linux-next/include/linux/journal-head.h
Thomas Gleixner 464170647b jbd2: Make state lock a spinlock
Bit-spinlocks are problematic on PREEMPT_RT if functions which might sleep
on RT, e.g. spin_lock(), alloc/free(), are invoked inside the lock held
region because bit spinlocks disable preemption even on RT.

A first attempt was to replace state lock with a spinlock placed in struct
buffer_head and make the locking conditional on PREEMPT_RT and
DEBUG_BIT_SPINLOCKS.

Jan pointed out that there is a 4 byte hole in struct journal_head where a
regular spinlock fits in and he would not object to convert the state lock
to a spinlock unconditionally.

Aside of solving the RT problem, this also gains lockdep coverage for the
journal head state lock (bit-spinlocks are not covered by lockdep as it's
hard to fit a lockdep map into a single bit).

The trivial change would have been to convert the jbd_*lock_bh_state()
inlines, but that comes with the downside that these functions take a
buffer head pointer which needs to be converted to a journal head pointer
which adds another level of indirection.

As almost all functions which use this lock have a journal head pointer
readily available, it makes more sense to remove the lock helper inlines
and write out spin_*lock() at all call sites.

Fixup all locking comments as well.

Suggested-by: Jan Kara <jack@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Jan Kara <jack@suse.com>
Cc: linux-ext4@vger.kernel.org
Link: https://lore.kernel.org/r/20190809124233.13277-7-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-10-21 09:16:46 -04:00

115 lines
2.9 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* include/linux/journal-head.h
*
* buffer_head fields for JBD
*
* 27 May 2001 Andrew Morton
* Created - pulled out of fs.h
*/
#ifndef JOURNAL_HEAD_H_INCLUDED
#define JOURNAL_HEAD_H_INCLUDED
#include <linux/spinlock.h>
typedef unsigned int tid_t; /* Unique transaction ID */
typedef struct transaction_s transaction_t; /* Compound transaction type */
struct buffer_head;
struct journal_head {
/*
* Points back to our buffer_head. [jbd_lock_bh_journal_head()]
*/
struct buffer_head *b_bh;
/*
* Protect the buffer head state
*/
spinlock_t b_state_lock;
/*
* Reference count - see description in journal.c
* [jbd_lock_bh_journal_head()]
*/
int b_jcount;
/*
* Journalling list for this buffer [b_state_lock]
* NOTE: We *cannot* combine this with b_modified into a bitfield
* as gcc would then (which the C standard allows but which is
* very unuseful) make 64-bit accesses to the bitfield and clobber
* b_jcount if its update races with bitfield modification.
*/
unsigned b_jlist;
/*
* This flag signals the buffer has been modified by
* the currently running transaction
* [b_state_lock]
*/
unsigned b_modified;
/*
* Copy of the buffer data frozen for writing to the log.
* [b_state_lock]
*/
char *b_frozen_data;
/*
* Pointer to a saved copy of the buffer containing no uncommitted
* deallocation references, so that allocations can avoid overwriting
* uncommitted deletes. [b_state_lock]
*/
char *b_committed_data;
/*
* Pointer to the compound transaction which owns this buffer's
* metadata: either the running transaction or the committing
* transaction (if there is one). Only applies to buffers on a
* transaction's data or metadata journaling list.
* [j_list_lock] [b_state_lock]
* Either of these locks is enough for reading, both are needed for
* changes.
*/
transaction_t *b_transaction;
/*
* Pointer to the running compound transaction which is currently
* modifying the buffer's metadata, if there was already a transaction
* committing it when the new transaction touched it.
* [t_list_lock] [b_state_lock]
*/
transaction_t *b_next_transaction;
/*
* Doubly-linked list of buffers on a transaction's data, metadata or
* forget queue. [t_list_lock] [b_state_lock]
*/
struct journal_head *b_tnext, *b_tprev;
/*
* Pointer to the compound transaction against which this buffer
* is checkpointed. Only dirty buffers can be checkpointed.
* [j_list_lock]
*/
transaction_t *b_cp_transaction;
/*
* Doubly-linked list of buffers still remaining to be flushed
* before an old transaction can be checkpointed.
* [j_list_lock]
*/
struct journal_head *b_cpnext, *b_cpprev;
/* Trigger type */
struct jbd2_buffer_trigger_type *b_triggers;
/* Trigger type for the committing transaction's frozen data */
struct jbd2_buffer_trigger_type *b_frozen_triggers;
};
#endif /* JOURNAL_HEAD_H_INCLUDED */