mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2024-12-28 16:52:18 +00:00
6057b90ecc
While at it, rename the same function in s390 cpum_sf PMU. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Acked-by: Thomas Richter <tmricht@linux.ibm.com> Link: https://lore.kernel.org/r/20241203180441.1634709-2-namhyung@kernel.org
2018 lines
58 KiB
C
2018 lines
58 KiB
C
/*
|
|
* Performance events:
|
|
*
|
|
* Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
|
|
* Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
|
|
*
|
|
* Data type definitions, declarations, prototypes.
|
|
*
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
#ifndef _LINUX_PERF_EVENT_H
|
|
#define _LINUX_PERF_EVENT_H
|
|
|
|
#include <uapi/linux/perf_event.h>
|
|
#include <uapi/linux/bpf_perf_event.h>
|
|
|
|
/*
|
|
* Kernel-internal data types and definitions:
|
|
*/
|
|
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
# include <asm/perf_event.h>
|
|
# include <asm/local64.h>
|
|
#endif
|
|
|
|
#define PERF_GUEST_ACTIVE 0x01
|
|
#define PERF_GUEST_USER 0x02
|
|
|
|
struct perf_guest_info_callbacks {
|
|
unsigned int (*state)(void);
|
|
unsigned long (*get_ip)(void);
|
|
unsigned int (*handle_intel_pt_intr)(void);
|
|
};
|
|
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
#include <linux/rhashtable-types.h>
|
|
#include <asm/hw_breakpoint.h>
|
|
#endif
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/static_key.h>
|
|
#include <linux/jump_label_ratelimit.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/perf_regs.h>
|
|
#include <linux/cgroup.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/security.h>
|
|
#include <linux/static_call.h>
|
|
#include <linux/lockdep.h>
|
|
#include <asm/local.h>
|
|
|
|
struct perf_callchain_entry {
|
|
__u64 nr;
|
|
__u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
|
|
};
|
|
|
|
struct perf_callchain_entry_ctx {
|
|
struct perf_callchain_entry *entry;
|
|
u32 max_stack;
|
|
u32 nr;
|
|
short contexts;
|
|
bool contexts_maxed;
|
|
};
|
|
|
|
typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
|
|
unsigned long off, unsigned long len);
|
|
|
|
struct perf_raw_frag {
|
|
union {
|
|
struct perf_raw_frag *next;
|
|
unsigned long pad;
|
|
};
|
|
perf_copy_f copy;
|
|
void *data;
|
|
u32 size;
|
|
} __packed;
|
|
|
|
struct perf_raw_record {
|
|
struct perf_raw_frag frag;
|
|
u32 size;
|
|
};
|
|
|
|
static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
|
|
{
|
|
return frag->pad < sizeof(u64);
|
|
}
|
|
|
|
/*
|
|
* branch stack layout:
|
|
* nr: number of taken branches stored in entries[]
|
|
* hw_idx: The low level index of raw branch records
|
|
* for the most recent branch.
|
|
* -1ULL means invalid/unknown.
|
|
*
|
|
* Note that nr can vary from sample to sample
|
|
* branches (to, from) are stored from most recent
|
|
* to least recent, i.e., entries[0] contains the most
|
|
* recent branch.
|
|
* The entries[] is an abstraction of raw branch records,
|
|
* which may not be stored in age order in HW, e.g. Intel LBR.
|
|
* The hw_idx is to expose the low level index of raw
|
|
* branch record for the most recent branch aka entries[0].
|
|
* The hw_idx index is between -1 (unknown) and max depth,
|
|
* which can be retrieved in /sys/devices/cpu/caps/branches.
|
|
* For the architectures whose raw branch records are
|
|
* already stored in age order, the hw_idx should be 0.
|
|
*/
|
|
struct perf_branch_stack {
|
|
__u64 nr;
|
|
__u64 hw_idx;
|
|
struct perf_branch_entry entries[];
|
|
};
|
|
|
|
struct task_struct;
|
|
|
|
/*
|
|
* extra PMU register associated with an event
|
|
*/
|
|
struct hw_perf_event_extra {
|
|
u64 config; /* register value */
|
|
unsigned int reg; /* register address or index */
|
|
int alloc; /* extra register already allocated */
|
|
int idx; /* index in shared_regs->regs[] */
|
|
};
|
|
|
|
/**
|
|
* hw_perf_event::flag values
|
|
*
|
|
* PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
|
|
* usage.
|
|
*/
|
|
#define PERF_EVENT_FLAG_ARCH 0x000fffff
|
|
#define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000
|
|
|
|
static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
|
|
|
|
/**
|
|
* struct hw_perf_event - performance event hardware details:
|
|
*/
|
|
struct hw_perf_event {
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
union {
|
|
struct { /* hardware */
|
|
u64 config;
|
|
u64 last_tag;
|
|
unsigned long config_base;
|
|
unsigned long event_base;
|
|
int event_base_rdpmc;
|
|
int idx;
|
|
int last_cpu;
|
|
int flags;
|
|
|
|
struct hw_perf_event_extra extra_reg;
|
|
struct hw_perf_event_extra branch_reg;
|
|
};
|
|
struct { /* aux / Intel-PT */
|
|
u64 aux_config;
|
|
/*
|
|
* For AUX area events, aux_paused cannot be a state
|
|
* flag because it can be updated asynchronously to
|
|
* state.
|
|
*/
|
|
unsigned int aux_paused;
|
|
};
|
|
struct { /* software */
|
|
struct hrtimer hrtimer;
|
|
};
|
|
struct { /* tracepoint */
|
|
/* for tp_event->class */
|
|
struct list_head tp_list;
|
|
};
|
|
struct { /* amd_power */
|
|
u64 pwr_acc;
|
|
u64 ptsc;
|
|
};
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
struct { /* breakpoint */
|
|
/*
|
|
* Crufty hack to avoid the chicken and egg
|
|
* problem hw_breakpoint has with context
|
|
* creation and event initalization.
|
|
*/
|
|
struct arch_hw_breakpoint info;
|
|
struct rhlist_head bp_list;
|
|
};
|
|
#endif
|
|
struct { /* amd_iommu */
|
|
u8 iommu_bank;
|
|
u8 iommu_cntr;
|
|
u16 padding;
|
|
u64 conf;
|
|
u64 conf1;
|
|
};
|
|
};
|
|
/*
|
|
* If the event is a per task event, this will point to the task in
|
|
* question. See the comment in perf_event_alloc().
|
|
*/
|
|
struct task_struct *target;
|
|
|
|
/*
|
|
* PMU would store hardware filter configuration
|
|
* here.
|
|
*/
|
|
void *addr_filters;
|
|
|
|
/* Last sync'ed generation of filters */
|
|
unsigned long addr_filters_gen;
|
|
|
|
/*
|
|
* hw_perf_event::state flags; used to track the PERF_EF_* state.
|
|
*/
|
|
#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
|
|
#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
|
|
#define PERF_HES_ARCH 0x04
|
|
|
|
int state;
|
|
|
|
/*
|
|
* The last observed hardware counter value, updated with a
|
|
* local64_cmpxchg() such that pmu::read() can be called nested.
|
|
*/
|
|
local64_t prev_count;
|
|
|
|
/*
|
|
* The period to start the next sample with.
|
|
*/
|
|
u64 sample_period;
|
|
|
|
union {
|
|
struct { /* Sampling */
|
|
/*
|
|
* The period we started this sample with.
|
|
*/
|
|
u64 last_period;
|
|
|
|
/*
|
|
* However much is left of the current period;
|
|
* note that this is a full 64bit value and
|
|
* allows for generation of periods longer
|
|
* than hardware might allow.
|
|
*/
|
|
local64_t period_left;
|
|
};
|
|
struct { /* Topdown events counting for context switch */
|
|
u64 saved_metric;
|
|
u64 saved_slots;
|
|
};
|
|
};
|
|
|
|
/*
|
|
* State for throttling the event, see __perf_event_overflow() and
|
|
* perf_adjust_freq_unthr_context().
|
|
*/
|
|
u64 interrupts_seq;
|
|
u64 interrupts;
|
|
|
|
/*
|
|
* State for freq target events, see __perf_event_overflow() and
|
|
* perf_adjust_freq_unthr_context().
|
|
*/
|
|
u64 freq_time_stamp;
|
|
u64 freq_count_stamp;
|
|
#endif
|
|
};
|
|
|
|
struct perf_event;
|
|
struct perf_event_pmu_context;
|
|
|
|
/*
|
|
* Common implementation detail of pmu::{start,commit,cancel}_txn
|
|
*/
|
|
#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
|
|
#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
|
|
|
|
/**
|
|
* pmu::capabilities flags
|
|
*/
|
|
#define PERF_PMU_CAP_NO_INTERRUPT 0x0001
|
|
#define PERF_PMU_CAP_NO_NMI 0x0002
|
|
#define PERF_PMU_CAP_AUX_NO_SG 0x0004
|
|
#define PERF_PMU_CAP_EXTENDED_REGS 0x0008
|
|
#define PERF_PMU_CAP_EXCLUSIVE 0x0010
|
|
#define PERF_PMU_CAP_ITRACE 0x0020
|
|
#define PERF_PMU_CAP_NO_EXCLUDE 0x0040
|
|
#define PERF_PMU_CAP_AUX_OUTPUT 0x0080
|
|
#define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100
|
|
#define PERF_PMU_CAP_AUX_PAUSE 0x0200
|
|
|
|
/**
|
|
* pmu::scope
|
|
*/
|
|
enum perf_pmu_scope {
|
|
PERF_PMU_SCOPE_NONE = 0,
|
|
PERF_PMU_SCOPE_CORE,
|
|
PERF_PMU_SCOPE_DIE,
|
|
PERF_PMU_SCOPE_CLUSTER,
|
|
PERF_PMU_SCOPE_PKG,
|
|
PERF_PMU_SCOPE_SYS_WIDE,
|
|
PERF_PMU_MAX_SCOPE,
|
|
};
|
|
|
|
struct perf_output_handle;
|
|
|
|
#define PMU_NULL_DEV ((void *)(~0UL))
|
|
|
|
/**
|
|
* struct pmu - generic performance monitoring unit
|
|
*/
|
|
struct pmu {
|
|
struct list_head entry;
|
|
|
|
struct module *module;
|
|
struct device *dev;
|
|
struct device *parent;
|
|
const struct attribute_group **attr_groups;
|
|
const struct attribute_group **attr_update;
|
|
const char *name;
|
|
int type;
|
|
|
|
/*
|
|
* various common per-pmu feature flags
|
|
*/
|
|
int capabilities;
|
|
|
|
/*
|
|
* PMU scope
|
|
*/
|
|
unsigned int scope;
|
|
|
|
int __percpu *pmu_disable_count;
|
|
struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
|
|
atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
|
|
int task_ctx_nr;
|
|
int hrtimer_interval_ms;
|
|
|
|
/* number of address filters this PMU can do */
|
|
unsigned int nr_addr_filters;
|
|
|
|
/*
|
|
* Fully disable/enable this PMU, can be used to protect from the PMI
|
|
* as well as for lazy/batch writing of the MSRs.
|
|
*/
|
|
void (*pmu_enable) (struct pmu *pmu); /* optional */
|
|
void (*pmu_disable) (struct pmu *pmu); /* optional */
|
|
|
|
/*
|
|
* Try and initialize the event for this PMU.
|
|
*
|
|
* Returns:
|
|
* -ENOENT -- @event is not for this PMU
|
|
*
|
|
* -ENODEV -- @event is for this PMU but PMU not present
|
|
* -EBUSY -- @event is for this PMU but PMU temporarily unavailable
|
|
* -EINVAL -- @event is for this PMU but @event is not valid
|
|
* -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
|
|
* -EACCES -- @event is for this PMU, @event is valid, but no privileges
|
|
*
|
|
* 0 -- @event is for this PMU and valid
|
|
*
|
|
* Other error return values are allowed.
|
|
*/
|
|
int (*event_init) (struct perf_event *event);
|
|
|
|
/*
|
|
* Notification that the event was mapped or unmapped. Called
|
|
* in the context of the mapping task.
|
|
*/
|
|
void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
|
|
void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
|
|
|
|
/*
|
|
* Flags for ->add()/->del()/ ->start()/->stop(). There are
|
|
* matching hw_perf_event::state flags.
|
|
*/
|
|
#define PERF_EF_START 0x01 /* start the counter when adding */
|
|
#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
|
|
#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
|
|
#define PERF_EF_PAUSE 0x08 /* AUX area event, pause tracing */
|
|
#define PERF_EF_RESUME 0x10 /* AUX area event, resume tracing */
|
|
|
|
/*
|
|
* Adds/Removes a counter to/from the PMU, can be done inside a
|
|
* transaction, see the ->*_txn() methods.
|
|
*
|
|
* The add/del callbacks will reserve all hardware resources required
|
|
* to service the event, this includes any counter constraint
|
|
* scheduling etc.
|
|
*
|
|
* Called with IRQs disabled and the PMU disabled on the CPU the event
|
|
* is on.
|
|
*
|
|
* ->add() called without PERF_EF_START should result in the same state
|
|
* as ->add() followed by ->stop().
|
|
*
|
|
* ->del() must always PERF_EF_UPDATE stop an event. If it calls
|
|
* ->stop() that must deal with already being stopped without
|
|
* PERF_EF_UPDATE.
|
|
*/
|
|
int (*add) (struct perf_event *event, int flags);
|
|
void (*del) (struct perf_event *event, int flags);
|
|
|
|
/*
|
|
* Starts/Stops a counter present on the PMU.
|
|
*
|
|
* The PMI handler should stop the counter when perf_event_overflow()
|
|
* returns !0. ->start() will be used to continue.
|
|
*
|
|
* Also used to change the sample period.
|
|
*
|
|
* Called with IRQs disabled and the PMU disabled on the CPU the event
|
|
* is on -- will be called from NMI context with the PMU generates
|
|
* NMIs.
|
|
*
|
|
* ->stop() with PERF_EF_UPDATE will read the counter and update
|
|
* period/count values like ->read() would.
|
|
*
|
|
* ->start() with PERF_EF_RELOAD will reprogram the counter
|
|
* value, must be preceded by a ->stop() with PERF_EF_UPDATE.
|
|
*
|
|
* ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not
|
|
* overlap another ->stop() with PERF_EF_PAUSE nor ->start() with
|
|
* PERF_EF_RESUME.
|
|
*
|
|
* ->start() with PERF_EF_RESUME will start as simply as possible but
|
|
* only if the counter is not otherwise stopped. Will not overlap
|
|
* another ->start() with PERF_EF_RESUME nor ->stop() with
|
|
* PERF_EF_PAUSE.
|
|
*
|
|
* Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other
|
|
* ->stop()/->start() invocations, just not itself.
|
|
*/
|
|
void (*start) (struct perf_event *event, int flags);
|
|
void (*stop) (struct perf_event *event, int flags);
|
|
|
|
/*
|
|
* Updates the counter value of the event.
|
|
*
|
|
* For sampling capable PMUs this will also update the software period
|
|
* hw_perf_event::period_left field.
|
|
*/
|
|
void (*read) (struct perf_event *event);
|
|
|
|
/*
|
|
* Group events scheduling is treated as a transaction, add
|
|
* group events as a whole and perform one schedulability test.
|
|
* If the test fails, roll back the whole group
|
|
*
|
|
* Start the transaction, after this ->add() doesn't need to
|
|
* do schedulability tests.
|
|
*
|
|
* Optional.
|
|
*/
|
|
void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
|
|
/*
|
|
* If ->start_txn() disabled the ->add() schedulability test
|
|
* then ->commit_txn() is required to perform one. On success
|
|
* the transaction is closed. On error the transaction is kept
|
|
* open until ->cancel_txn() is called.
|
|
*
|
|
* Optional.
|
|
*/
|
|
int (*commit_txn) (struct pmu *pmu);
|
|
/*
|
|
* Will cancel the transaction, assumes ->del() is called
|
|
* for each successful ->add() during the transaction.
|
|
*
|
|
* Optional.
|
|
*/
|
|
void (*cancel_txn) (struct pmu *pmu);
|
|
|
|
/*
|
|
* Will return the value for perf_event_mmap_page::index for this event,
|
|
* if no implementation is provided it will default to 0 (see
|
|
* perf_event_idx_default).
|
|
*/
|
|
int (*event_idx) (struct perf_event *event); /*optional */
|
|
|
|
/*
|
|
* context-switches callback
|
|
*/
|
|
void (*sched_task) (struct perf_event_pmu_context *pmu_ctx,
|
|
bool sched_in);
|
|
|
|
/*
|
|
* Kmem cache of PMU specific data
|
|
*/
|
|
struct kmem_cache *task_ctx_cache;
|
|
|
|
/*
|
|
* PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
|
|
* can be synchronized using this function. See Intel LBR callstack support
|
|
* implementation and Perf core context switch handling callbacks for usage
|
|
* examples.
|
|
*/
|
|
void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc,
|
|
struct perf_event_pmu_context *next_epc);
|
|
/* optional */
|
|
|
|
/*
|
|
* Set up pmu-private data structures for an AUX area
|
|
*/
|
|
void *(*setup_aux) (struct perf_event *event, void **pages,
|
|
int nr_pages, bool overwrite);
|
|
/* optional */
|
|
|
|
/*
|
|
* Free pmu-private AUX data structures
|
|
*/
|
|
void (*free_aux) (void *aux); /* optional */
|
|
|
|
/*
|
|
* Take a snapshot of the AUX buffer without touching the event
|
|
* state, so that preempting ->start()/->stop() callbacks does
|
|
* not interfere with their logic. Called in PMI context.
|
|
*
|
|
* Returns the size of AUX data copied to the output handle.
|
|
*
|
|
* Optional.
|
|
*/
|
|
long (*snapshot_aux) (struct perf_event *event,
|
|
struct perf_output_handle *handle,
|
|
unsigned long size);
|
|
|
|
/*
|
|
* Validate address range filters: make sure the HW supports the
|
|
* requested configuration and number of filters; return 0 if the
|
|
* supplied filters are valid, -errno otherwise.
|
|
*
|
|
* Runs in the context of the ioctl()ing process and is not serialized
|
|
* with the rest of the PMU callbacks.
|
|
*/
|
|
int (*addr_filters_validate) (struct list_head *filters);
|
|
/* optional */
|
|
|
|
/*
|
|
* Synchronize address range filter configuration:
|
|
* translate hw-agnostic filters into hardware configuration in
|
|
* event::hw::addr_filters.
|
|
*
|
|
* Runs as a part of filter sync sequence that is done in ->start()
|
|
* callback by calling perf_event_addr_filters_sync().
|
|
*
|
|
* May (and should) traverse event::addr_filters::list, for which its
|
|
* caller provides necessary serialization.
|
|
*/
|
|
void (*addr_filters_sync) (struct perf_event *event);
|
|
/* optional */
|
|
|
|
/*
|
|
* Check if event can be used for aux_output purposes for
|
|
* events of this PMU.
|
|
*
|
|
* Runs from perf_event_open(). Should return 0 for "no match"
|
|
* or non-zero for "match".
|
|
*/
|
|
int (*aux_output_match) (struct perf_event *event);
|
|
/* optional */
|
|
|
|
/*
|
|
* Skip programming this PMU on the given CPU. Typically needed for
|
|
* big.LITTLE things.
|
|
*/
|
|
bool (*filter) (struct pmu *pmu, int cpu); /* optional */
|
|
|
|
/*
|
|
* Check period value for PERF_EVENT_IOC_PERIOD ioctl.
|
|
*/
|
|
int (*check_period) (struct perf_event *event, u64 value); /* optional */
|
|
};
|
|
|
|
enum perf_addr_filter_action_t {
|
|
PERF_ADDR_FILTER_ACTION_STOP = 0,
|
|
PERF_ADDR_FILTER_ACTION_START,
|
|
PERF_ADDR_FILTER_ACTION_FILTER,
|
|
};
|
|
|
|
/**
|
|
* struct perf_addr_filter - address range filter definition
|
|
* @entry: event's filter list linkage
|
|
* @path: object file's path for file-based filters
|
|
* @offset: filter range offset
|
|
* @size: filter range size (size==0 means single address trigger)
|
|
* @action: filter/start/stop
|
|
*
|
|
* This is a hardware-agnostic filter configuration as specified by the user.
|
|
*/
|
|
struct perf_addr_filter {
|
|
struct list_head entry;
|
|
struct path path;
|
|
unsigned long offset;
|
|
unsigned long size;
|
|
enum perf_addr_filter_action_t action;
|
|
};
|
|
|
|
/**
|
|
* struct perf_addr_filters_head - container for address range filters
|
|
* @list: list of filters for this event
|
|
* @lock: spinlock that serializes accesses to the @list and event's
|
|
* (and its children's) filter generations.
|
|
* @nr_file_filters: number of file-based filters
|
|
*
|
|
* A child event will use parent's @list (and therefore @lock), so they are
|
|
* bundled together; see perf_event_addr_filters().
|
|
*/
|
|
struct perf_addr_filters_head {
|
|
struct list_head list;
|
|
raw_spinlock_t lock;
|
|
unsigned int nr_file_filters;
|
|
};
|
|
|
|
struct perf_addr_filter_range {
|
|
unsigned long start;
|
|
unsigned long size;
|
|
};
|
|
|
|
/**
|
|
* enum perf_event_state - the states of an event:
|
|
*/
|
|
enum perf_event_state {
|
|
PERF_EVENT_STATE_DEAD = -4,
|
|
PERF_EVENT_STATE_EXIT = -3,
|
|
PERF_EVENT_STATE_ERROR = -2,
|
|
PERF_EVENT_STATE_OFF = -1,
|
|
PERF_EVENT_STATE_INACTIVE = 0,
|
|
PERF_EVENT_STATE_ACTIVE = 1,
|
|
};
|
|
|
|
struct file;
|
|
struct perf_sample_data;
|
|
|
|
typedef void (*perf_overflow_handler_t)(struct perf_event *,
|
|
struct perf_sample_data *,
|
|
struct pt_regs *regs);
|
|
|
|
/*
|
|
* Event capabilities. For event_caps and groups caps.
|
|
*
|
|
* PERF_EV_CAP_SOFTWARE: Is a software event.
|
|
* PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
|
|
* from any CPU in the package where it is active.
|
|
* PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
|
|
* cannot be a group leader. If an event with this flag is detached from the
|
|
* group it is scheduled out and moved into an unrecoverable ERROR state.
|
|
* PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the
|
|
* PMU scope where it is active.
|
|
*/
|
|
#define PERF_EV_CAP_SOFTWARE BIT(0)
|
|
#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
|
|
#define PERF_EV_CAP_SIBLING BIT(2)
|
|
#define PERF_EV_CAP_READ_SCOPE BIT(3)
|
|
|
|
#define SWEVENT_HLIST_BITS 8
|
|
#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
|
|
|
|
struct swevent_hlist {
|
|
struct hlist_head heads[SWEVENT_HLIST_SIZE];
|
|
struct rcu_head rcu_head;
|
|
};
|
|
|
|
#define PERF_ATTACH_CONTEXT 0x01
|
|
#define PERF_ATTACH_GROUP 0x02
|
|
#define PERF_ATTACH_TASK 0x04
|
|
#define PERF_ATTACH_TASK_DATA 0x08
|
|
#define PERF_ATTACH_ITRACE 0x10
|
|
#define PERF_ATTACH_SCHED_CB 0x20
|
|
#define PERF_ATTACH_CHILD 0x40
|
|
|
|
struct bpf_prog;
|
|
struct perf_cgroup;
|
|
struct perf_buffer;
|
|
|
|
struct pmu_event_list {
|
|
raw_spinlock_t lock;
|
|
struct list_head list;
|
|
};
|
|
|
|
/*
|
|
* event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
|
|
* as such iteration must hold either lock. However, since ctx->lock is an IRQ
|
|
* safe lock, and is only held by the CPU doing the modification, having IRQs
|
|
* disabled is sufficient since it will hold-off the IPIs.
|
|
*/
|
|
#ifdef CONFIG_PROVE_LOCKING
|
|
#define lockdep_assert_event_ctx(event) \
|
|
WARN_ON_ONCE(__lockdep_enabled && \
|
|
(this_cpu_read(hardirqs_enabled) && \
|
|
lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
|
|
#else
|
|
#define lockdep_assert_event_ctx(event)
|
|
#endif
|
|
|
|
#define for_each_sibling_event(sibling, event) \
|
|
lockdep_assert_event_ctx(event); \
|
|
if ((event)->group_leader == (event)) \
|
|
list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
|
|
|
|
/**
|
|
* struct perf_event - performance event kernel representation:
|
|
*/
|
|
struct perf_event {
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
/*
|
|
* entry onto perf_event_context::event_list;
|
|
* modifications require ctx->lock
|
|
* RCU safe iterations.
|
|
*/
|
|
struct list_head event_entry;
|
|
|
|
/*
|
|
* Locked for modification by both ctx->mutex and ctx->lock; holding
|
|
* either sufficies for read.
|
|
*/
|
|
struct list_head sibling_list;
|
|
struct list_head active_list;
|
|
/*
|
|
* Node on the pinned or flexible tree located at the event context;
|
|
*/
|
|
struct rb_node group_node;
|
|
u64 group_index;
|
|
/*
|
|
* We need storage to track the entries in perf_pmu_migrate_context; we
|
|
* cannot use the event_entry because of RCU and we want to keep the
|
|
* group in tact which avoids us using the other two entries.
|
|
*/
|
|
struct list_head migrate_entry;
|
|
|
|
struct hlist_node hlist_entry;
|
|
struct list_head active_entry;
|
|
int nr_siblings;
|
|
|
|
/* Not serialized. Only written during event initialization. */
|
|
int event_caps;
|
|
/* The cumulative AND of all event_caps for events in this group. */
|
|
int group_caps;
|
|
|
|
unsigned int group_generation;
|
|
struct perf_event *group_leader;
|
|
/*
|
|
* event->pmu will always point to pmu in which this event belongs.
|
|
* Whereas event->pmu_ctx->pmu may point to other pmu when group of
|
|
* different pmu events is created.
|
|
*/
|
|
struct pmu *pmu;
|
|
void *pmu_private;
|
|
|
|
enum perf_event_state state;
|
|
unsigned int attach_state;
|
|
local64_t count;
|
|
atomic64_t child_count;
|
|
|
|
/*
|
|
* These are the total time in nanoseconds that the event
|
|
* has been enabled (i.e. eligible to run, and the task has
|
|
* been scheduled in, if this is a per-task event)
|
|
* and running (scheduled onto the CPU), respectively.
|
|
*/
|
|
u64 total_time_enabled;
|
|
u64 total_time_running;
|
|
u64 tstamp;
|
|
|
|
struct perf_event_attr attr;
|
|
u16 header_size;
|
|
u16 id_header_size;
|
|
u16 read_size;
|
|
struct hw_perf_event hw;
|
|
|
|
struct perf_event_context *ctx;
|
|
/*
|
|
* event->pmu_ctx points to perf_event_pmu_context in which the event
|
|
* is added. This pmu_ctx can be of other pmu for sw event when that
|
|
* sw event is part of a group which also contains non-sw events.
|
|
*/
|
|
struct perf_event_pmu_context *pmu_ctx;
|
|
atomic_long_t refcount;
|
|
|
|
/*
|
|
* These accumulate total time (in nanoseconds) that children
|
|
* events have been enabled and running, respectively.
|
|
*/
|
|
atomic64_t child_total_time_enabled;
|
|
atomic64_t child_total_time_running;
|
|
|
|
/*
|
|
* Protect attach/detach and child_list:
|
|
*/
|
|
struct mutex child_mutex;
|
|
struct list_head child_list;
|
|
struct perf_event *parent;
|
|
|
|
int oncpu;
|
|
int cpu;
|
|
|
|
struct list_head owner_entry;
|
|
struct task_struct *owner;
|
|
|
|
/* mmap bits */
|
|
struct mutex mmap_mutex;
|
|
atomic_t mmap_count;
|
|
|
|
struct perf_buffer *rb;
|
|
struct list_head rb_entry;
|
|
unsigned long rcu_batches;
|
|
int rcu_pending;
|
|
|
|
/* poll related */
|
|
wait_queue_head_t waitq;
|
|
struct fasync_struct *fasync;
|
|
|
|
/* delayed work for NMIs and such */
|
|
unsigned int pending_wakeup;
|
|
unsigned int pending_kill;
|
|
unsigned int pending_disable;
|
|
unsigned long pending_addr; /* SIGTRAP */
|
|
struct irq_work pending_irq;
|
|
struct irq_work pending_disable_irq;
|
|
struct callback_head pending_task;
|
|
unsigned int pending_work;
|
|
struct rcuwait pending_work_wait;
|
|
|
|
atomic_t event_limit;
|
|
|
|
/* address range filters */
|
|
struct perf_addr_filters_head addr_filters;
|
|
/* vma address array for file-based filders */
|
|
struct perf_addr_filter_range *addr_filter_ranges;
|
|
unsigned long addr_filters_gen;
|
|
|
|
/* for aux_output events */
|
|
struct perf_event *aux_event;
|
|
|
|
void (*destroy)(struct perf_event *);
|
|
struct rcu_head rcu_head;
|
|
|
|
struct pid_namespace *ns;
|
|
u64 id;
|
|
|
|
atomic64_t lost_samples;
|
|
|
|
u64 (*clock)(void);
|
|
perf_overflow_handler_t overflow_handler;
|
|
void *overflow_handler_context;
|
|
struct bpf_prog *prog;
|
|
u64 bpf_cookie;
|
|
|
|
#ifdef CONFIG_EVENT_TRACING
|
|
struct trace_event_call *tp_event;
|
|
struct event_filter *filter;
|
|
#ifdef CONFIG_FUNCTION_TRACER
|
|
struct ftrace_ops ftrace_ops;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_CGROUP_PERF
|
|
struct perf_cgroup *cgrp; /* cgroup event is attach to */
|
|
#endif
|
|
|
|
#ifdef CONFIG_SECURITY
|
|
void *security;
|
|
#endif
|
|
struct list_head sb_list;
|
|
|
|
/*
|
|
* Certain events gets forwarded to another pmu internally by over-
|
|
* writing kernel copy of event->attr.type without user being aware
|
|
* of it. event->orig_type contains original 'type' requested by
|
|
* user.
|
|
*/
|
|
__u32 orig_type;
|
|
#endif /* CONFIG_PERF_EVENTS */
|
|
};
|
|
|
|
/*
|
|
* ,-----------------------[1:n]------------------------.
|
|
* V V
|
|
* perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
|
|
* | |
|
|
* `--[n:1]-> pmu <-[1:n]--'
|
|
*
|
|
*
|
|
* struct perf_event_pmu_context lifetime is refcount based and RCU freed
|
|
* (similar to perf_event_context). Locking is as if it were a member of
|
|
* perf_event_context; specifically:
|
|
*
|
|
* modification, both: ctx->mutex && ctx->lock
|
|
* reading, either: ctx->mutex || ctx->lock
|
|
*
|
|
* There is one exception to this; namely put_pmu_ctx() isn't always called
|
|
* with ctx->mutex held; this means that as long as we can guarantee the epc
|
|
* has events the above rules hold.
|
|
*
|
|
* Specificially, sys_perf_event_open()'s group_leader case depends on
|
|
* ctx->mutex pinning the configuration. Since we hold a reference on
|
|
* group_leader (through the filedesc) it can't go away, therefore it's
|
|
* associated pmu_ctx must exist and cannot change due to ctx->mutex.
|
|
*
|
|
* perf_event holds a refcount on perf_event_context
|
|
* perf_event holds a refcount on perf_event_pmu_context
|
|
*/
|
|
struct perf_event_pmu_context {
|
|
struct pmu *pmu;
|
|
struct perf_event_context *ctx;
|
|
|
|
struct list_head pmu_ctx_entry;
|
|
|
|
struct list_head pinned_active;
|
|
struct list_head flexible_active;
|
|
|
|
/* Used to avoid freeing per-cpu perf_event_pmu_context */
|
|
unsigned int embedded : 1;
|
|
|
|
unsigned int nr_events;
|
|
unsigned int nr_cgroups;
|
|
unsigned int nr_freq;
|
|
|
|
atomic_t refcount; /* event <-> epc */
|
|
struct rcu_head rcu_head;
|
|
|
|
void *task_ctx_data; /* pmu specific data */
|
|
/*
|
|
* Set when one or more (plausibly active) event can't be scheduled
|
|
* due to pmu overcommit or pmu constraints, except tolerant to
|
|
* events not necessary to be active due to scheduling constraints,
|
|
* such as cgroups.
|
|
*/
|
|
int rotate_necessary;
|
|
};
|
|
|
|
static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc)
|
|
{
|
|
return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active);
|
|
}
|
|
|
|
struct perf_event_groups {
|
|
struct rb_root tree;
|
|
u64 index;
|
|
};
|
|
|
|
|
|
/**
|
|
* struct perf_event_context - event context structure
|
|
*
|
|
* Used as a container for task events and CPU events as well:
|
|
*/
|
|
struct perf_event_context {
|
|
/*
|
|
* Protect the states of the events in the list,
|
|
* nr_active, and the list:
|
|
*/
|
|
raw_spinlock_t lock;
|
|
/*
|
|
* Protect the list of events. Locking either mutex or lock
|
|
* is sufficient to ensure the list doesn't change; to change
|
|
* the list you need to lock both the mutex and the spinlock.
|
|
*/
|
|
struct mutex mutex;
|
|
|
|
struct list_head pmu_ctx_list;
|
|
struct perf_event_groups pinned_groups;
|
|
struct perf_event_groups flexible_groups;
|
|
struct list_head event_list;
|
|
|
|
int nr_events;
|
|
int nr_user;
|
|
int is_active;
|
|
|
|
int nr_task_data;
|
|
int nr_stat;
|
|
int nr_freq;
|
|
int rotate_disable;
|
|
|
|
refcount_t refcount; /* event <-> ctx */
|
|
struct task_struct *task;
|
|
|
|
/*
|
|
* Context clock, runs when context enabled.
|
|
*/
|
|
u64 time;
|
|
u64 timestamp;
|
|
u64 timeoffset;
|
|
|
|
/*
|
|
* These fields let us detect when two contexts have both
|
|
* been cloned (inherited) from a common ancestor.
|
|
*/
|
|
struct perf_event_context *parent_ctx;
|
|
u64 parent_gen;
|
|
u64 generation;
|
|
int pin_count;
|
|
#ifdef CONFIG_CGROUP_PERF
|
|
int nr_cgroups; /* cgroup evts */
|
|
#endif
|
|
struct rcu_head rcu_head;
|
|
|
|
/*
|
|
* The count of events for which using the switch-out fast path
|
|
* should be avoided.
|
|
*
|
|
* Sum (event->pending_work + events with
|
|
* (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)))
|
|
*
|
|
* The SIGTRAP is targeted at ctx->task, as such it won't do changing
|
|
* that until the signal is delivered.
|
|
*/
|
|
local_t nr_no_switch_fast;
|
|
};
|
|
|
|
struct perf_cpu_pmu_context {
|
|
struct perf_event_pmu_context epc;
|
|
struct perf_event_pmu_context *task_epc;
|
|
|
|
struct list_head sched_cb_entry;
|
|
int sched_cb_usage;
|
|
|
|
int active_oncpu;
|
|
int exclusive;
|
|
|
|
raw_spinlock_t hrtimer_lock;
|
|
struct hrtimer hrtimer;
|
|
ktime_t hrtimer_interval;
|
|
unsigned int hrtimer_active;
|
|
};
|
|
|
|
/**
|
|
* struct perf_event_cpu_context - per cpu event context structure
|
|
*/
|
|
struct perf_cpu_context {
|
|
struct perf_event_context ctx;
|
|
struct perf_event_context *task_ctx;
|
|
int online;
|
|
|
|
#ifdef CONFIG_CGROUP_PERF
|
|
struct perf_cgroup *cgrp;
|
|
#endif
|
|
|
|
/*
|
|
* Per-CPU storage for iterators used in visit_groups_merge. The default
|
|
* storage is of size 2 to hold the CPU and any CPU event iterators.
|
|
*/
|
|
int heap_size;
|
|
struct perf_event **heap;
|
|
struct perf_event *heap_default[2];
|
|
};
|
|
|
|
struct perf_output_handle {
|
|
struct perf_event *event;
|
|
struct perf_buffer *rb;
|
|
unsigned long wakeup;
|
|
unsigned long size;
|
|
u64 aux_flags;
|
|
union {
|
|
void *addr;
|
|
unsigned long head;
|
|
};
|
|
int page;
|
|
};
|
|
|
|
struct bpf_perf_event_data_kern {
|
|
bpf_user_pt_regs_t *regs;
|
|
struct perf_sample_data *data;
|
|
struct perf_event *event;
|
|
};
|
|
|
|
#ifdef CONFIG_CGROUP_PERF
|
|
|
|
/*
|
|
* perf_cgroup_info keeps track of time_enabled for a cgroup.
|
|
* This is a per-cpu dynamically allocated data structure.
|
|
*/
|
|
struct perf_cgroup_info {
|
|
u64 time;
|
|
u64 timestamp;
|
|
u64 timeoffset;
|
|
int active;
|
|
};
|
|
|
|
struct perf_cgroup {
|
|
struct cgroup_subsys_state css;
|
|
struct perf_cgroup_info __percpu *info;
|
|
};
|
|
|
|
/*
|
|
* Must ensure cgroup is pinned (css_get) before calling
|
|
* this function. In other words, we cannot call this function
|
|
* if there is no cgroup event for the current CPU context.
|
|
*/
|
|
static inline struct perf_cgroup *
|
|
perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
|
|
{
|
|
return container_of(task_css_check(task, perf_event_cgrp_id,
|
|
ctx ? lockdep_is_held(&ctx->lock)
|
|
: true),
|
|
struct perf_cgroup, css);
|
|
}
|
|
#endif /* CONFIG_CGROUP_PERF */
|
|
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
|
|
extern struct perf_event_context *perf_cpu_task_ctx(void);
|
|
|
|
extern void *perf_aux_output_begin(struct perf_output_handle *handle,
|
|
struct perf_event *event);
|
|
extern void perf_aux_output_end(struct perf_output_handle *handle,
|
|
unsigned long size);
|
|
extern int perf_aux_output_skip(struct perf_output_handle *handle,
|
|
unsigned long size);
|
|
extern void *perf_get_aux(struct perf_output_handle *handle);
|
|
extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
|
|
extern void perf_event_itrace_started(struct perf_event *event);
|
|
|
|
extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
|
|
extern void perf_pmu_unregister(struct pmu *pmu);
|
|
|
|
extern void __perf_event_task_sched_in(struct task_struct *prev,
|
|
struct task_struct *task);
|
|
extern void __perf_event_task_sched_out(struct task_struct *prev,
|
|
struct task_struct *next);
|
|
extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
|
|
extern void perf_event_exit_task(struct task_struct *child);
|
|
extern void perf_event_free_task(struct task_struct *task);
|
|
extern void perf_event_delayed_put(struct task_struct *task);
|
|
extern struct file *perf_event_get(unsigned int fd);
|
|
extern const struct perf_event *perf_get_event(struct file *file);
|
|
extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
|
|
extern void perf_event_print_debug(void);
|
|
extern void perf_pmu_disable(struct pmu *pmu);
|
|
extern void perf_pmu_enable(struct pmu *pmu);
|
|
extern void perf_sched_cb_dec(struct pmu *pmu);
|
|
extern void perf_sched_cb_inc(struct pmu *pmu);
|
|
extern int perf_event_task_disable(void);
|
|
extern int perf_event_task_enable(void);
|
|
|
|
extern void perf_pmu_resched(struct pmu *pmu);
|
|
|
|
extern int perf_event_refresh(struct perf_event *event, int refresh);
|
|
extern void perf_event_update_userpage(struct perf_event *event);
|
|
extern int perf_event_release_kernel(struct perf_event *event);
|
|
extern struct perf_event *
|
|
perf_event_create_kernel_counter(struct perf_event_attr *attr,
|
|
int cpu,
|
|
struct task_struct *task,
|
|
perf_overflow_handler_t callback,
|
|
void *context);
|
|
extern void perf_pmu_migrate_context(struct pmu *pmu,
|
|
int src_cpu, int dst_cpu);
|
|
int perf_event_read_local(struct perf_event *event, u64 *value,
|
|
u64 *enabled, u64 *running);
|
|
extern u64 perf_event_read_value(struct perf_event *event,
|
|
u64 *enabled, u64 *running);
|
|
|
|
extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
|
|
|
|
static inline bool branch_sample_no_flags(const struct perf_event *event)
|
|
{
|
|
return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
|
|
}
|
|
|
|
static inline bool branch_sample_no_cycles(const struct perf_event *event)
|
|
{
|
|
return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
|
|
}
|
|
|
|
static inline bool branch_sample_type(const struct perf_event *event)
|
|
{
|
|
return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
|
|
}
|
|
|
|
static inline bool branch_sample_hw_index(const struct perf_event *event)
|
|
{
|
|
return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
|
|
}
|
|
|
|
static inline bool branch_sample_priv(const struct perf_event *event)
|
|
{
|
|
return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
|
|
}
|
|
|
|
static inline bool branch_sample_counters(const struct perf_event *event)
|
|
{
|
|
return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS;
|
|
}
|
|
|
|
static inline bool branch_sample_call_stack(const struct perf_event *event)
|
|
{
|
|
return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK;
|
|
}
|
|
|
|
struct perf_sample_data {
|
|
/*
|
|
* Fields set by perf_sample_data_init() unconditionally,
|
|
* group so as to minimize the cachelines touched.
|
|
*/
|
|
u64 sample_flags;
|
|
u64 period;
|
|
u64 dyn_size;
|
|
|
|
/*
|
|
* Fields commonly set by __perf_event_header__init_id(),
|
|
* group so as to minimize the cachelines touched.
|
|
*/
|
|
u64 type;
|
|
struct {
|
|
u32 pid;
|
|
u32 tid;
|
|
} tid_entry;
|
|
u64 time;
|
|
u64 id;
|
|
struct {
|
|
u32 cpu;
|
|
u32 reserved;
|
|
} cpu_entry;
|
|
|
|
/*
|
|
* The other fields, optionally {set,used} by
|
|
* perf_{prepare,output}_sample().
|
|
*/
|
|
u64 ip;
|
|
struct perf_callchain_entry *callchain;
|
|
struct perf_raw_record *raw;
|
|
struct perf_branch_stack *br_stack;
|
|
u64 *br_stack_cntr;
|
|
union perf_sample_weight weight;
|
|
union perf_mem_data_src data_src;
|
|
u64 txn;
|
|
|
|
struct perf_regs regs_user;
|
|
struct perf_regs regs_intr;
|
|
u64 stack_user_size;
|
|
|
|
u64 stream_id;
|
|
u64 cgroup;
|
|
u64 addr;
|
|
u64 phys_addr;
|
|
u64 data_page_size;
|
|
u64 code_page_size;
|
|
u64 aux_size;
|
|
} ____cacheline_aligned;
|
|
|
|
/* default value for data source */
|
|
#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
|
|
PERF_MEM_S(LVL, NA) |\
|
|
PERF_MEM_S(SNOOP, NA) |\
|
|
PERF_MEM_S(LOCK, NA) |\
|
|
PERF_MEM_S(TLB, NA) |\
|
|
PERF_MEM_S(LVLNUM, NA))
|
|
|
|
static inline void perf_sample_data_init(struct perf_sample_data *data,
|
|
u64 addr, u64 period)
|
|
{
|
|
/* remaining struct members initialized in perf_prepare_sample() */
|
|
data->sample_flags = PERF_SAMPLE_PERIOD;
|
|
data->period = period;
|
|
data->dyn_size = 0;
|
|
|
|
if (addr) {
|
|
data->addr = addr;
|
|
data->sample_flags |= PERF_SAMPLE_ADDR;
|
|
}
|
|
}
|
|
|
|
static inline void perf_sample_save_callchain(struct perf_sample_data *data,
|
|
struct perf_event *event,
|
|
struct pt_regs *regs)
|
|
{
|
|
int size = 1;
|
|
|
|
if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN))
|
|
return;
|
|
if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_CALLCHAIN))
|
|
return;
|
|
|
|
data->callchain = perf_callchain(event, regs);
|
|
size += data->callchain->nr;
|
|
|
|
data->dyn_size += size * sizeof(u64);
|
|
data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
|
|
}
|
|
|
|
static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
|
|
struct perf_event *event,
|
|
struct perf_raw_record *raw)
|
|
{
|
|
struct perf_raw_frag *frag = &raw->frag;
|
|
u32 sum = 0;
|
|
int size;
|
|
|
|
if (!(event->attr.sample_type & PERF_SAMPLE_RAW))
|
|
return;
|
|
if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_RAW))
|
|
return;
|
|
|
|
do {
|
|
sum += frag->size;
|
|
if (perf_raw_frag_last(frag))
|
|
break;
|
|
frag = frag->next;
|
|
} while (1);
|
|
|
|
size = round_up(sum + sizeof(u32), sizeof(u64));
|
|
raw->size = size - sizeof(u32);
|
|
frag->pad = raw->size - sum;
|
|
|
|
data->raw = raw;
|
|
data->dyn_size += size;
|
|
data->sample_flags |= PERF_SAMPLE_RAW;
|
|
}
|
|
|
|
static inline bool has_branch_stack(struct perf_event *event)
|
|
{
|
|
return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
|
|
}
|
|
|
|
static inline void perf_sample_save_brstack(struct perf_sample_data *data,
|
|
struct perf_event *event,
|
|
struct perf_branch_stack *brs,
|
|
u64 *brs_cntr)
|
|
{
|
|
int size = sizeof(u64); /* nr */
|
|
|
|
if (!has_branch_stack(event))
|
|
return;
|
|
if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_BRANCH_STACK))
|
|
return;
|
|
|
|
if (branch_sample_hw_index(event))
|
|
size += sizeof(u64);
|
|
size += brs->nr * sizeof(struct perf_branch_entry);
|
|
|
|
/*
|
|
* The extension space for counters is appended after the
|
|
* struct perf_branch_stack. It is used to store the occurrences
|
|
* of events of each branch.
|
|
*/
|
|
if (brs_cntr)
|
|
size += brs->nr * sizeof(u64);
|
|
|
|
data->br_stack = brs;
|
|
data->br_stack_cntr = brs_cntr;
|
|
data->dyn_size += size;
|
|
data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
|
|
}
|
|
|
|
static inline u32 perf_sample_data_size(struct perf_sample_data *data,
|
|
struct perf_event *event)
|
|
{
|
|
u32 size = sizeof(struct perf_event_header);
|
|
|
|
size += event->header_size + event->id_header_size;
|
|
size += data->dyn_size;
|
|
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* Clear all bitfields in the perf_branch_entry.
|
|
* The to and from fields are not cleared because they are
|
|
* systematically modified by caller.
|
|
*/
|
|
static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
|
|
{
|
|
br->mispred = 0;
|
|
br->predicted = 0;
|
|
br->in_tx = 0;
|
|
br->abort = 0;
|
|
br->cycles = 0;
|
|
br->type = 0;
|
|
br->spec = PERF_BR_SPEC_NA;
|
|
br->reserved = 0;
|
|
}
|
|
|
|
extern void perf_output_sample(struct perf_output_handle *handle,
|
|
struct perf_event_header *header,
|
|
struct perf_sample_data *data,
|
|
struct perf_event *event);
|
|
extern void perf_prepare_sample(struct perf_sample_data *data,
|
|
struct perf_event *event,
|
|
struct pt_regs *regs);
|
|
extern void perf_prepare_header(struct perf_event_header *header,
|
|
struct perf_sample_data *data,
|
|
struct perf_event *event,
|
|
struct pt_regs *regs);
|
|
|
|
extern int perf_event_overflow(struct perf_event *event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs);
|
|
|
|
extern void perf_event_output_forward(struct perf_event *event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs);
|
|
extern void perf_event_output_backward(struct perf_event *event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs);
|
|
extern int perf_event_output(struct perf_event *event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs);
|
|
|
|
static inline bool
|
|
is_default_overflow_handler(struct perf_event *event)
|
|
{
|
|
perf_overflow_handler_t overflow_handler = event->overflow_handler;
|
|
|
|
if (likely(overflow_handler == perf_event_output_forward))
|
|
return true;
|
|
if (unlikely(overflow_handler == perf_event_output_backward))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
extern void
|
|
perf_event_header__init_id(struct perf_event_header *header,
|
|
struct perf_sample_data *data,
|
|
struct perf_event *event);
|
|
extern void
|
|
perf_event__output_id_sample(struct perf_event *event,
|
|
struct perf_output_handle *handle,
|
|
struct perf_sample_data *sample);
|
|
|
|
extern void
|
|
perf_log_lost_samples(struct perf_event *event, u64 lost);
|
|
|
|
static inline bool event_has_any_exclude_flag(struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
|
|
return attr->exclude_idle || attr->exclude_user ||
|
|
attr->exclude_kernel || attr->exclude_hv ||
|
|
attr->exclude_guest || attr->exclude_host;
|
|
}
|
|
|
|
static inline bool is_sampling_event(struct perf_event *event)
|
|
{
|
|
return event->attr.sample_period != 0;
|
|
}
|
|
|
|
/*
|
|
* Return 1 for a software event, 0 for a hardware event
|
|
*/
|
|
static inline int is_software_event(struct perf_event *event)
|
|
{
|
|
return event->event_caps & PERF_EV_CAP_SOFTWARE;
|
|
}
|
|
|
|
/*
|
|
* Return 1 for event in sw context, 0 for event in hw context
|
|
*/
|
|
static inline int in_software_context(struct perf_event *event)
|
|
{
|
|
return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
|
|
}
|
|
|
|
static inline int is_exclusive_pmu(struct pmu *pmu)
|
|
{
|
|
return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
|
|
}
|
|
|
|
extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
|
|
|
|
extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
|
|
extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
|
|
|
|
#ifndef perf_arch_fetch_caller_regs
|
|
static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
|
|
#endif
|
|
|
|
/*
|
|
* When generating a perf sample in-line, instead of from an interrupt /
|
|
* exception, we lack a pt_regs. This is typically used from software events
|
|
* like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
|
|
*
|
|
* We typically don't need a full set, but (for x86) do require:
|
|
* - ip for PERF_SAMPLE_IP
|
|
* - cs for user_mode() tests
|
|
* - sp for PERF_SAMPLE_CALLCHAIN
|
|
* - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
|
|
*
|
|
* NOTE: assumes @regs is otherwise already 0 filled; this is important for
|
|
* things like PERF_SAMPLE_REGS_INTR.
|
|
*/
|
|
static inline void perf_fetch_caller_regs(struct pt_regs *regs)
|
|
{
|
|
perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
|
|
}
|
|
|
|
static __always_inline void
|
|
perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
|
|
{
|
|
if (static_key_false(&perf_swevent_enabled[event_id]))
|
|
__perf_sw_event(event_id, nr, regs, addr);
|
|
}
|
|
|
|
DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
|
|
|
|
/*
|
|
* 'Special' version for the scheduler, it hard assumes no recursion,
|
|
* which is guaranteed by us not actually scheduling inside other swevents
|
|
* because those disable preemption.
|
|
*/
|
|
static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
|
|
{
|
|
struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
___perf_sw_event(event_id, nr, regs, addr);
|
|
}
|
|
|
|
extern struct static_key_false perf_sched_events;
|
|
|
|
static __always_inline bool __perf_sw_enabled(int swevt)
|
|
{
|
|
return static_key_false(&perf_swevent_enabled[swevt]);
|
|
}
|
|
|
|
static inline void perf_event_task_migrate(struct task_struct *task)
|
|
{
|
|
if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
|
|
task->sched_migrated = 1;
|
|
}
|
|
|
|
static inline void perf_event_task_sched_in(struct task_struct *prev,
|
|
struct task_struct *task)
|
|
{
|
|
if (static_branch_unlikely(&perf_sched_events))
|
|
__perf_event_task_sched_in(prev, task);
|
|
|
|
if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
|
|
task->sched_migrated) {
|
|
__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
|
|
task->sched_migrated = 0;
|
|
}
|
|
}
|
|
|
|
static inline void perf_event_task_sched_out(struct task_struct *prev,
|
|
struct task_struct *next)
|
|
{
|
|
if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
|
|
__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
|
|
|
|
#ifdef CONFIG_CGROUP_PERF
|
|
if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
|
|
perf_cgroup_from_task(prev, NULL) !=
|
|
perf_cgroup_from_task(next, NULL))
|
|
__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
|
|
#endif
|
|
|
|
if (static_branch_unlikely(&perf_sched_events))
|
|
__perf_event_task_sched_out(prev, next);
|
|
}
|
|
|
|
extern void perf_event_mmap(struct vm_area_struct *vma);
|
|
|
|
extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
|
|
bool unregister, const char *sym);
|
|
extern void perf_event_bpf_event(struct bpf_prog *prog,
|
|
enum perf_bpf_event_type type,
|
|
u16 flags);
|
|
|
|
#ifdef CONFIG_GUEST_PERF_EVENTS
|
|
extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
|
|
|
|
DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
|
|
DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
|
|
DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
|
|
|
|
static inline unsigned int perf_guest_state(void)
|
|
{
|
|
return static_call(__perf_guest_state)();
|
|
}
|
|
static inline unsigned long perf_guest_get_ip(void)
|
|
{
|
|
return static_call(__perf_guest_get_ip)();
|
|
}
|
|
static inline unsigned int perf_guest_handle_intel_pt_intr(void)
|
|
{
|
|
return static_call(__perf_guest_handle_intel_pt_intr)();
|
|
}
|
|
extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
|
|
extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
|
|
#else
|
|
static inline unsigned int perf_guest_state(void) { return 0; }
|
|
static inline unsigned long perf_guest_get_ip(void) { return 0; }
|
|
static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
|
|
#endif /* CONFIG_GUEST_PERF_EVENTS */
|
|
|
|
extern void perf_event_exec(void);
|
|
extern void perf_event_comm(struct task_struct *tsk, bool exec);
|
|
extern void perf_event_namespaces(struct task_struct *tsk);
|
|
extern void perf_event_fork(struct task_struct *tsk);
|
|
extern void perf_event_text_poke(const void *addr,
|
|
const void *old_bytes, size_t old_len,
|
|
const void *new_bytes, size_t new_len);
|
|
|
|
/* Callchains */
|
|
DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
|
|
|
|
extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
|
|
extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
|
|
extern struct perf_callchain_entry *
|
|
get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
|
|
u32 max_stack, bool crosstask, bool add_mark);
|
|
extern int get_callchain_buffers(int max_stack);
|
|
extern void put_callchain_buffers(void);
|
|
extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
|
|
extern void put_callchain_entry(int rctx);
|
|
|
|
extern int sysctl_perf_event_max_stack;
|
|
extern int sysctl_perf_event_max_contexts_per_stack;
|
|
|
|
static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
|
|
{
|
|
if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
|
|
struct perf_callchain_entry *entry = ctx->entry;
|
|
entry->ip[entry->nr++] = ip;
|
|
++ctx->contexts;
|
|
return 0;
|
|
} else {
|
|
ctx->contexts_maxed = true;
|
|
return -1; /* no more room, stop walking the stack */
|
|
}
|
|
}
|
|
|
|
static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
|
|
{
|
|
if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
|
|
struct perf_callchain_entry *entry = ctx->entry;
|
|
entry->ip[entry->nr++] = ip;
|
|
++ctx->nr;
|
|
return 0;
|
|
} else {
|
|
return -1; /* no more room, stop walking the stack */
|
|
}
|
|
}
|
|
|
|
extern int sysctl_perf_event_paranoid;
|
|
extern int sysctl_perf_event_mlock;
|
|
extern int sysctl_perf_event_sample_rate;
|
|
extern int sysctl_perf_cpu_time_max_percent;
|
|
|
|
extern void perf_sample_event_took(u64 sample_len_ns);
|
|
|
|
int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos);
|
|
int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos);
|
|
int perf_event_max_stack_handler(const struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos);
|
|
|
|
/* Access to perf_event_open(2) syscall. */
|
|
#define PERF_SECURITY_OPEN 0
|
|
|
|
/* Finer grained perf_event_open(2) access control. */
|
|
#define PERF_SECURITY_CPU 1
|
|
#define PERF_SECURITY_KERNEL 2
|
|
#define PERF_SECURITY_TRACEPOINT 3
|
|
|
|
static inline int perf_is_paranoid(void)
|
|
{
|
|
return sysctl_perf_event_paranoid > -1;
|
|
}
|
|
|
|
int perf_allow_kernel(struct perf_event_attr *attr);
|
|
|
|
static inline int perf_allow_cpu(struct perf_event_attr *attr)
|
|
{
|
|
if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
|
|
return -EACCES;
|
|
|
|
return security_perf_event_open(attr, PERF_SECURITY_CPU);
|
|
}
|
|
|
|
static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
|
|
{
|
|
if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
|
|
return -EPERM;
|
|
|
|
return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
|
|
}
|
|
|
|
extern int perf_exclude_event(struct perf_event *event, struct pt_regs *regs);
|
|
|
|
extern void perf_event_init(void);
|
|
extern void perf_tp_event(u16 event_type, u64 count, void *record,
|
|
int entry_size, struct pt_regs *regs,
|
|
struct hlist_head *head, int rctx,
|
|
struct task_struct *task);
|
|
extern void perf_bp_event(struct perf_event *event, void *data);
|
|
|
|
extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs);
|
|
extern unsigned long perf_instruction_pointer(struct perf_event *event,
|
|
struct pt_regs *regs);
|
|
|
|
#ifndef perf_arch_misc_flags
|
|
# define perf_arch_misc_flags(regs) \
|
|
(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
|
|
# define perf_arch_instruction_pointer(regs) instruction_pointer(regs)
|
|
#endif
|
|
#ifndef perf_arch_bpf_user_pt_regs
|
|
# define perf_arch_bpf_user_pt_regs(regs) regs
|
|
#endif
|
|
|
|
#ifndef perf_arch_guest_misc_flags
|
|
static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
|
|
{
|
|
unsigned long guest_state = perf_guest_state();
|
|
|
|
if (!(guest_state & PERF_GUEST_ACTIVE))
|
|
return 0;
|
|
|
|
if (guest_state & PERF_GUEST_USER)
|
|
return PERF_RECORD_MISC_GUEST_USER;
|
|
else
|
|
return PERF_RECORD_MISC_GUEST_KERNEL;
|
|
}
|
|
# define perf_arch_guest_misc_flags(regs) perf_arch_guest_misc_flags(regs)
|
|
#endif
|
|
|
|
static inline bool needs_branch_stack(struct perf_event *event)
|
|
{
|
|
return event->attr.branch_sample_type != 0;
|
|
}
|
|
|
|
static inline bool has_aux(struct perf_event *event)
|
|
{
|
|
return event->pmu->setup_aux;
|
|
}
|
|
|
|
static inline bool has_aux_action(struct perf_event *event)
|
|
{
|
|
return event->attr.aux_sample_size ||
|
|
event->attr.aux_pause ||
|
|
event->attr.aux_resume;
|
|
}
|
|
|
|
static inline bool is_write_backward(struct perf_event *event)
|
|
{
|
|
return !!event->attr.write_backward;
|
|
}
|
|
|
|
static inline bool has_addr_filter(struct perf_event *event)
|
|
{
|
|
return event->pmu->nr_addr_filters;
|
|
}
|
|
|
|
/*
|
|
* An inherited event uses parent's filters
|
|
*/
|
|
static inline struct perf_addr_filters_head *
|
|
perf_event_addr_filters(struct perf_event *event)
|
|
{
|
|
struct perf_addr_filters_head *ifh = &event->addr_filters;
|
|
|
|
if (event->parent)
|
|
ifh = &event->parent->addr_filters;
|
|
|
|
return ifh;
|
|
}
|
|
|
|
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
|
|
{
|
|
/* Only the parent has fasync state */
|
|
if (event->parent)
|
|
event = event->parent;
|
|
return &event->fasync;
|
|
}
|
|
|
|
extern void perf_event_addr_filters_sync(struct perf_event *event);
|
|
extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
|
|
|
|
extern int perf_output_begin(struct perf_output_handle *handle,
|
|
struct perf_sample_data *data,
|
|
struct perf_event *event, unsigned int size);
|
|
extern int perf_output_begin_forward(struct perf_output_handle *handle,
|
|
struct perf_sample_data *data,
|
|
struct perf_event *event,
|
|
unsigned int size);
|
|
extern int perf_output_begin_backward(struct perf_output_handle *handle,
|
|
struct perf_sample_data *data,
|
|
struct perf_event *event,
|
|
unsigned int size);
|
|
|
|
extern void perf_output_end(struct perf_output_handle *handle);
|
|
extern unsigned int perf_output_copy(struct perf_output_handle *handle,
|
|
const void *buf, unsigned int len);
|
|
extern unsigned int perf_output_skip(struct perf_output_handle *handle,
|
|
unsigned int len);
|
|
extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
|
|
struct perf_output_handle *handle,
|
|
unsigned long from, unsigned long to);
|
|
extern int perf_swevent_get_recursion_context(void);
|
|
extern void perf_swevent_put_recursion_context(int rctx);
|
|
extern u64 perf_swevent_set_period(struct perf_event *event);
|
|
extern void perf_event_enable(struct perf_event *event);
|
|
extern void perf_event_disable(struct perf_event *event);
|
|
extern void perf_event_disable_local(struct perf_event *event);
|
|
extern void perf_event_disable_inatomic(struct perf_event *event);
|
|
extern void perf_event_task_tick(void);
|
|
extern int perf_event_account_interrupt(struct perf_event *event);
|
|
extern int perf_event_period(struct perf_event *event, u64 value);
|
|
extern u64 perf_event_pause(struct perf_event *event, bool reset);
|
|
#else /* !CONFIG_PERF_EVENTS: */
|
|
static inline void *
|
|
perf_aux_output_begin(struct perf_output_handle *handle,
|
|
struct perf_event *event) { return NULL; }
|
|
static inline void
|
|
perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
|
|
{ }
|
|
static inline int
|
|
perf_aux_output_skip(struct perf_output_handle *handle,
|
|
unsigned long size) { return -EINVAL; }
|
|
static inline void *
|
|
perf_get_aux(struct perf_output_handle *handle) { return NULL; }
|
|
static inline void
|
|
perf_event_task_migrate(struct task_struct *task) { }
|
|
static inline void
|
|
perf_event_task_sched_in(struct task_struct *prev,
|
|
struct task_struct *task) { }
|
|
static inline void
|
|
perf_event_task_sched_out(struct task_struct *prev,
|
|
struct task_struct *next) { }
|
|
static inline int perf_event_init_task(struct task_struct *child,
|
|
u64 clone_flags) { return 0; }
|
|
static inline void perf_event_exit_task(struct task_struct *child) { }
|
|
static inline void perf_event_free_task(struct task_struct *task) { }
|
|
static inline void perf_event_delayed_put(struct task_struct *task) { }
|
|
static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
|
|
static inline const struct perf_event *perf_get_event(struct file *file)
|
|
{
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
|
|
{
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
static inline int perf_event_read_local(struct perf_event *event, u64 *value,
|
|
u64 *enabled, u64 *running)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
static inline void perf_event_print_debug(void) { }
|
|
static inline int perf_event_task_disable(void) { return -EINVAL; }
|
|
static inline int perf_event_task_enable(void) { return -EINVAL; }
|
|
static inline int perf_event_refresh(struct perf_event *event, int refresh)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static inline void
|
|
perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
|
|
static inline void
|
|
perf_bp_event(struct perf_event *event, void *data) { }
|
|
|
|
static inline void perf_event_mmap(struct vm_area_struct *vma) { }
|
|
|
|
typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
|
|
static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
|
|
bool unregister, const char *sym) { }
|
|
static inline void perf_event_bpf_event(struct bpf_prog *prog,
|
|
enum perf_bpf_event_type type,
|
|
u16 flags) { }
|
|
static inline void perf_event_exec(void) { }
|
|
static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
|
|
static inline void perf_event_namespaces(struct task_struct *tsk) { }
|
|
static inline void perf_event_fork(struct task_struct *tsk) { }
|
|
static inline void perf_event_text_poke(const void *addr,
|
|
const void *old_bytes,
|
|
size_t old_len,
|
|
const void *new_bytes,
|
|
size_t new_len) { }
|
|
static inline void perf_event_init(void) { }
|
|
static inline int perf_swevent_get_recursion_context(void) { return -1; }
|
|
static inline void perf_swevent_put_recursion_context(int rctx) { }
|
|
static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
|
|
static inline void perf_event_enable(struct perf_event *event) { }
|
|
static inline void perf_event_disable(struct perf_event *event) { }
|
|
static inline int __perf_event_disable(void *info) { return -1; }
|
|
static inline void perf_event_task_tick(void) { }
|
|
static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
|
|
static inline int perf_event_period(struct perf_event *event, u64 value)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
static inline u64 perf_event_pause(struct perf_event *event, bool reset)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
|
|
extern void perf_restore_debug_store(void);
|
|
#else
|
|
static inline void perf_restore_debug_store(void) { }
|
|
#endif
|
|
|
|
#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
|
|
|
|
struct perf_pmu_events_attr {
|
|
struct device_attribute attr;
|
|
u64 id;
|
|
const char *event_str;
|
|
};
|
|
|
|
struct perf_pmu_events_ht_attr {
|
|
struct device_attribute attr;
|
|
u64 id;
|
|
const char *event_str_ht;
|
|
const char *event_str_noht;
|
|
};
|
|
|
|
struct perf_pmu_events_hybrid_attr {
|
|
struct device_attribute attr;
|
|
u64 id;
|
|
const char *event_str;
|
|
u64 pmu_type;
|
|
};
|
|
|
|
struct perf_pmu_format_hybrid_attr {
|
|
struct device_attribute attr;
|
|
u64 pmu_type;
|
|
};
|
|
|
|
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
|
|
char *page);
|
|
|
|
#define PMU_EVENT_ATTR(_name, _var, _id, _show) \
|
|
static struct perf_pmu_events_attr _var = { \
|
|
.attr = __ATTR(_name, 0444, _show, NULL), \
|
|
.id = _id, \
|
|
};
|
|
|
|
#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
|
|
static struct perf_pmu_events_attr _var = { \
|
|
.attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
|
|
.id = 0, \
|
|
.event_str = _str, \
|
|
};
|
|
|
|
#define PMU_EVENT_ATTR_ID(_name, _show, _id) \
|
|
(&((struct perf_pmu_events_attr[]) { \
|
|
{ .attr = __ATTR(_name, 0444, _show, NULL), \
|
|
.id = _id, } \
|
|
})[0].attr.attr)
|
|
|
|
#define PMU_FORMAT_ATTR_SHOW(_name, _format) \
|
|
static ssize_t \
|
|
_name##_show(struct device *dev, \
|
|
struct device_attribute *attr, \
|
|
char *page) \
|
|
{ \
|
|
BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
|
|
return sprintf(page, _format "\n"); \
|
|
} \
|
|
|
|
#define PMU_FORMAT_ATTR(_name, _format) \
|
|
PMU_FORMAT_ATTR_SHOW(_name, _format) \
|
|
\
|
|
static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
|
|
|
|
/* Performance counter hotplug functions */
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
int perf_event_init_cpu(unsigned int cpu);
|
|
int perf_event_exit_cpu(unsigned int cpu);
|
|
#else
|
|
#define perf_event_init_cpu NULL
|
|
#define perf_event_exit_cpu NULL
|
|
#endif
|
|
|
|
extern void arch_perf_update_userpage(struct perf_event *event,
|
|
struct perf_event_mmap_page *userpg,
|
|
u64 now);
|
|
|
|
/*
|
|
* Snapshot branch stack on software events.
|
|
*
|
|
* Branch stack can be very useful in understanding software events. For
|
|
* example, when a long function, e.g. sys_perf_event_open, returns an
|
|
* errno, it is not obvious why the function failed. Branch stack could
|
|
* provide very helpful information in this type of scenarios.
|
|
*
|
|
* On software event, it is necessary to stop the hardware branch recorder
|
|
* fast. Otherwise, the hardware register/buffer will be flushed with
|
|
* entries of the triggering event. Therefore, static call is used to
|
|
* stop the hardware recorder.
|
|
*/
|
|
|
|
/*
|
|
* cnt is the number of entries allocated for entries.
|
|
* Return number of entries copied to .
|
|
*/
|
|
typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
|
|
unsigned int cnt);
|
|
DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
|
|
|
|
#ifndef PERF_NEEDS_LOPWR_CB
|
|
static inline void perf_lopwr_cb(bool mode)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#endif /* _LINUX_PERF_EVENT_H */
|