mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2024-12-28 16:52:18 +00:00
2254 lines
64 KiB
C
2254 lines
64 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_SCHED_H
|
|
#define _LINUX_SCHED_H
|
|
|
|
/*
|
|
* Define 'struct task_struct' and provide the main scheduler
|
|
* APIs (schedule(), wakeup variants, etc.)
|
|
*/
|
|
|
|
#include <uapi/linux/sched.h>
|
|
|
|
#include <asm/current.h>
|
|
#include <asm/processor.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/cpumask_types.h>
|
|
|
|
#include <linux/cache.h>
|
|
#include <linux/irqflags_types.h>
|
|
#include <linux/smp_types.h>
|
|
#include <linux/pid_types.h>
|
|
#include <linux/sem_types.h>
|
|
#include <linux/shm.h>
|
|
#include <linux/kmsan_types.h>
|
|
#include <linux/mutex_types.h>
|
|
#include <linux/plist_types.h>
|
|
#include <linux/hrtimer_types.h>
|
|
#include <linux/timer_types.h>
|
|
#include <linux/seccomp_types.h>
|
|
#include <linux/nodemask_types.h>
|
|
#include <linux/refcount_types.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/latencytop.h>
|
|
#include <linux/sched/prio.h>
|
|
#include <linux/sched/types.h>
|
|
#include <linux/signal_types.h>
|
|
#include <linux/syscall_user_dispatch_types.h>
|
|
#include <linux/mm_types_task.h>
|
|
#include <linux/netdevice_xmit.h>
|
|
#include <linux/task_io_accounting.h>
|
|
#include <linux/posix-timers_types.h>
|
|
#include <linux/restart_block.h>
|
|
#include <uapi/linux/rseq.h>
|
|
#include <linux/seqlock_types.h>
|
|
#include <linux/kcsan.h>
|
|
#include <linux/rv.h>
|
|
#include <linux/livepatch_sched.h>
|
|
#include <linux/uidgid_types.h>
|
|
#include <asm/kmap_size.h>
|
|
|
|
/* task_struct member predeclarations (sorted alphabetically): */
|
|
struct audit_context;
|
|
struct bio_list;
|
|
struct blk_plug;
|
|
struct bpf_local_storage;
|
|
struct bpf_run_ctx;
|
|
struct bpf_net_context;
|
|
struct capture_control;
|
|
struct cfs_rq;
|
|
struct fs_struct;
|
|
struct futex_pi_state;
|
|
struct io_context;
|
|
struct io_uring_task;
|
|
struct mempolicy;
|
|
struct nameidata;
|
|
struct nsproxy;
|
|
struct perf_event_context;
|
|
struct pid_namespace;
|
|
struct pipe_inode_info;
|
|
struct rcu_node;
|
|
struct reclaim_state;
|
|
struct robust_list_head;
|
|
struct root_domain;
|
|
struct rq;
|
|
struct sched_attr;
|
|
struct sched_dl_entity;
|
|
struct seq_file;
|
|
struct sighand_struct;
|
|
struct signal_struct;
|
|
struct task_delay_info;
|
|
struct task_group;
|
|
struct task_struct;
|
|
struct user_event_mm;
|
|
|
|
#include <linux/sched/ext.h>
|
|
|
|
/*
|
|
* Task state bitmask. NOTE! These bits are also
|
|
* encoded in fs/proc/array.c: get_task_state().
|
|
*
|
|
* We have two separate sets of flags: task->__state
|
|
* is about runnability, while task->exit_state are
|
|
* about the task exiting. Confusing, but this way
|
|
* modifying one set can't modify the other one by
|
|
* mistake.
|
|
*/
|
|
|
|
/* Used in tsk->__state: */
|
|
#define TASK_RUNNING 0x00000000
|
|
#define TASK_INTERRUPTIBLE 0x00000001
|
|
#define TASK_UNINTERRUPTIBLE 0x00000002
|
|
#define __TASK_STOPPED 0x00000004
|
|
#define __TASK_TRACED 0x00000008
|
|
/* Used in tsk->exit_state: */
|
|
#define EXIT_DEAD 0x00000010
|
|
#define EXIT_ZOMBIE 0x00000020
|
|
#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
|
|
/* Used in tsk->__state again: */
|
|
#define TASK_PARKED 0x00000040
|
|
#define TASK_DEAD 0x00000080
|
|
#define TASK_WAKEKILL 0x00000100
|
|
#define TASK_WAKING 0x00000200
|
|
#define TASK_NOLOAD 0x00000400
|
|
#define TASK_NEW 0x00000800
|
|
#define TASK_RTLOCK_WAIT 0x00001000
|
|
#define TASK_FREEZABLE 0x00002000
|
|
#define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
|
|
#define TASK_FROZEN 0x00008000
|
|
#define TASK_STATE_MAX 0x00010000
|
|
|
|
#define TASK_ANY (TASK_STATE_MAX-1)
|
|
|
|
/*
|
|
* DO NOT ADD ANY NEW USERS !
|
|
*/
|
|
#define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
|
|
|
|
/* Convenience macros for the sake of set_current_state: */
|
|
#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
|
|
#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
|
|
#define TASK_TRACED __TASK_TRACED
|
|
|
|
#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
|
|
|
|
/* Convenience macros for the sake of wake_up(): */
|
|
#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
|
|
|
|
/* get_task_state(): */
|
|
#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
|
|
TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
|
|
__TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
|
|
TASK_PARKED)
|
|
|
|
#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
|
|
|
|
#define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
|
|
#define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
|
|
#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
|
|
|
|
/*
|
|
* Special states are those that do not use the normal wait-loop pattern. See
|
|
* the comment with set_special_state().
|
|
*/
|
|
#define is_special_task_state(state) \
|
|
((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | \
|
|
TASK_DEAD | TASK_FROZEN))
|
|
|
|
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
|
|
# define debug_normal_state_change(state_value) \
|
|
do { \
|
|
WARN_ON_ONCE(is_special_task_state(state_value)); \
|
|
current->task_state_change = _THIS_IP_; \
|
|
} while (0)
|
|
|
|
# define debug_special_state_change(state_value) \
|
|
do { \
|
|
WARN_ON_ONCE(!is_special_task_state(state_value)); \
|
|
current->task_state_change = _THIS_IP_; \
|
|
} while (0)
|
|
|
|
# define debug_rtlock_wait_set_state() \
|
|
do { \
|
|
current->saved_state_change = current->task_state_change;\
|
|
current->task_state_change = _THIS_IP_; \
|
|
} while (0)
|
|
|
|
# define debug_rtlock_wait_restore_state() \
|
|
do { \
|
|
current->task_state_change = current->saved_state_change;\
|
|
} while (0)
|
|
|
|
#else
|
|
# define debug_normal_state_change(cond) do { } while (0)
|
|
# define debug_special_state_change(cond) do { } while (0)
|
|
# define debug_rtlock_wait_set_state() do { } while (0)
|
|
# define debug_rtlock_wait_restore_state() do { } while (0)
|
|
#endif
|
|
|
|
/*
|
|
* set_current_state() includes a barrier so that the write of current->__state
|
|
* is correctly serialised wrt the caller's subsequent test of whether to
|
|
* actually sleep:
|
|
*
|
|
* for (;;) {
|
|
* set_current_state(TASK_UNINTERRUPTIBLE);
|
|
* if (CONDITION)
|
|
* break;
|
|
*
|
|
* schedule();
|
|
* }
|
|
* __set_current_state(TASK_RUNNING);
|
|
*
|
|
* If the caller does not need such serialisation (because, for instance, the
|
|
* CONDITION test and condition change and wakeup are under the same lock) then
|
|
* use __set_current_state().
|
|
*
|
|
* The above is typically ordered against the wakeup, which does:
|
|
*
|
|
* CONDITION = 1;
|
|
* wake_up_state(p, TASK_UNINTERRUPTIBLE);
|
|
*
|
|
* where wake_up_state()/try_to_wake_up() executes a full memory barrier before
|
|
* accessing p->__state.
|
|
*
|
|
* Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
|
|
* once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
|
|
* TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
|
|
*
|
|
* However, with slightly different timing the wakeup TASK_RUNNING store can
|
|
* also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
|
|
* a problem either because that will result in one extra go around the loop
|
|
* and our @cond test will save the day.
|
|
*
|
|
* Also see the comments of try_to_wake_up().
|
|
*/
|
|
#define __set_current_state(state_value) \
|
|
do { \
|
|
debug_normal_state_change((state_value)); \
|
|
WRITE_ONCE(current->__state, (state_value)); \
|
|
} while (0)
|
|
|
|
#define set_current_state(state_value) \
|
|
do { \
|
|
debug_normal_state_change((state_value)); \
|
|
smp_store_mb(current->__state, (state_value)); \
|
|
} while (0)
|
|
|
|
/*
|
|
* set_special_state() should be used for those states when the blocking task
|
|
* can not use the regular condition based wait-loop. In that case we must
|
|
* serialize against wakeups such that any possible in-flight TASK_RUNNING
|
|
* stores will not collide with our state change.
|
|
*/
|
|
#define set_special_state(state_value) \
|
|
do { \
|
|
unsigned long flags; /* may shadow */ \
|
|
\
|
|
raw_spin_lock_irqsave(¤t->pi_lock, flags); \
|
|
debug_special_state_change((state_value)); \
|
|
WRITE_ONCE(current->__state, (state_value)); \
|
|
raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
|
|
} while (0)
|
|
|
|
/*
|
|
* PREEMPT_RT specific variants for "sleeping" spin/rwlocks
|
|
*
|
|
* RT's spin/rwlock substitutions are state preserving. The state of the
|
|
* task when blocking on the lock is saved in task_struct::saved_state and
|
|
* restored after the lock has been acquired. These operations are
|
|
* serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
|
|
* lock related wakeups while the task is blocked on the lock are
|
|
* redirected to operate on task_struct::saved_state to ensure that these
|
|
* are not dropped. On restore task_struct::saved_state is set to
|
|
* TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
|
|
*
|
|
* The lock operation looks like this:
|
|
*
|
|
* current_save_and_set_rtlock_wait_state();
|
|
* for (;;) {
|
|
* if (try_lock())
|
|
* break;
|
|
* raw_spin_unlock_irq(&lock->wait_lock);
|
|
* schedule_rtlock();
|
|
* raw_spin_lock_irq(&lock->wait_lock);
|
|
* set_current_state(TASK_RTLOCK_WAIT);
|
|
* }
|
|
* current_restore_rtlock_saved_state();
|
|
*/
|
|
#define current_save_and_set_rtlock_wait_state() \
|
|
do { \
|
|
lockdep_assert_irqs_disabled(); \
|
|
raw_spin_lock(¤t->pi_lock); \
|
|
current->saved_state = current->__state; \
|
|
debug_rtlock_wait_set_state(); \
|
|
WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
|
|
raw_spin_unlock(¤t->pi_lock); \
|
|
} while (0);
|
|
|
|
#define current_restore_rtlock_saved_state() \
|
|
do { \
|
|
lockdep_assert_irqs_disabled(); \
|
|
raw_spin_lock(¤t->pi_lock); \
|
|
debug_rtlock_wait_restore_state(); \
|
|
WRITE_ONCE(current->__state, current->saved_state); \
|
|
current->saved_state = TASK_RUNNING; \
|
|
raw_spin_unlock(¤t->pi_lock); \
|
|
} while (0);
|
|
|
|
#define get_current_state() READ_ONCE(current->__state)
|
|
|
|
/*
|
|
* Define the task command name length as enum, then it can be visible to
|
|
* BPF programs.
|
|
*/
|
|
enum {
|
|
TASK_COMM_LEN = 16,
|
|
};
|
|
|
|
extern void sched_tick(void);
|
|
|
|
#define MAX_SCHEDULE_TIMEOUT LONG_MAX
|
|
|
|
extern long schedule_timeout(long timeout);
|
|
extern long schedule_timeout_interruptible(long timeout);
|
|
extern long schedule_timeout_killable(long timeout);
|
|
extern long schedule_timeout_uninterruptible(long timeout);
|
|
extern long schedule_timeout_idle(long timeout);
|
|
asmlinkage void schedule(void);
|
|
extern void schedule_preempt_disabled(void);
|
|
asmlinkage void preempt_schedule_irq(void);
|
|
#ifdef CONFIG_PREEMPT_RT
|
|
extern void schedule_rtlock(void);
|
|
#endif
|
|
|
|
extern int __must_check io_schedule_prepare(void);
|
|
extern void io_schedule_finish(int token);
|
|
extern long io_schedule_timeout(long timeout);
|
|
extern void io_schedule(void);
|
|
|
|
/**
|
|
* struct prev_cputime - snapshot of system and user cputime
|
|
* @utime: time spent in user mode
|
|
* @stime: time spent in system mode
|
|
* @lock: protects the above two fields
|
|
*
|
|
* Stores previous user/system time values such that we can guarantee
|
|
* monotonicity.
|
|
*/
|
|
struct prev_cputime {
|
|
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
|
|
u64 utime;
|
|
u64 stime;
|
|
raw_spinlock_t lock;
|
|
#endif
|
|
};
|
|
|
|
enum vtime_state {
|
|
/* Task is sleeping or running in a CPU with VTIME inactive: */
|
|
VTIME_INACTIVE = 0,
|
|
/* Task is idle */
|
|
VTIME_IDLE,
|
|
/* Task runs in kernelspace in a CPU with VTIME active: */
|
|
VTIME_SYS,
|
|
/* Task runs in userspace in a CPU with VTIME active: */
|
|
VTIME_USER,
|
|
/* Task runs as guests in a CPU with VTIME active: */
|
|
VTIME_GUEST,
|
|
};
|
|
|
|
struct vtime {
|
|
seqcount_t seqcount;
|
|
unsigned long long starttime;
|
|
enum vtime_state state;
|
|
unsigned int cpu;
|
|
u64 utime;
|
|
u64 stime;
|
|
u64 gtime;
|
|
};
|
|
|
|
/*
|
|
* Utilization clamp constraints.
|
|
* @UCLAMP_MIN: Minimum utilization
|
|
* @UCLAMP_MAX: Maximum utilization
|
|
* @UCLAMP_CNT: Utilization clamp constraints count
|
|
*/
|
|
enum uclamp_id {
|
|
UCLAMP_MIN = 0,
|
|
UCLAMP_MAX,
|
|
UCLAMP_CNT
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern struct root_domain def_root_domain;
|
|
extern struct mutex sched_domains_mutex;
|
|
#endif
|
|
|
|
struct sched_param {
|
|
int sched_priority;
|
|
};
|
|
|
|
struct sched_info {
|
|
#ifdef CONFIG_SCHED_INFO
|
|
/* Cumulative counters: */
|
|
|
|
/* # of times we have run on this CPU: */
|
|
unsigned long pcount;
|
|
|
|
/* Time spent waiting on a runqueue: */
|
|
unsigned long long run_delay;
|
|
|
|
/* Max time spent waiting on a runqueue: */
|
|
unsigned long long max_run_delay;
|
|
|
|
/* Timestamps: */
|
|
|
|
/* When did we last run on a CPU? */
|
|
unsigned long long last_arrival;
|
|
|
|
/* When were we last queued to run? */
|
|
unsigned long long last_queued;
|
|
|
|
#endif /* CONFIG_SCHED_INFO */
|
|
};
|
|
|
|
/*
|
|
* Integer metrics need fixed point arithmetic, e.g., sched/fair
|
|
* has a few: load, load_avg, util_avg, freq, and capacity.
|
|
*
|
|
* We define a basic fixed point arithmetic range, and then formalize
|
|
* all these metrics based on that basic range.
|
|
*/
|
|
# define SCHED_FIXEDPOINT_SHIFT 10
|
|
# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
|
|
|
|
/* Increase resolution of cpu_capacity calculations */
|
|
# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
|
|
# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
|
|
|
|
struct load_weight {
|
|
unsigned long weight;
|
|
u32 inv_weight;
|
|
};
|
|
|
|
/*
|
|
* The load/runnable/util_avg accumulates an infinite geometric series
|
|
* (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
|
|
*
|
|
* [load_avg definition]
|
|
*
|
|
* load_avg = runnable% * scale_load_down(load)
|
|
*
|
|
* [runnable_avg definition]
|
|
*
|
|
* runnable_avg = runnable% * SCHED_CAPACITY_SCALE
|
|
*
|
|
* [util_avg definition]
|
|
*
|
|
* util_avg = running% * SCHED_CAPACITY_SCALE
|
|
*
|
|
* where runnable% is the time ratio that a sched_entity is runnable and
|
|
* running% the time ratio that a sched_entity is running.
|
|
*
|
|
* For cfs_rq, they are the aggregated values of all runnable and blocked
|
|
* sched_entities.
|
|
*
|
|
* The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
|
|
* capacity scaling. The scaling is done through the rq_clock_pelt that is used
|
|
* for computing those signals (see update_rq_clock_pelt())
|
|
*
|
|
* N.B., the above ratios (runnable% and running%) themselves are in the
|
|
* range of [0, 1]. To do fixed point arithmetics, we therefore scale them
|
|
* to as large a range as necessary. This is for example reflected by
|
|
* util_avg's SCHED_CAPACITY_SCALE.
|
|
*
|
|
* [Overflow issue]
|
|
*
|
|
* The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
|
|
* with the highest load (=88761), always runnable on a single cfs_rq,
|
|
* and should not overflow as the number already hits PID_MAX_LIMIT.
|
|
*
|
|
* For all other cases (including 32-bit kernels), struct load_weight's
|
|
* weight will overflow first before we do, because:
|
|
*
|
|
* Max(load_avg) <= Max(load.weight)
|
|
*
|
|
* Then it is the load_weight's responsibility to consider overflow
|
|
* issues.
|
|
*/
|
|
struct sched_avg {
|
|
u64 last_update_time;
|
|
u64 load_sum;
|
|
u64 runnable_sum;
|
|
u32 util_sum;
|
|
u32 period_contrib;
|
|
unsigned long load_avg;
|
|
unsigned long runnable_avg;
|
|
unsigned long util_avg;
|
|
unsigned int util_est;
|
|
} ____cacheline_aligned;
|
|
|
|
/*
|
|
* The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
|
|
* updates. When a task is dequeued, its util_est should not be updated if its
|
|
* util_avg has not been updated in the meantime.
|
|
* This information is mapped into the MSB bit of util_est at dequeue time.
|
|
* Since max value of util_est for a task is 1024 (PELT util_avg for a task)
|
|
* it is safe to use MSB.
|
|
*/
|
|
#define UTIL_EST_WEIGHT_SHIFT 2
|
|
#define UTIL_AVG_UNCHANGED 0x80000000
|
|
|
|
struct sched_statistics {
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
u64 wait_start;
|
|
u64 wait_max;
|
|
u64 wait_count;
|
|
u64 wait_sum;
|
|
u64 iowait_count;
|
|
u64 iowait_sum;
|
|
|
|
u64 sleep_start;
|
|
u64 sleep_max;
|
|
s64 sum_sleep_runtime;
|
|
|
|
u64 block_start;
|
|
u64 block_max;
|
|
s64 sum_block_runtime;
|
|
|
|
s64 exec_max;
|
|
u64 slice_max;
|
|
|
|
u64 nr_migrations_cold;
|
|
u64 nr_failed_migrations_affine;
|
|
u64 nr_failed_migrations_running;
|
|
u64 nr_failed_migrations_hot;
|
|
u64 nr_forced_migrations;
|
|
|
|
u64 nr_wakeups;
|
|
u64 nr_wakeups_sync;
|
|
u64 nr_wakeups_migrate;
|
|
u64 nr_wakeups_local;
|
|
u64 nr_wakeups_remote;
|
|
u64 nr_wakeups_affine;
|
|
u64 nr_wakeups_affine_attempts;
|
|
u64 nr_wakeups_passive;
|
|
u64 nr_wakeups_idle;
|
|
|
|
#ifdef CONFIG_SCHED_CORE
|
|
u64 core_forceidle_sum;
|
|
#endif
|
|
#endif /* CONFIG_SCHEDSTATS */
|
|
} ____cacheline_aligned;
|
|
|
|
struct sched_entity {
|
|
/* For load-balancing: */
|
|
struct load_weight load;
|
|
struct rb_node run_node;
|
|
u64 deadline;
|
|
u64 min_vruntime;
|
|
u64 min_slice;
|
|
|
|
struct list_head group_node;
|
|
unsigned char on_rq;
|
|
unsigned char sched_delayed;
|
|
unsigned char rel_deadline;
|
|
unsigned char custom_slice;
|
|
/* hole */
|
|
|
|
u64 exec_start;
|
|
u64 sum_exec_runtime;
|
|
u64 prev_sum_exec_runtime;
|
|
u64 vruntime;
|
|
s64 vlag;
|
|
u64 slice;
|
|
|
|
u64 nr_migrations;
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
int depth;
|
|
struct sched_entity *parent;
|
|
/* rq on which this entity is (to be) queued: */
|
|
struct cfs_rq *cfs_rq;
|
|
/* rq "owned" by this entity/group: */
|
|
struct cfs_rq *my_q;
|
|
/* cached value of my_q->h_nr_running */
|
|
unsigned long runnable_weight;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Per entity load average tracking.
|
|
*
|
|
* Put into separate cache line so it does not
|
|
* collide with read-mostly values above.
|
|
*/
|
|
struct sched_avg avg;
|
|
#endif
|
|
};
|
|
|
|
struct sched_rt_entity {
|
|
struct list_head run_list;
|
|
unsigned long timeout;
|
|
unsigned long watchdog_stamp;
|
|
unsigned int time_slice;
|
|
unsigned short on_rq;
|
|
unsigned short on_list;
|
|
|
|
struct sched_rt_entity *back;
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
struct sched_rt_entity *parent;
|
|
/* rq on which this entity is (to be) queued: */
|
|
struct rt_rq *rt_rq;
|
|
/* rq "owned" by this entity/group: */
|
|
struct rt_rq *my_q;
|
|
#endif
|
|
} __randomize_layout;
|
|
|
|
typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
|
|
typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
|
|
|
|
struct sched_dl_entity {
|
|
struct rb_node rb_node;
|
|
|
|
/*
|
|
* Original scheduling parameters. Copied here from sched_attr
|
|
* during sched_setattr(), they will remain the same until
|
|
* the next sched_setattr().
|
|
*/
|
|
u64 dl_runtime; /* Maximum runtime for each instance */
|
|
u64 dl_deadline; /* Relative deadline of each instance */
|
|
u64 dl_period; /* Separation of two instances (period) */
|
|
u64 dl_bw; /* dl_runtime / dl_period */
|
|
u64 dl_density; /* dl_runtime / dl_deadline */
|
|
|
|
/*
|
|
* Actual scheduling parameters. Initialized with the values above,
|
|
* they are continuously updated during task execution. Note that
|
|
* the remaining runtime could be < 0 in case we are in overrun.
|
|
*/
|
|
s64 runtime; /* Remaining runtime for this instance */
|
|
u64 deadline; /* Absolute deadline for this instance */
|
|
unsigned int flags; /* Specifying the scheduler behaviour */
|
|
|
|
/*
|
|
* Some bool flags:
|
|
*
|
|
* @dl_throttled tells if we exhausted the runtime. If so, the
|
|
* task has to wait for a replenishment to be performed at the
|
|
* next firing of dl_timer.
|
|
*
|
|
* @dl_yielded tells if task gave up the CPU before consuming
|
|
* all its available runtime during the last job.
|
|
*
|
|
* @dl_non_contending tells if the task is inactive while still
|
|
* contributing to the active utilization. In other words, it
|
|
* indicates if the inactive timer has been armed and its handler
|
|
* has not been executed yet. This flag is useful to avoid race
|
|
* conditions between the inactive timer handler and the wakeup
|
|
* code.
|
|
*
|
|
* @dl_overrun tells if the task asked to be informed about runtime
|
|
* overruns.
|
|
*
|
|
* @dl_server tells if this is a server entity.
|
|
*
|
|
* @dl_defer tells if this is a deferred or regular server. For
|
|
* now only defer server exists.
|
|
*
|
|
* @dl_defer_armed tells if the deferrable server is waiting
|
|
* for the replenishment timer to activate it.
|
|
*
|
|
* @dl_server_active tells if the dlserver is active(started).
|
|
* dlserver is started on first cfs enqueue on an idle runqueue
|
|
* and is stopped when a dequeue results in 0 cfs tasks on the
|
|
* runqueue. In other words, dlserver is active only when cpu's
|
|
* runqueue has atleast one cfs task.
|
|
*
|
|
* @dl_defer_running tells if the deferrable server is actually
|
|
* running, skipping the defer phase.
|
|
*/
|
|
unsigned int dl_throttled : 1;
|
|
unsigned int dl_yielded : 1;
|
|
unsigned int dl_non_contending : 1;
|
|
unsigned int dl_overrun : 1;
|
|
unsigned int dl_server : 1;
|
|
unsigned int dl_server_active : 1;
|
|
unsigned int dl_defer : 1;
|
|
unsigned int dl_defer_armed : 1;
|
|
unsigned int dl_defer_running : 1;
|
|
|
|
/*
|
|
* Bandwidth enforcement timer. Each -deadline task has its
|
|
* own bandwidth to be enforced, thus we need one timer per task.
|
|
*/
|
|
struct hrtimer dl_timer;
|
|
|
|
/*
|
|
* Inactive timer, responsible for decreasing the active utilization
|
|
* at the "0-lag time". When a -deadline task blocks, it contributes
|
|
* to GRUB's active utilization until the "0-lag time", hence a
|
|
* timer is needed to decrease the active utilization at the correct
|
|
* time.
|
|
*/
|
|
struct hrtimer inactive_timer;
|
|
|
|
/*
|
|
* Bits for DL-server functionality. Also see the comment near
|
|
* dl_server_update().
|
|
*
|
|
* @rq the runqueue this server is for
|
|
*
|
|
* @server_has_tasks() returns true if @server_pick return a
|
|
* runnable task.
|
|
*/
|
|
struct rq *rq;
|
|
dl_server_has_tasks_f server_has_tasks;
|
|
dl_server_pick_f server_pick_task;
|
|
|
|
#ifdef CONFIG_RT_MUTEXES
|
|
/*
|
|
* Priority Inheritance. When a DEADLINE scheduling entity is boosted
|
|
* pi_se points to the donor, otherwise points to the dl_se it belongs
|
|
* to (the original one/itself).
|
|
*/
|
|
struct sched_dl_entity *pi_se;
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
/* Number of utilization clamp buckets (shorter alias) */
|
|
#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
|
|
|
|
/*
|
|
* Utilization clamp for a scheduling entity
|
|
* @value: clamp value "assigned" to a se
|
|
* @bucket_id: bucket index corresponding to the "assigned" value
|
|
* @active: the se is currently refcounted in a rq's bucket
|
|
* @user_defined: the requested clamp value comes from user-space
|
|
*
|
|
* The bucket_id is the index of the clamp bucket matching the clamp value
|
|
* which is pre-computed and stored to avoid expensive integer divisions from
|
|
* the fast path.
|
|
*
|
|
* The active bit is set whenever a task has got an "effective" value assigned,
|
|
* which can be different from the clamp value "requested" from user-space.
|
|
* This allows to know a task is refcounted in the rq's bucket corresponding
|
|
* to the "effective" bucket_id.
|
|
*
|
|
* The user_defined bit is set whenever a task has got a task-specific clamp
|
|
* value requested from userspace, i.e. the system defaults apply to this task
|
|
* just as a restriction. This allows to relax default clamps when a less
|
|
* restrictive task-specific value has been requested, thus allowing to
|
|
* implement a "nice" semantic. For example, a task running with a 20%
|
|
* default boost can still drop its own boosting to 0%.
|
|
*/
|
|
struct uclamp_se {
|
|
unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
|
|
unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
|
|
unsigned int active : 1;
|
|
unsigned int user_defined : 1;
|
|
};
|
|
#endif /* CONFIG_UCLAMP_TASK */
|
|
|
|
union rcu_special {
|
|
struct {
|
|
u8 blocked;
|
|
u8 need_qs;
|
|
u8 exp_hint; /* Hint for performance. */
|
|
u8 need_mb; /* Readers need smp_mb(). */
|
|
} b; /* Bits. */
|
|
u32 s; /* Set of bits. */
|
|
};
|
|
|
|
enum perf_event_task_context {
|
|
perf_invalid_context = -1,
|
|
perf_hw_context = 0,
|
|
perf_sw_context,
|
|
perf_nr_task_contexts,
|
|
};
|
|
|
|
/*
|
|
* Number of contexts where an event can trigger:
|
|
* task, softirq, hardirq, nmi.
|
|
*/
|
|
#define PERF_NR_CONTEXTS 4
|
|
|
|
struct wake_q_node {
|
|
struct wake_q_node *next;
|
|
};
|
|
|
|
struct kmap_ctrl {
|
|
#ifdef CONFIG_KMAP_LOCAL
|
|
int idx;
|
|
pte_t pteval[KM_MAX_IDX];
|
|
#endif
|
|
};
|
|
|
|
struct task_struct {
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
/*
|
|
* For reasons of header soup (see current_thread_info()), this
|
|
* must be the first element of task_struct.
|
|
*/
|
|
struct thread_info thread_info;
|
|
#endif
|
|
unsigned int __state;
|
|
|
|
/* saved state for "spinlock sleepers" */
|
|
unsigned int saved_state;
|
|
|
|
/*
|
|
* This begins the randomizable portion of task_struct. Only
|
|
* scheduling-critical items should be added above here.
|
|
*/
|
|
randomized_struct_fields_start
|
|
|
|
void *stack;
|
|
refcount_t usage;
|
|
/* Per task flags (PF_*), defined further below: */
|
|
unsigned int flags;
|
|
unsigned int ptrace;
|
|
|
|
#ifdef CONFIG_MEM_ALLOC_PROFILING
|
|
struct alloc_tag *alloc_tag;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
int on_cpu;
|
|
struct __call_single_node wake_entry;
|
|
unsigned int wakee_flips;
|
|
unsigned long wakee_flip_decay_ts;
|
|
struct task_struct *last_wakee;
|
|
|
|
/*
|
|
* recent_used_cpu is initially set as the last CPU used by a task
|
|
* that wakes affine another task. Waker/wakee relationships can
|
|
* push tasks around a CPU where each wakeup moves to the next one.
|
|
* Tracking a recently used CPU allows a quick search for a recently
|
|
* used CPU that may be idle.
|
|
*/
|
|
int recent_used_cpu;
|
|
int wake_cpu;
|
|
#endif
|
|
int on_rq;
|
|
|
|
int prio;
|
|
int static_prio;
|
|
int normal_prio;
|
|
unsigned int rt_priority;
|
|
|
|
struct sched_entity se;
|
|
struct sched_rt_entity rt;
|
|
struct sched_dl_entity dl;
|
|
struct sched_dl_entity *dl_server;
|
|
#ifdef CONFIG_SCHED_CLASS_EXT
|
|
struct sched_ext_entity scx;
|
|
#endif
|
|
const struct sched_class *sched_class;
|
|
|
|
#ifdef CONFIG_SCHED_CORE
|
|
struct rb_node core_node;
|
|
unsigned long core_cookie;
|
|
unsigned int core_occupation;
|
|
#endif
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
struct task_group *sched_task_group;
|
|
#endif
|
|
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
/*
|
|
* Clamp values requested for a scheduling entity.
|
|
* Must be updated with task_rq_lock() held.
|
|
*/
|
|
struct uclamp_se uclamp_req[UCLAMP_CNT];
|
|
/*
|
|
* Effective clamp values used for a scheduling entity.
|
|
* Must be updated with task_rq_lock() held.
|
|
*/
|
|
struct uclamp_se uclamp[UCLAMP_CNT];
|
|
#endif
|
|
|
|
struct sched_statistics stats;
|
|
|
|
#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
/* List of struct preempt_notifier: */
|
|
struct hlist_head preempt_notifiers;
|
|
#endif
|
|
|
|
#ifdef CONFIG_BLK_DEV_IO_TRACE
|
|
unsigned int btrace_seq;
|
|
#endif
|
|
|
|
unsigned int policy;
|
|
unsigned long max_allowed_capacity;
|
|
int nr_cpus_allowed;
|
|
const cpumask_t *cpus_ptr;
|
|
cpumask_t *user_cpus_ptr;
|
|
cpumask_t cpus_mask;
|
|
void *migration_pending;
|
|
#ifdef CONFIG_SMP
|
|
unsigned short migration_disabled;
|
|
#endif
|
|
unsigned short migration_flags;
|
|
|
|
#ifdef CONFIG_PREEMPT_RCU
|
|
int rcu_read_lock_nesting;
|
|
union rcu_special rcu_read_unlock_special;
|
|
struct list_head rcu_node_entry;
|
|
struct rcu_node *rcu_blocked_node;
|
|
#endif /* #ifdef CONFIG_PREEMPT_RCU */
|
|
|
|
#ifdef CONFIG_TASKS_RCU
|
|
unsigned long rcu_tasks_nvcsw;
|
|
u8 rcu_tasks_holdout;
|
|
u8 rcu_tasks_idx;
|
|
int rcu_tasks_idle_cpu;
|
|
struct list_head rcu_tasks_holdout_list;
|
|
int rcu_tasks_exit_cpu;
|
|
struct list_head rcu_tasks_exit_list;
|
|
#endif /* #ifdef CONFIG_TASKS_RCU */
|
|
|
|
#ifdef CONFIG_TASKS_TRACE_RCU
|
|
int trc_reader_nesting;
|
|
int trc_ipi_to_cpu;
|
|
union rcu_special trc_reader_special;
|
|
struct list_head trc_holdout_list;
|
|
struct list_head trc_blkd_node;
|
|
int trc_blkd_cpu;
|
|
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
|
|
|
|
struct sched_info sched_info;
|
|
|
|
struct list_head tasks;
|
|
#ifdef CONFIG_SMP
|
|
struct plist_node pushable_tasks;
|
|
struct rb_node pushable_dl_tasks;
|
|
#endif
|
|
|
|
struct mm_struct *mm;
|
|
struct mm_struct *active_mm;
|
|
struct address_space *faults_disabled_mapping;
|
|
|
|
int exit_state;
|
|
int exit_code;
|
|
int exit_signal;
|
|
/* The signal sent when the parent dies: */
|
|
int pdeath_signal;
|
|
/* JOBCTL_*, siglock protected: */
|
|
unsigned long jobctl;
|
|
|
|
/* Used for emulating ABI behavior of previous Linux versions: */
|
|
unsigned int personality;
|
|
|
|
/* Scheduler bits, serialized by scheduler locks: */
|
|
unsigned sched_reset_on_fork:1;
|
|
unsigned sched_contributes_to_load:1;
|
|
unsigned sched_migrated:1;
|
|
|
|
/* Force alignment to the next boundary: */
|
|
unsigned :0;
|
|
|
|
/* Unserialized, strictly 'current' */
|
|
|
|
/*
|
|
* This field must not be in the scheduler word above due to wakelist
|
|
* queueing no longer being serialized by p->on_cpu. However:
|
|
*
|
|
* p->XXX = X; ttwu()
|
|
* schedule() if (p->on_rq && ..) // false
|
|
* smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
|
|
* deactivate_task() ttwu_queue_wakelist())
|
|
* p->on_rq = 0; p->sched_remote_wakeup = Y;
|
|
*
|
|
* guarantees all stores of 'current' are visible before
|
|
* ->sched_remote_wakeup gets used, so it can be in this word.
|
|
*/
|
|
unsigned sched_remote_wakeup:1;
|
|
#ifdef CONFIG_RT_MUTEXES
|
|
unsigned sched_rt_mutex:1;
|
|
#endif
|
|
|
|
/* Bit to tell TOMOYO we're in execve(): */
|
|
unsigned in_execve:1;
|
|
unsigned in_iowait:1;
|
|
#ifndef TIF_RESTORE_SIGMASK
|
|
unsigned restore_sigmask:1;
|
|
#endif
|
|
#ifdef CONFIG_MEMCG_V1
|
|
unsigned in_user_fault:1;
|
|
#endif
|
|
#ifdef CONFIG_LRU_GEN
|
|
/* whether the LRU algorithm may apply to this access */
|
|
unsigned in_lru_fault:1;
|
|
#endif
|
|
#ifdef CONFIG_COMPAT_BRK
|
|
unsigned brk_randomized:1;
|
|
#endif
|
|
#ifdef CONFIG_CGROUPS
|
|
/* disallow userland-initiated cgroup migration */
|
|
unsigned no_cgroup_migration:1;
|
|
/* task is frozen/stopped (used by the cgroup freezer) */
|
|
unsigned frozen:1;
|
|
#endif
|
|
#ifdef CONFIG_BLK_CGROUP
|
|
unsigned use_memdelay:1;
|
|
#endif
|
|
#ifdef CONFIG_PSI
|
|
/* Stalled due to lack of memory */
|
|
unsigned in_memstall:1;
|
|
#endif
|
|
#ifdef CONFIG_PAGE_OWNER
|
|
/* Used by page_owner=on to detect recursion in page tracking. */
|
|
unsigned in_page_owner:1;
|
|
#endif
|
|
#ifdef CONFIG_EVENTFD
|
|
/* Recursion prevention for eventfd_signal() */
|
|
unsigned in_eventfd:1;
|
|
#endif
|
|
#ifdef CONFIG_ARCH_HAS_CPU_PASID
|
|
unsigned pasid_activated:1;
|
|
#endif
|
|
#ifdef CONFIG_X86_BUS_LOCK_DETECT
|
|
unsigned reported_split_lock:1;
|
|
#endif
|
|
#ifdef CONFIG_TASK_DELAY_ACCT
|
|
/* delay due to memory thrashing */
|
|
unsigned in_thrashing:1;
|
|
#endif
|
|
#ifdef CONFIG_PREEMPT_RT
|
|
struct netdev_xmit net_xmit;
|
|
#endif
|
|
unsigned long atomic_flags; /* Flags requiring atomic access. */
|
|
|
|
struct restart_block restart_block;
|
|
|
|
pid_t pid;
|
|
pid_t tgid;
|
|
|
|
#ifdef CONFIG_STACKPROTECTOR
|
|
/* Canary value for the -fstack-protector GCC feature: */
|
|
unsigned long stack_canary;
|
|
#endif
|
|
/*
|
|
* Pointers to the (original) parent process, youngest child, younger sibling,
|
|
* older sibling, respectively. (p->father can be replaced with
|
|
* p->real_parent->pid)
|
|
*/
|
|
|
|
/* Real parent process: */
|
|
struct task_struct __rcu *real_parent;
|
|
|
|
/* Recipient of SIGCHLD, wait4() reports: */
|
|
struct task_struct __rcu *parent;
|
|
|
|
/*
|
|
* Children/sibling form the list of natural children:
|
|
*/
|
|
struct list_head children;
|
|
struct list_head sibling;
|
|
struct task_struct *group_leader;
|
|
|
|
/*
|
|
* 'ptraced' is the list of tasks this task is using ptrace() on.
|
|
*
|
|
* This includes both natural children and PTRACE_ATTACH targets.
|
|
* 'ptrace_entry' is this task's link on the p->parent->ptraced list.
|
|
*/
|
|
struct list_head ptraced;
|
|
struct list_head ptrace_entry;
|
|
|
|
/* PID/PID hash table linkage. */
|
|
struct pid *thread_pid;
|
|
struct hlist_node pid_links[PIDTYPE_MAX];
|
|
struct list_head thread_node;
|
|
|
|
struct completion *vfork_done;
|
|
|
|
/* CLONE_CHILD_SETTID: */
|
|
int __user *set_child_tid;
|
|
|
|
/* CLONE_CHILD_CLEARTID: */
|
|
int __user *clear_child_tid;
|
|
|
|
/* PF_KTHREAD | PF_IO_WORKER */
|
|
void *worker_private;
|
|
|
|
u64 utime;
|
|
u64 stime;
|
|
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
|
|
u64 utimescaled;
|
|
u64 stimescaled;
|
|
#endif
|
|
u64 gtime;
|
|
struct prev_cputime prev_cputime;
|
|
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
|
|
struct vtime vtime;
|
|
#endif
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
atomic_t tick_dep_mask;
|
|
#endif
|
|
/* Context switch counts: */
|
|
unsigned long nvcsw;
|
|
unsigned long nivcsw;
|
|
|
|
/* Monotonic time in nsecs: */
|
|
u64 start_time;
|
|
|
|
/* Boot based time in nsecs: */
|
|
u64 start_boottime;
|
|
|
|
/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
|
|
unsigned long min_flt;
|
|
unsigned long maj_flt;
|
|
|
|
/* Empty if CONFIG_POSIX_CPUTIMERS=n */
|
|
struct posix_cputimers posix_cputimers;
|
|
|
|
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
|
|
struct posix_cputimers_work posix_cputimers_work;
|
|
#endif
|
|
|
|
/* Process credentials: */
|
|
|
|
/* Tracer's credentials at attach: */
|
|
const struct cred __rcu *ptracer_cred;
|
|
|
|
/* Objective and real subjective task credentials (COW): */
|
|
const struct cred __rcu *real_cred;
|
|
|
|
/* Effective (overridable) subjective task credentials (COW): */
|
|
const struct cred __rcu *cred;
|
|
|
|
#ifdef CONFIG_KEYS
|
|
/* Cached requested key. */
|
|
struct key *cached_requested_key;
|
|
#endif
|
|
|
|
/*
|
|
* executable name, excluding path.
|
|
*
|
|
* - normally initialized begin_new_exec()
|
|
* - set it with set_task_comm()
|
|
* - strscpy_pad() to ensure it is always NUL-terminated and
|
|
* zero-padded
|
|
* - task_lock() to ensure the operation is atomic and the name is
|
|
* fully updated.
|
|
*/
|
|
char comm[TASK_COMM_LEN];
|
|
|
|
struct nameidata *nameidata;
|
|
|
|
#ifdef CONFIG_SYSVIPC
|
|
struct sysv_sem sysvsem;
|
|
struct sysv_shm sysvshm;
|
|
#endif
|
|
#ifdef CONFIG_DETECT_HUNG_TASK
|
|
unsigned long last_switch_count;
|
|
unsigned long last_switch_time;
|
|
#endif
|
|
/* Filesystem information: */
|
|
struct fs_struct *fs;
|
|
|
|
/* Open file information: */
|
|
struct files_struct *files;
|
|
|
|
#ifdef CONFIG_IO_URING
|
|
struct io_uring_task *io_uring;
|
|
#endif
|
|
|
|
/* Namespaces: */
|
|
struct nsproxy *nsproxy;
|
|
|
|
/* Signal handlers: */
|
|
struct signal_struct *signal;
|
|
struct sighand_struct __rcu *sighand;
|
|
sigset_t blocked;
|
|
sigset_t real_blocked;
|
|
/* Restored if set_restore_sigmask() was used: */
|
|
sigset_t saved_sigmask;
|
|
struct sigpending pending;
|
|
unsigned long sas_ss_sp;
|
|
size_t sas_ss_size;
|
|
unsigned int sas_ss_flags;
|
|
|
|
struct callback_head *task_works;
|
|
|
|
#ifdef CONFIG_AUDIT
|
|
#ifdef CONFIG_AUDITSYSCALL
|
|
struct audit_context *audit_context;
|
|
#endif
|
|
kuid_t loginuid;
|
|
unsigned int sessionid;
|
|
#endif
|
|
struct seccomp seccomp;
|
|
struct syscall_user_dispatch syscall_dispatch;
|
|
|
|
/* Thread group tracking: */
|
|
u64 parent_exec_id;
|
|
u64 self_exec_id;
|
|
|
|
/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
|
|
spinlock_t alloc_lock;
|
|
|
|
/* Protection of the PI data structures: */
|
|
raw_spinlock_t pi_lock;
|
|
|
|
struct wake_q_node wake_q;
|
|
|
|
#ifdef CONFIG_RT_MUTEXES
|
|
/* PI waiters blocked on a rt_mutex held by this task: */
|
|
struct rb_root_cached pi_waiters;
|
|
/* Updated under owner's pi_lock and rq lock */
|
|
struct task_struct *pi_top_task;
|
|
/* Deadlock detection and priority inheritance handling: */
|
|
struct rt_mutex_waiter *pi_blocked_on;
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_MUTEXES
|
|
/* Mutex deadlock detection: */
|
|
struct mutex_waiter *blocked_on;
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
|
|
int non_block_count;
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRACE_IRQFLAGS
|
|
struct irqtrace_events irqtrace;
|
|
unsigned int hardirq_threaded;
|
|
u64 hardirq_chain_key;
|
|
int softirqs_enabled;
|
|
int softirq_context;
|
|
int irq_config;
|
|
#endif
|
|
#ifdef CONFIG_PREEMPT_RT
|
|
int softirq_disable_cnt;
|
|
#endif
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
# define MAX_LOCK_DEPTH 48UL
|
|
u64 curr_chain_key;
|
|
int lockdep_depth;
|
|
unsigned int lockdep_recursion;
|
|
struct held_lock held_locks[MAX_LOCK_DEPTH];
|
|
#endif
|
|
|
|
#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
|
|
unsigned int in_ubsan;
|
|
#endif
|
|
|
|
/* Journalling filesystem info: */
|
|
void *journal_info;
|
|
|
|
/* Stacked block device info: */
|
|
struct bio_list *bio_list;
|
|
|
|
/* Stack plugging: */
|
|
struct blk_plug *plug;
|
|
|
|
/* VM state: */
|
|
struct reclaim_state *reclaim_state;
|
|
|
|
struct io_context *io_context;
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
struct capture_control *capture_control;
|
|
#endif
|
|
/* Ptrace state: */
|
|
unsigned long ptrace_message;
|
|
kernel_siginfo_t *last_siginfo;
|
|
|
|
struct task_io_accounting ioac;
|
|
#ifdef CONFIG_PSI
|
|
/* Pressure stall state */
|
|
unsigned int psi_flags;
|
|
#endif
|
|
#ifdef CONFIG_TASK_XACCT
|
|
/* Accumulated RSS usage: */
|
|
u64 acct_rss_mem1;
|
|
/* Accumulated virtual memory usage: */
|
|
u64 acct_vm_mem1;
|
|
/* stime + utime since last update: */
|
|
u64 acct_timexpd;
|
|
#endif
|
|
#ifdef CONFIG_CPUSETS
|
|
/* Protected by ->alloc_lock: */
|
|
nodemask_t mems_allowed;
|
|
/* Sequence number to catch updates: */
|
|
seqcount_spinlock_t mems_allowed_seq;
|
|
int cpuset_mem_spread_rotor;
|
|
#endif
|
|
#ifdef CONFIG_CGROUPS
|
|
/* Control Group info protected by css_set_lock: */
|
|
struct css_set __rcu *cgroups;
|
|
/* cg_list protected by css_set_lock and tsk->alloc_lock: */
|
|
struct list_head cg_list;
|
|
#endif
|
|
#ifdef CONFIG_X86_CPU_RESCTRL
|
|
u32 closid;
|
|
u32 rmid;
|
|
#endif
|
|
#ifdef CONFIG_FUTEX
|
|
struct robust_list_head __user *robust_list;
|
|
#ifdef CONFIG_COMPAT
|
|
struct compat_robust_list_head __user *compat_robust_list;
|
|
#endif
|
|
struct list_head pi_state_list;
|
|
struct futex_pi_state *pi_state_cache;
|
|
struct mutex futex_exit_mutex;
|
|
unsigned int futex_state;
|
|
#endif
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
u8 perf_recursion[PERF_NR_CONTEXTS];
|
|
struct perf_event_context *perf_event_ctxp;
|
|
struct mutex perf_event_mutex;
|
|
struct list_head perf_event_list;
|
|
#endif
|
|
#ifdef CONFIG_DEBUG_PREEMPT
|
|
unsigned long preempt_disable_ip;
|
|
#endif
|
|
#ifdef CONFIG_NUMA
|
|
/* Protected by alloc_lock: */
|
|
struct mempolicy *mempolicy;
|
|
short il_prev;
|
|
u8 il_weight;
|
|
short pref_node_fork;
|
|
#endif
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
int numa_scan_seq;
|
|
unsigned int numa_scan_period;
|
|
unsigned int numa_scan_period_max;
|
|
int numa_preferred_nid;
|
|
unsigned long numa_migrate_retry;
|
|
/* Migration stamp: */
|
|
u64 node_stamp;
|
|
u64 last_task_numa_placement;
|
|
u64 last_sum_exec_runtime;
|
|
struct callback_head numa_work;
|
|
|
|
/*
|
|
* This pointer is only modified for current in syscall and
|
|
* pagefault context (and for tasks being destroyed), so it can be read
|
|
* from any of the following contexts:
|
|
* - RCU read-side critical section
|
|
* - current->numa_group from everywhere
|
|
* - task's runqueue locked, task not running
|
|
*/
|
|
struct numa_group __rcu *numa_group;
|
|
|
|
/*
|
|
* numa_faults is an array split into four regions:
|
|
* faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
|
|
* in this precise order.
|
|
*
|
|
* faults_memory: Exponential decaying average of faults on a per-node
|
|
* basis. Scheduling placement decisions are made based on these
|
|
* counts. The values remain static for the duration of a PTE scan.
|
|
* faults_cpu: Track the nodes the process was running on when a NUMA
|
|
* hinting fault was incurred.
|
|
* faults_memory_buffer and faults_cpu_buffer: Record faults per node
|
|
* during the current scan window. When the scan completes, the counts
|
|
* in faults_memory and faults_cpu decay and these values are copied.
|
|
*/
|
|
unsigned long *numa_faults;
|
|
unsigned long total_numa_faults;
|
|
|
|
/*
|
|
* numa_faults_locality tracks if faults recorded during the last
|
|
* scan window were remote/local or failed to migrate. The task scan
|
|
* period is adapted based on the locality of the faults with different
|
|
* weights depending on whether they were shared or private faults
|
|
*/
|
|
unsigned long numa_faults_locality[3];
|
|
|
|
unsigned long numa_pages_migrated;
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
#ifdef CONFIG_RSEQ
|
|
struct rseq __user *rseq;
|
|
u32 rseq_len;
|
|
u32 rseq_sig;
|
|
/*
|
|
* RmW on rseq_event_mask must be performed atomically
|
|
* with respect to preemption.
|
|
*/
|
|
unsigned long rseq_event_mask;
|
|
# ifdef CONFIG_DEBUG_RSEQ
|
|
/*
|
|
* This is a place holder to save a copy of the rseq fields for
|
|
* validation of read-only fields. The struct rseq has a
|
|
* variable-length array at the end, so it cannot be used
|
|
* directly. Reserve a size large enough for the known fields.
|
|
*/
|
|
char rseq_fields[sizeof(struct rseq)];
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_MM_CID
|
|
int mm_cid; /* Current cid in mm */
|
|
int last_mm_cid; /* Most recent cid in mm */
|
|
int migrate_from_cpu;
|
|
int mm_cid_active; /* Whether cid bitmap is active */
|
|
struct callback_head cid_work;
|
|
#endif
|
|
|
|
struct tlbflush_unmap_batch tlb_ubc;
|
|
|
|
/* Cache last used pipe for splice(): */
|
|
struct pipe_inode_info *splice_pipe;
|
|
|
|
struct page_frag task_frag;
|
|
|
|
#ifdef CONFIG_TASK_DELAY_ACCT
|
|
struct task_delay_info *delays;
|
|
#endif
|
|
|
|
#ifdef CONFIG_FAULT_INJECTION
|
|
int make_it_fail;
|
|
unsigned int fail_nth;
|
|
#endif
|
|
/*
|
|
* When (nr_dirtied >= nr_dirtied_pause), it's time to call
|
|
* balance_dirty_pages() for a dirty throttling pause:
|
|
*/
|
|
int nr_dirtied;
|
|
int nr_dirtied_pause;
|
|
/* Start of a write-and-pause period: */
|
|
unsigned long dirty_paused_when;
|
|
|
|
#ifdef CONFIG_LATENCYTOP
|
|
int latency_record_count;
|
|
struct latency_record latency_record[LT_SAVECOUNT];
|
|
#endif
|
|
/*
|
|
* Time slack values; these are used to round up poll() and
|
|
* select() etc timeout values. These are in nanoseconds.
|
|
*/
|
|
u64 timer_slack_ns;
|
|
u64 default_timer_slack_ns;
|
|
|
|
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
|
|
unsigned int kasan_depth;
|
|
#endif
|
|
|
|
#ifdef CONFIG_KCSAN
|
|
struct kcsan_ctx kcsan_ctx;
|
|
#ifdef CONFIG_TRACE_IRQFLAGS
|
|
struct irqtrace_events kcsan_save_irqtrace;
|
|
#endif
|
|
#ifdef CONFIG_KCSAN_WEAK_MEMORY
|
|
int kcsan_stack_depth;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_KMSAN
|
|
struct kmsan_ctx kmsan_ctx;
|
|
#endif
|
|
|
|
#if IS_ENABLED(CONFIG_KUNIT)
|
|
struct kunit *kunit_test;
|
|
#endif
|
|
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
/* Index of current stored address in ret_stack: */
|
|
int curr_ret_stack;
|
|
int curr_ret_depth;
|
|
|
|
/* Stack of return addresses for return function tracing: */
|
|
unsigned long *ret_stack;
|
|
|
|
/* Timestamp for last schedule: */
|
|
unsigned long long ftrace_timestamp;
|
|
unsigned long long ftrace_sleeptime;
|
|
|
|
/*
|
|
* Number of functions that haven't been traced
|
|
* because of depth overrun:
|
|
*/
|
|
atomic_t trace_overrun;
|
|
|
|
/* Pause tracing: */
|
|
atomic_t tracing_graph_pause;
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRACING
|
|
/* Bitmask and counter of trace recursion: */
|
|
unsigned long trace_recursion;
|
|
#endif /* CONFIG_TRACING */
|
|
|
|
#ifdef CONFIG_KCOV
|
|
/* See kernel/kcov.c for more details. */
|
|
|
|
/* Coverage collection mode enabled for this task (0 if disabled): */
|
|
unsigned int kcov_mode;
|
|
|
|
/* Size of the kcov_area: */
|
|
unsigned int kcov_size;
|
|
|
|
/* Buffer for coverage collection: */
|
|
void *kcov_area;
|
|
|
|
/* KCOV descriptor wired with this task or NULL: */
|
|
struct kcov *kcov;
|
|
|
|
/* KCOV common handle for remote coverage collection: */
|
|
u64 kcov_handle;
|
|
|
|
/* KCOV sequence number: */
|
|
int kcov_sequence;
|
|
|
|
/* Collect coverage from softirq context: */
|
|
unsigned int kcov_softirq;
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMCG_V1
|
|
struct mem_cgroup *memcg_in_oom;
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
/* Number of pages to reclaim on returning to userland: */
|
|
unsigned int memcg_nr_pages_over_high;
|
|
|
|
/* Used by memcontrol for targeted memcg charge: */
|
|
struct mem_cgroup *active_memcg;
|
|
|
|
/* Cache for current->cgroups->memcg->objcg lookups: */
|
|
struct obj_cgroup *objcg;
|
|
#endif
|
|
|
|
#ifdef CONFIG_BLK_CGROUP
|
|
struct gendisk *throttle_disk;
|
|
#endif
|
|
|
|
#ifdef CONFIG_UPROBES
|
|
struct uprobe_task *utask;
|
|
#endif
|
|
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
|
|
unsigned int sequential_io;
|
|
unsigned int sequential_io_avg;
|
|
#endif
|
|
struct kmap_ctrl kmap_ctrl;
|
|
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
|
|
unsigned long task_state_change;
|
|
# ifdef CONFIG_PREEMPT_RT
|
|
unsigned long saved_state_change;
|
|
# endif
|
|
#endif
|
|
struct rcu_head rcu;
|
|
refcount_t rcu_users;
|
|
int pagefault_disabled;
|
|
#ifdef CONFIG_MMU
|
|
struct task_struct *oom_reaper_list;
|
|
struct timer_list oom_reaper_timer;
|
|
#endif
|
|
#ifdef CONFIG_VMAP_STACK
|
|
struct vm_struct *stack_vm_area;
|
|
#endif
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
/* A live task holds one reference: */
|
|
refcount_t stack_refcount;
|
|
#endif
|
|
#ifdef CONFIG_LIVEPATCH
|
|
int patch_state;
|
|
#endif
|
|
#ifdef CONFIG_SECURITY
|
|
/* Used by LSM modules for access restriction: */
|
|
void *security;
|
|
#endif
|
|
#ifdef CONFIG_BPF_SYSCALL
|
|
/* Used by BPF task local storage */
|
|
struct bpf_local_storage __rcu *bpf_storage;
|
|
/* Used for BPF run context */
|
|
struct bpf_run_ctx *bpf_ctx;
|
|
#endif
|
|
/* Used by BPF for per-TASK xdp storage */
|
|
struct bpf_net_context *bpf_net_context;
|
|
|
|
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
|
|
unsigned long lowest_stack;
|
|
unsigned long prev_lowest_stack;
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_MCE
|
|
void __user *mce_vaddr;
|
|
__u64 mce_kflags;
|
|
u64 mce_addr;
|
|
__u64 mce_ripv : 1,
|
|
mce_whole_page : 1,
|
|
__mce_reserved : 62;
|
|
struct callback_head mce_kill_me;
|
|
int mce_count;
|
|
#endif
|
|
|
|
#ifdef CONFIG_KRETPROBES
|
|
struct llist_head kretprobe_instances;
|
|
#endif
|
|
#ifdef CONFIG_RETHOOK
|
|
struct llist_head rethooks;
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
|
|
/*
|
|
* If L1D flush is supported on mm context switch
|
|
* then we use this callback head to queue kill work
|
|
* to kill tasks that are not running on SMT disabled
|
|
* cores
|
|
*/
|
|
struct callback_head l1d_flush_kill;
|
|
#endif
|
|
|
|
#ifdef CONFIG_RV
|
|
/*
|
|
* Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
|
|
* If we find justification for more monitors, we can think
|
|
* about adding more or developing a dynamic method. So far,
|
|
* none of these are justified.
|
|
*/
|
|
union rv_task_monitor rv[RV_PER_TASK_MONITORS];
|
|
#endif
|
|
|
|
#ifdef CONFIG_USER_EVENTS
|
|
struct user_event_mm *user_event_mm;
|
|
#endif
|
|
|
|
/*
|
|
* New fields for task_struct should be added above here, so that
|
|
* they are included in the randomized portion of task_struct.
|
|
*/
|
|
randomized_struct_fields_end
|
|
|
|
/* CPU-specific state of this task: */
|
|
struct thread_struct thread;
|
|
|
|
/*
|
|
* WARNING: on x86, 'thread_struct' contains a variable-sized
|
|
* structure. It *MUST* be at the end of 'task_struct'.
|
|
*
|
|
* Do not put anything below here!
|
|
*/
|
|
};
|
|
|
|
#define TASK_REPORT_IDLE (TASK_REPORT + 1)
|
|
#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
|
|
|
|
static inline unsigned int __task_state_index(unsigned int tsk_state,
|
|
unsigned int tsk_exit_state)
|
|
{
|
|
unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
|
|
|
|
BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
|
|
|
|
if ((tsk_state & TASK_IDLE) == TASK_IDLE)
|
|
state = TASK_REPORT_IDLE;
|
|
|
|
/*
|
|
* We're lying here, but rather than expose a completely new task state
|
|
* to userspace, we can make this appear as if the task has gone through
|
|
* a regular rt_mutex_lock() call.
|
|
* Report the frozen task uninterruptible.
|
|
*/
|
|
if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
|
|
state = TASK_UNINTERRUPTIBLE;
|
|
|
|
return fls(state);
|
|
}
|
|
|
|
static inline unsigned int task_state_index(struct task_struct *tsk)
|
|
{
|
|
return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
|
|
}
|
|
|
|
static inline char task_index_to_char(unsigned int state)
|
|
{
|
|
static const char state_char[] = "RSDTtXZPI";
|
|
|
|
BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
|
|
|
|
return state_char[state];
|
|
}
|
|
|
|
static inline char task_state_to_char(struct task_struct *tsk)
|
|
{
|
|
return task_index_to_char(task_state_index(tsk));
|
|
}
|
|
|
|
extern struct pid *cad_pid;
|
|
|
|
/*
|
|
* Per process flags
|
|
*/
|
|
#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
|
|
#define PF_IDLE 0x00000002 /* I am an IDLE thread */
|
|
#define PF_EXITING 0x00000004 /* Getting shut down */
|
|
#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
|
|
#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
|
|
#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
|
|
#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
|
|
#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
|
|
#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
|
|
#define PF_DUMPCORE 0x00000200 /* Dumped core */
|
|
#define PF_SIGNALED 0x00000400 /* Killed by a signal */
|
|
#define PF_MEMALLOC 0x00000800 /* Allocating memory to free memory. See memalloc_noreclaim_save() */
|
|
#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
|
|
#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
|
|
#define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
|
|
#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
|
|
#define PF__HOLE__00010000 0x00010000
|
|
#define PF_KSWAPD 0x00020000 /* I am kswapd */
|
|
#define PF_MEMALLOC_NOFS 0x00040000 /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
|
|
#define PF_MEMALLOC_NOIO 0x00080000 /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
|
|
#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
|
|
* I am cleaning dirty pages from some other bdi. */
|
|
#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
|
|
#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
|
|
#define PF__HOLE__00800000 0x00800000
|
|
#define PF__HOLE__01000000 0x01000000
|
|
#define PF__HOLE__02000000 0x02000000
|
|
#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
|
|
#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
|
|
#define PF_MEMALLOC_PIN 0x10000000 /* Allocations constrained to zones which allow long term pinning.
|
|
* See memalloc_pin_save() */
|
|
#define PF_BLOCK_TS 0x20000000 /* plug has ts that needs updating */
|
|
#define PF__HOLE__40000000 0x40000000
|
|
#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
|
|
|
|
/*
|
|
* Only the _current_ task can read/write to tsk->flags, but other
|
|
* tasks can access tsk->flags in readonly mode for example
|
|
* with tsk_used_math (like during threaded core dumping).
|
|
* There is however an exception to this rule during ptrace
|
|
* or during fork: the ptracer task is allowed to write to the
|
|
* child->flags of its traced child (same goes for fork, the parent
|
|
* can write to the child->flags), because we're guaranteed the
|
|
* child is not running and in turn not changing child->flags
|
|
* at the same time the parent does it.
|
|
*/
|
|
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
|
|
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
|
|
#define clear_used_math() clear_stopped_child_used_math(current)
|
|
#define set_used_math() set_stopped_child_used_math(current)
|
|
|
|
#define conditional_stopped_child_used_math(condition, child) \
|
|
do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
|
|
|
|
#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
|
|
|
|
#define copy_to_stopped_child_used_math(child) \
|
|
do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
|
|
|
|
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
|
|
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
|
|
#define used_math() tsk_used_math(current)
|
|
|
|
static __always_inline bool is_percpu_thread(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return (current->flags & PF_NO_SETAFFINITY) &&
|
|
(current->nr_cpus_allowed == 1);
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/* Per-process atomic flags. */
|
|
#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
|
|
#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
|
|
#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
|
|
#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
|
|
#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
|
|
#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
|
|
#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
|
|
#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
|
|
|
|
#define TASK_PFA_TEST(name, func) \
|
|
static inline bool task_##func(struct task_struct *p) \
|
|
{ return test_bit(PFA_##name, &p->atomic_flags); }
|
|
|
|
#define TASK_PFA_SET(name, func) \
|
|
static inline void task_set_##func(struct task_struct *p) \
|
|
{ set_bit(PFA_##name, &p->atomic_flags); }
|
|
|
|
#define TASK_PFA_CLEAR(name, func) \
|
|
static inline void task_clear_##func(struct task_struct *p) \
|
|
{ clear_bit(PFA_##name, &p->atomic_flags); }
|
|
|
|
TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
|
|
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
|
|
|
|
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
|
|
TASK_PFA_SET(SPREAD_PAGE, spread_page)
|
|
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
|
|
|
|
TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
|
|
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
|
|
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
|
|
|
|
TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
|
|
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
|
|
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
|
|
|
|
TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
|
|
TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
|
|
TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
|
|
|
|
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
|
|
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
|
|
|
|
TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
|
|
TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
|
|
TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
|
|
|
|
TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
|
|
TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
|
|
|
|
static inline void
|
|
current_restore_flags(unsigned long orig_flags, unsigned long flags)
|
|
{
|
|
current->flags &= ~flags;
|
|
current->flags |= orig_flags & flags;
|
|
}
|
|
|
|
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
|
|
extern int task_can_attach(struct task_struct *p);
|
|
extern int dl_bw_alloc(int cpu, u64 dl_bw);
|
|
extern void dl_bw_free(int cpu, u64 dl_bw);
|
|
#ifdef CONFIG_SMP
|
|
|
|
/* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
|
|
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
|
|
|
|
/**
|
|
* set_cpus_allowed_ptr - set CPU affinity mask of a task
|
|
* @p: the task
|
|
* @new_mask: CPU affinity mask
|
|
*
|
|
* Return: zero if successful, or a negative error code
|
|
*/
|
|
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
|
|
extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
|
|
extern void release_user_cpus_ptr(struct task_struct *p);
|
|
extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
|
|
extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
|
|
extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
|
|
#else
|
|
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
|
|
{
|
|
}
|
|
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
|
|
{
|
|
/* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
|
|
if ((*cpumask_bits(new_mask) & 1) == 0)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
|
|
{
|
|
if (src->user_cpus_ptr)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
static inline void release_user_cpus_ptr(struct task_struct *p)
|
|
{
|
|
WARN_ON(p->user_cpus_ptr);
|
|
}
|
|
|
|
static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
extern int yield_to(struct task_struct *p, bool preempt);
|
|
extern void set_user_nice(struct task_struct *p, long nice);
|
|
extern int task_prio(const struct task_struct *p);
|
|
|
|
/**
|
|
* task_nice - return the nice value of a given task.
|
|
* @p: the task in question.
|
|
*
|
|
* Return: The nice value [ -20 ... 0 ... 19 ].
|
|
*/
|
|
static inline int task_nice(const struct task_struct *p)
|
|
{
|
|
return PRIO_TO_NICE((p)->static_prio);
|
|
}
|
|
|
|
extern int can_nice(const struct task_struct *p, const int nice);
|
|
extern int task_curr(const struct task_struct *p);
|
|
extern int idle_cpu(int cpu);
|
|
extern int available_idle_cpu(int cpu);
|
|
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
|
|
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
|
|
extern void sched_set_fifo(struct task_struct *p);
|
|
extern void sched_set_fifo_low(struct task_struct *p);
|
|
extern void sched_set_normal(struct task_struct *p, int nice);
|
|
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
|
|
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
|
|
extern struct task_struct *idle_task(int cpu);
|
|
|
|
/**
|
|
* is_idle_task - is the specified task an idle task?
|
|
* @p: the task in question.
|
|
*
|
|
* Return: 1 if @p is an idle task. 0 otherwise.
|
|
*/
|
|
static __always_inline bool is_idle_task(const struct task_struct *p)
|
|
{
|
|
return !!(p->flags & PF_IDLE);
|
|
}
|
|
|
|
extern struct task_struct *curr_task(int cpu);
|
|
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
|
|
|
|
void yield(void);
|
|
|
|
union thread_union {
|
|
struct task_struct task;
|
|
#ifndef CONFIG_THREAD_INFO_IN_TASK
|
|
struct thread_info thread_info;
|
|
#endif
|
|
unsigned long stack[THREAD_SIZE/sizeof(long)];
|
|
};
|
|
|
|
#ifndef CONFIG_THREAD_INFO_IN_TASK
|
|
extern struct thread_info init_thread_info;
|
|
#endif
|
|
|
|
extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
|
|
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
# define task_thread_info(task) (&(task)->thread_info)
|
|
#else
|
|
# define task_thread_info(task) ((struct thread_info *)(task)->stack)
|
|
#endif
|
|
|
|
/*
|
|
* find a task by one of its numerical ids
|
|
*
|
|
* find_task_by_pid_ns():
|
|
* finds a task by its pid in the specified namespace
|
|
* find_task_by_vpid():
|
|
* finds a task by its virtual pid
|
|
*
|
|
* see also find_vpid() etc in include/linux/pid.h
|
|
*/
|
|
|
|
extern struct task_struct *find_task_by_vpid(pid_t nr);
|
|
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
|
|
|
|
/*
|
|
* find a task by its virtual pid and get the task struct
|
|
*/
|
|
extern struct task_struct *find_get_task_by_vpid(pid_t nr);
|
|
|
|
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
|
|
extern int wake_up_process(struct task_struct *tsk);
|
|
extern void wake_up_new_task(struct task_struct *tsk);
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern void kick_process(struct task_struct *tsk);
|
|
#else
|
|
static inline void kick_process(struct task_struct *tsk) { }
|
|
#endif
|
|
|
|
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
|
|
#define set_task_comm(tsk, from) ({ \
|
|
BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN); \
|
|
__set_task_comm(tsk, from, false); \
|
|
})
|
|
|
|
/*
|
|
* - Why not use task_lock()?
|
|
* User space can randomly change their names anyway, so locking for readers
|
|
* doesn't make sense. For writers, locking is probably necessary, as a race
|
|
* condition could lead to long-term mixed results.
|
|
* The strscpy_pad() in __set_task_comm() can ensure that the task comm is
|
|
* always NUL-terminated and zero-padded. Therefore the race condition between
|
|
* reader and writer is not an issue.
|
|
*
|
|
* - BUILD_BUG_ON() can help prevent the buf from being truncated.
|
|
* Since the callers don't perform any return value checks, this safeguard is
|
|
* necessary.
|
|
*/
|
|
#define get_task_comm(buf, tsk) ({ \
|
|
BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN); \
|
|
strscpy_pad(buf, (tsk)->comm); \
|
|
buf; \
|
|
})
|
|
|
|
#ifdef CONFIG_SMP
|
|
static __always_inline void scheduler_ipi(void)
|
|
{
|
|
/*
|
|
* Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
|
|
* TIF_NEED_RESCHED remotely (for the first time) will also send
|
|
* this IPI.
|
|
*/
|
|
preempt_fold_need_resched();
|
|
}
|
|
#else
|
|
static inline void scheduler_ipi(void) { }
|
|
#endif
|
|
|
|
extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
|
|
|
|
/*
|
|
* Set thread flags in other task's structures.
|
|
* See asm/thread_info.h for TIF_xxxx flags available:
|
|
*/
|
|
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
|
|
{
|
|
set_ti_thread_flag(task_thread_info(tsk), flag);
|
|
}
|
|
|
|
static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
|
|
{
|
|
clear_ti_thread_flag(task_thread_info(tsk), flag);
|
|
}
|
|
|
|
static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
|
|
bool value)
|
|
{
|
|
update_ti_thread_flag(task_thread_info(tsk), flag, value);
|
|
}
|
|
|
|
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
|
|
{
|
|
return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
|
|
}
|
|
|
|
static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
|
|
{
|
|
return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
|
|
}
|
|
|
|
static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
|
|
{
|
|
return test_ti_thread_flag(task_thread_info(tsk), flag);
|
|
}
|
|
|
|
static inline void set_tsk_need_resched(struct task_struct *tsk)
|
|
{
|
|
set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
|
|
}
|
|
|
|
static inline void clear_tsk_need_resched(struct task_struct *tsk)
|
|
{
|
|
atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
|
|
(atomic_long_t *)&task_thread_info(tsk)->flags);
|
|
}
|
|
|
|
static inline int test_tsk_need_resched(struct task_struct *tsk)
|
|
{
|
|
return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
|
|
}
|
|
|
|
/*
|
|
* cond_resched() and cond_resched_lock(): latency reduction via
|
|
* explicit rescheduling in places that are safe. The return
|
|
* value indicates whether a reschedule was done in fact.
|
|
* cond_resched_lock() will drop the spinlock before scheduling,
|
|
*/
|
|
#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
|
|
extern int __cond_resched(void);
|
|
|
|
#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
|
|
|
|
void sched_dynamic_klp_enable(void);
|
|
void sched_dynamic_klp_disable(void);
|
|
|
|
DECLARE_STATIC_CALL(cond_resched, __cond_resched);
|
|
|
|
static __always_inline int _cond_resched(void)
|
|
{
|
|
return static_call_mod(cond_resched)();
|
|
}
|
|
|
|
#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
|
|
|
|
extern int dynamic_cond_resched(void);
|
|
|
|
static __always_inline int _cond_resched(void)
|
|
{
|
|
return dynamic_cond_resched();
|
|
}
|
|
|
|
#else /* !CONFIG_PREEMPTION */
|
|
|
|
static inline int _cond_resched(void)
|
|
{
|
|
klp_sched_try_switch();
|
|
return __cond_resched();
|
|
}
|
|
|
|
#endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
|
|
|
|
#else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
|
|
|
|
static inline int _cond_resched(void)
|
|
{
|
|
klp_sched_try_switch();
|
|
return 0;
|
|
}
|
|
|
|
#endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
|
|
|
|
#define cond_resched() ({ \
|
|
__might_resched(__FILE__, __LINE__, 0); \
|
|
_cond_resched(); \
|
|
})
|
|
|
|
extern int __cond_resched_lock(spinlock_t *lock);
|
|
extern int __cond_resched_rwlock_read(rwlock_t *lock);
|
|
extern int __cond_resched_rwlock_write(rwlock_t *lock);
|
|
|
|
#define MIGHT_RESCHED_RCU_SHIFT 8
|
|
#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
|
|
|
|
#ifndef CONFIG_PREEMPT_RT
|
|
/*
|
|
* Non RT kernels have an elevated preempt count due to the held lock,
|
|
* but are not allowed to be inside a RCU read side critical section
|
|
*/
|
|
# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
|
|
#else
|
|
/*
|
|
* spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
|
|
* cond_resched*lock() has to take that into account because it checks for
|
|
* preempt_count() and rcu_preempt_depth().
|
|
*/
|
|
# define PREEMPT_LOCK_RESCHED_OFFSETS \
|
|
(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
|
|
#endif
|
|
|
|
#define cond_resched_lock(lock) ({ \
|
|
__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
|
|
__cond_resched_lock(lock); \
|
|
})
|
|
|
|
#define cond_resched_rwlock_read(lock) ({ \
|
|
__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
|
|
__cond_resched_rwlock_read(lock); \
|
|
})
|
|
|
|
#define cond_resched_rwlock_write(lock) ({ \
|
|
__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
|
|
__cond_resched_rwlock_write(lock); \
|
|
})
|
|
|
|
static __always_inline bool need_resched(void)
|
|
{
|
|
return unlikely(tif_need_resched());
|
|
}
|
|
|
|
/*
|
|
* Wrappers for p->thread_info->cpu access. No-op on UP.
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
|
|
static inline unsigned int task_cpu(const struct task_struct *p)
|
|
{
|
|
return READ_ONCE(task_thread_info(p)->cpu);
|
|
}
|
|
|
|
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
|
|
|
|
#else
|
|
|
|
static inline unsigned int task_cpu(const struct task_struct *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static inline bool task_is_runnable(struct task_struct *p)
|
|
{
|
|
return p->on_rq && !p->se.sched_delayed;
|
|
}
|
|
|
|
extern bool sched_task_on_rq(struct task_struct *p);
|
|
extern unsigned long get_wchan(struct task_struct *p);
|
|
extern struct task_struct *cpu_curr_snapshot(int cpu);
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
/*
|
|
* In order to reduce various lock holder preemption latencies provide an
|
|
* interface to see if a vCPU is currently running or not.
|
|
*
|
|
* This allows us to terminate optimistic spin loops and block, analogous to
|
|
* the native optimistic spin heuristic of testing if the lock owner task is
|
|
* running or not.
|
|
*/
|
|
#ifndef vcpu_is_preempted
|
|
static inline bool vcpu_is_preempted(int cpu)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
|
|
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
|
|
|
|
#ifndef TASK_SIZE_OF
|
|
#define TASK_SIZE_OF(tsk) TASK_SIZE
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline bool owner_on_cpu(struct task_struct *owner)
|
|
{
|
|
/*
|
|
* As lock holder preemption issue, we both skip spinning if
|
|
* task is not on cpu or its cpu is preempted
|
|
*/
|
|
return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
|
|
}
|
|
|
|
/* Returns effective CPU energy utilization, as seen by the scheduler */
|
|
unsigned long sched_cpu_util(int cpu);
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_SCHED_CORE
|
|
extern void sched_core_free(struct task_struct *tsk);
|
|
extern void sched_core_fork(struct task_struct *p);
|
|
extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
|
|
unsigned long uaddr);
|
|
extern int sched_core_idle_cpu(int cpu);
|
|
#else
|
|
static inline void sched_core_free(struct task_struct *tsk) { }
|
|
static inline void sched_core_fork(struct task_struct *p) { }
|
|
static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
|
|
#endif
|
|
|
|
extern void sched_set_stop_task(int cpu, struct task_struct *stop);
|
|
|
|
#ifdef CONFIG_MEM_ALLOC_PROFILING
|
|
static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
|
|
{
|
|
swap(current->alloc_tag, tag);
|
|
return tag;
|
|
}
|
|
|
|
static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
|
|
{
|
|
#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
|
|
WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
|
|
#endif
|
|
current->alloc_tag = old;
|
|
}
|
|
#else
|
|
#define alloc_tag_save(_tag) NULL
|
|
#define alloc_tag_restore(_tag, _old) do {} while (0)
|
|
#endif
|
|
|
|
#endif
|