
else if (q_size != SIZE_MAX && q_size < size)
fortify_panic(func, FORTIFY_READ, p_size, size, true);
/*
* Warn when writing beyond destination field size.
*
* Note the implementation of __builtin_*object_size() behaves
* like sizeof() when not directly referencing a flexible
* array member, which means there will be many bounds checks
* that will appear at run-time, without a way for them to be
* detected at compile-time (as can be done when the destination
* is specifically the flexible array member).
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101832
*/
if (p_size_field != SIZE_MAX &&
p_size != p_size_field && p_size_field < size)
return true;
return false;
}
/*
* To work around what seems to be an optimizer bug, the macro arguments
* need to have const copies or the values end up changed by the time they
* reach fortify_warn_once(). See commit 6f7630b1b5bc ("fortify: Capture
* __bos() results in const temp vars") for more details.
*/
#define __fortify_memcpy_chk(p, q, size, p_size, q_size, \
p_size_field, q_size_field, op) ({ \
const size_t __fortify_size = (size_t)(size); \
const size_t __p_size = (p_size); \
const size_t __q_size = (q_size); \
const size_t __p_size_field = (p_size_field); \
const size_t __q_size_field = (q_size_field); \
/* Keep a mutable version of the size for the final copy. */ \
size_t __copy_size = __fortify_size; \
fortify_warn_once(fortify_memcpy_chk(__fortify_size, __p_size, \
__q_size, __p_size_field, \
__q_size_field, FORTIFY_FUNC_ ##op), \
#op ": detected field-spanning write (size %zu) of single %s (size %zu)\n", \
__fortify_size, \
"field \"" #p "\" at " FILE_LINE, \
__p_size_field); \
/* Hide only the run-time size from value range tracking to */ \
/* silence compile-time false positive bounds warnings. */ \
if (!__builtin_constant_p(__copy_size)) \
OPTIMIZER_HIDE_VAR(__copy_size); \
__underlying_##op(p, q, __copy_size); \
})
/*
* Notes about compile-time buffer size detection:
*
* With these types...
*
* struct middle {
* u16 a;
* u8 middle_buf[16];
* int b;
* };
* struct end {
* u16 a;
* u8 end_buf[16];
* };
* struct flex {
* int a;
* u8 flex_buf[];
* };
*
* void func(TYPE *ptr) { ... }
*
* Cases where destination size cannot be currently detected:
* - the size of ptr's object (seemingly by design, gcc & clang fail):
* __builtin_object_size(ptr, 1) == SIZE_MAX
* - the size of flexible arrays in ptr's obj (by design, dynamic size):
* __builtin_object_size(ptr->flex_buf, 1) == SIZE_MAX
* - the size of ANY array at the end of ptr's obj (gcc and clang bug):
* __builtin_object_size(ptr->end_buf, 1) == SIZE_MAX
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
*
* Cases where destination size is currently detected:
* - the size of non-array members within ptr's object:
* __builtin_object_size(ptr->a, 1) == 2
* - the size of non-flexible-array in the middle of ptr's obj:
* __builtin_object_size(ptr->middle_buf, 1) == 16
*
*/
/*
* __struct_size() vs __member_size() must be captured here to avoid
* evaluating argument side-effects further into the macro layers.
*/
#define memcpy(p, q, s) __fortify_memcpy_chk(p, q, s, \
__struct_size(p), __struct_size(q), \
__member_size(p), __member_size(q), \
memcpy)
#define memmove(p, q, s) __fortify_memcpy_chk(p, q, s, \
__struct_size(p), __struct_size(q), \
__member_size(p), __member_size(q), \
memmove)
extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan);
__FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size)
{
const size_t p_size = __struct_size(p);
if (__compiletime_lessthan(p_size, size))
__read_overflow();
if (p_size < size)
fortify_panic(FORTIFY_FUNC_memscan, FORTIFY_READ, p_size, size, NULL);
return __real_memscan(p, c, size);
}
__FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3)
int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size)
{
const size_t p_size = __struct_size(p);
const size_t q_size = __struct_size(q);
if (__builtin_constant_p(size)) {
if (__compiletime_lessthan(p_size, size))
__read_overflow();
if (__compiletime_lessthan(q_size, size))
__read_overflow2();
}
if (p_size < size)
fortify_panic(FORTIFY_FUNC_memcmp, FORTIFY_READ, p_size, size, INT_MIN);
else if (q_size < size)
fortify_panic(FORTIFY_FUNC_memcmp, FORTIFY_READ, q_size, size, INT_MIN);
return __underlying_memcmp(p, q, size);
}
__FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3)
void *memchr(const void * const POS0 p, int c, __kernel_size_t size)
{
const size_t p_size = __struct_size(p);
if (__compiletime_lessthan(p_size, size))
__read_overflow();
if (p_size < size)
fortify_panic(FORTIFY_FUNC_memchr, FORTIFY_READ, p_size, size, NULL);
return __underlying_memchr(p, c, size);
}
void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv);
__FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size)
{
const size_t p_size = __struct_size(p);
if (__compiletime_lessthan(p_size, size))
__read_overflow();
if (p_size < size)
fortify_panic(FORTIFY_FUNC_memchr_inv, FORTIFY_READ, p_size, size, NULL);
return __real_memchr_inv(p, c, size);
}
extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup_noprof)
__realloc_size(2);
__FORTIFY_INLINE void *kmemdup_noprof(const void * const POS0 p, size_t size, gfp_t gfp)
{
const size_t p_size = __struct_size(p);
if (__compiletime_lessthan(p_size, size))
__read_overflow();
if (p_size < size)
fortify_panic(FORTIFY_FUNC_kmemdup, FORTIFY_READ, p_size, size,
__real_kmemdup(p, 0, gfp));
return __real_kmemdup(p, size, gfp);
}
#define kmemdup(...) alloc_hooks(kmemdup_noprof(__VA_ARGS__))
/**
* strcpy - Copy a string into another string buffer
*
* @p: pointer to destination of copy
* @q: pointer to NUL-terminated source string to copy
*
* Do not use this function. While FORTIFY_SOURCE tries to avoid
* overflows, this is only possible when the sizes of @q and @p are
* known to the compiler. Prefer strscpy(), though note its different
* return values for detecting truncation.
*
* Returns @p.
*
*/
/* Defined after fortified strlen to reuse it. */
__FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2)
char *strcpy(char * const POS p, const char * const POS q)
{
const size_t p_size = __member_size(p);
const size_t q_size = __member_size(q);
size_t size;
/* If neither buffer size is known, immediately give up. */
if (__builtin_constant_p(p_size) &&
__builtin_constant_p(q_size) &&
p_size == SIZE_MAX && q_size == SIZE_MAX)
return __underlying_strcpy(p, q);
size = strlen(q) + 1;
/* Compile-time check for const size overflow. */
if (__compiletime_lessthan(p_size, size))
__write_overflow();
/* Run-time check for dynamic size overflow. */
if (p_size < size)
fortify_panic(FORTIFY_FUNC_strcpy, FORTIFY_WRITE, p_size, size, p);
__underlying_memcpy(p, q, size);
return p;
}
/* Don't use these outside the FORITFY_SOURCE implementation */
#undef __underlying_memchr
#undef __underlying_memcmp
#undef __underlying_strcat
#undef __underlying_strcpy
#undef __underlying_strlen
#undef __underlying_strncat
#undef __underlying_strncpy
#undef POS
#undef POS0
#endif /* _LINUX_FORTIFY_STRING_H_ */