linux-next/mm/migrate.c
Joanne Koong 2cdf65eaaa mm/migrate: skip migrating folios under writeback with AS_WRITEBACK_INDETERMINATE mappings
For migrations called in MIGRATE_SYNC mode, skip migrating the folio if it
is under writeback and has the AS_WRITEBACK_INDETERMINATE flag set on its
mapping.  If the AS_WRITEBACK_INDETERMINATE flag is set on the mapping,
the writeback may take an indeterminate amount of time to complete, and
waits may get stuck.

Link: https://lkml.kernel.org/r/20241122232359.429647-5-joannelkoong@gmail.com
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Bernd Schubert <bernd.schubert@fastmail.fm>
Cc: Jingbo Xu <jefflexu@linux.alibaba.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-12-18 19:51:06 -08:00

2710 lines
73 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Memory Migration functionality - linux/mm/migrate.c
*
* Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
*
* Page migration was first developed in the context of the memory hotplug
* project. The main authors of the migration code are:
*
* IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
* Hirokazu Takahashi <taka@valinux.co.jp>
* Dave Hansen <haveblue@us.ibm.com>
* Christoph Lameter
*/
#include <linux/migrate.h>
#include <linux/export.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/mm_inline.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/writeback.h>
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
#include <linux/security.h>
#include <linux/backing-dev.h>
#include <linux/compaction.h>
#include <linux/syscalls.h>
#include <linux/compat.h>
#include <linux/hugetlb.h>
#include <linux/gfp.h>
#include <linux/pfn_t.h>
#include <linux/page_idle.h>
#include <linux/page_owner.h>
#include <linux/sched/mm.h>
#include <linux/ptrace.h>
#include <linux/memory.h>
#include <linux/sched/sysctl.h>
#include <linux/memory-tiers.h>
#include <linux/pagewalk.h>
#include <asm/tlbflush.h>
#include <trace/events/migrate.h>
#include "internal.h"
bool isolate_movable_page(struct page *page, isolate_mode_t mode)
{
struct folio *folio = folio_get_nontail_page(page);
const struct movable_operations *mops;
/*
* Avoid burning cycles with pages that are yet under __free_pages(),
* or just got freed under us.
*
* In case we 'win' a race for a movable page being freed under us and
* raise its refcount preventing __free_pages() from doing its job
* the put_page() at the end of this block will take care of
* release this page, thus avoiding a nasty leakage.
*/
if (!folio)
goto out;
/*
* Check movable flag before taking the page lock because
* we use non-atomic bitops on newly allocated page flags so
* unconditionally grabbing the lock ruins page's owner side.
*/
if (unlikely(!__folio_test_movable(folio)))
goto out_putfolio;
/*
* As movable pages are not isolated from LRU lists, concurrent
* compaction threads can race against page migration functions
* as well as race against the releasing a page.
*
* In order to avoid having an already isolated movable page
* being (wrongly) re-isolated while it is under migration,
* or to avoid attempting to isolate pages being released,
* lets be sure we have the page lock
* before proceeding with the movable page isolation steps.
*/
if (unlikely(!folio_trylock(folio)))
goto out_putfolio;
if (!folio_test_movable(folio) || folio_test_isolated(folio))
goto out_no_isolated;
mops = folio_movable_ops(folio);
VM_BUG_ON_FOLIO(!mops, folio);
if (!mops->isolate_page(&folio->page, mode))
goto out_no_isolated;
/* Driver shouldn't use the isolated flag */
WARN_ON_ONCE(folio_test_isolated(folio));
folio_set_isolated(folio);
folio_unlock(folio);
return true;
out_no_isolated:
folio_unlock(folio);
out_putfolio:
folio_put(folio);
out:
return false;
}
static void putback_movable_folio(struct folio *folio)
{
const struct movable_operations *mops = folio_movable_ops(folio);
mops->putback_page(&folio->page);
folio_clear_isolated(folio);
}
/*
* Put previously isolated pages back onto the appropriate lists
* from where they were once taken off for compaction/migration.
*
* This function shall be used whenever the isolated pageset has been
* built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
* and isolate_hugetlb().
*/
void putback_movable_pages(struct list_head *l)
{
struct folio *folio;
struct folio *folio2;
list_for_each_entry_safe(folio, folio2, l, lru) {
if (unlikely(folio_test_hugetlb(folio))) {
folio_putback_active_hugetlb(folio);
continue;
}
list_del(&folio->lru);
/*
* We isolated non-lru movable folio so here we can use
* __folio_test_movable because LRU folio's mapping cannot
* have PAGE_MAPPING_MOVABLE.
*/
if (unlikely(__folio_test_movable(folio))) {
VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
folio_lock(folio);
if (folio_test_movable(folio))
putback_movable_folio(folio);
else
folio_clear_isolated(folio);
folio_unlock(folio);
folio_put(folio);
} else {
node_stat_mod_folio(folio, NR_ISOLATED_ANON +
folio_is_file_lru(folio), -folio_nr_pages(folio));
folio_putback_lru(folio);
}
}
}
/* Must be called with an elevated refcount on the non-hugetlb folio */
bool isolate_folio_to_list(struct folio *folio, struct list_head *list)
{
bool isolated, lru;
if (folio_test_hugetlb(folio))
return isolate_hugetlb(folio, list);
lru = !__folio_test_movable(folio);
if (lru)
isolated = folio_isolate_lru(folio);
else
isolated = isolate_movable_page(&folio->page,
ISOLATE_UNEVICTABLE);
if (!isolated)
return false;
list_add(&folio->lru, list);
if (lru)
node_stat_add_folio(folio, NR_ISOLATED_ANON +
folio_is_file_lru(folio));
return true;
}
static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw,
struct folio *folio,
unsigned long idx)
{
struct page *page = folio_page(folio, idx);
bool contains_data;
pte_t newpte;
void *addr;
if (PageCompound(page))
return false;
VM_BUG_ON_PAGE(!PageAnon(page), page);
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(pte_present(*pvmw->pte), page);
if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) ||
mm_forbids_zeropage(pvmw->vma->vm_mm))
return false;
/*
* The pmd entry mapping the old thp was flushed and the pte mapping
* this subpage has been non present. If the subpage is only zero-filled
* then map it to the shared zeropage.
*/
addr = kmap_local_page(page);
contains_data = memchr_inv(addr, 0, PAGE_SIZE);
kunmap_local(addr);
if (contains_data)
return false;
newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address),
pvmw->vma->vm_page_prot));
set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte);
dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio));
return true;
}
struct rmap_walk_arg {
struct folio *folio;
bool map_unused_to_zeropage;
};
/*
* Restore a potential migration pte to a working pte entry
*/
static bool remove_migration_pte(struct folio *folio,
struct vm_area_struct *vma, unsigned long addr, void *arg)
{
struct rmap_walk_arg *rmap_walk_arg = arg;
DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
while (page_vma_mapped_walk(&pvmw)) {
rmap_t rmap_flags = RMAP_NONE;
pte_t old_pte;
pte_t pte;
swp_entry_t entry;
struct page *new;
unsigned long idx = 0;
/* pgoff is invalid for ksm pages, but they are never large */
if (folio_test_large(folio) && !folio_test_hugetlb(folio))
idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
new = folio_page(folio, idx);
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
/* PMD-mapped THP migration entry */
if (!pvmw.pte) {
VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
!folio_test_pmd_mappable(folio), folio);
remove_migration_pmd(&pvmw, new);
continue;
}
#endif
if (rmap_walk_arg->map_unused_to_zeropage &&
try_to_map_unused_to_zeropage(&pvmw, folio, idx))
continue;
folio_get(folio);
pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
old_pte = ptep_get(pvmw.pte);
entry = pte_to_swp_entry(old_pte);
if (!is_migration_entry_young(entry))
pte = pte_mkold(pte);
if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
pte = pte_mkdirty(pte);
if (pte_swp_soft_dirty(old_pte))
pte = pte_mksoft_dirty(pte);
else
pte = pte_clear_soft_dirty(pte);
if (is_writable_migration_entry(entry))
pte = pte_mkwrite(pte, vma);
else if (pte_swp_uffd_wp(old_pte))
pte = pte_mkuffd_wp(pte);
if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
rmap_flags |= RMAP_EXCLUSIVE;
if (unlikely(is_device_private_page(new))) {
if (pte_write(pte))
entry = make_writable_device_private_entry(
page_to_pfn(new));
else
entry = make_readable_device_private_entry(
page_to_pfn(new));
pte = swp_entry_to_pte(entry);
if (pte_swp_soft_dirty(old_pte))
pte = pte_swp_mksoft_dirty(pte);
if (pte_swp_uffd_wp(old_pte))
pte = pte_swp_mkuffd_wp(pte);
}
#ifdef CONFIG_HUGETLB_PAGE
if (folio_test_hugetlb(folio)) {
struct hstate *h = hstate_vma(vma);
unsigned int shift = huge_page_shift(h);
unsigned long psize = huge_page_size(h);
pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
if (folio_test_anon(folio))
hugetlb_add_anon_rmap(folio, vma, pvmw.address,
rmap_flags);
else
hugetlb_add_file_rmap(folio);
set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
psize);
} else
#endif
{
if (folio_test_anon(folio))
folio_add_anon_rmap_pte(folio, new, vma,
pvmw.address, rmap_flags);
else
folio_add_file_rmap_pte(folio, new, vma);
set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
}
if (vma->vm_flags & VM_LOCKED)
mlock_drain_local();
trace_remove_migration_pte(pvmw.address, pte_val(pte),
compound_order(new));
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, pvmw.address, pvmw.pte);
}
return true;
}
/*
* Get rid of all migration entries and replace them by
* references to the indicated page.
*/
void remove_migration_ptes(struct folio *src, struct folio *dst, int flags)
{
struct rmap_walk_arg rmap_walk_arg = {
.folio = src,
.map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE,
};
struct rmap_walk_control rwc = {
.rmap_one = remove_migration_pte,
.arg = &rmap_walk_arg,
};
VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src);
if (flags & RMP_LOCKED)
rmap_walk_locked(dst, &rwc);
else
rmap_walk(dst, &rwc);
}
/*
* Something used the pte of a page under migration. We need to
* get to the page and wait until migration is finished.
* When we return from this function the fault will be retried.
*/
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
unsigned long address)
{
spinlock_t *ptl;
pte_t *ptep;
pte_t pte;
swp_entry_t entry;
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
if (!ptep)
return;
pte = ptep_get(ptep);
pte_unmap(ptep);
if (!is_swap_pte(pte))
goto out;
entry = pte_to_swp_entry(pte);
if (!is_migration_entry(entry))
goto out;
migration_entry_wait_on_locked(entry, ptl);
return;
out:
spin_unlock(ptl);
}
#ifdef CONFIG_HUGETLB_PAGE
/*
* The vma read lock must be held upon entry. Holding that lock prevents either
* the pte or the ptl from being freed.
*
* This function will release the vma lock before returning.
*/
void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
pte_t pte;
hugetlb_vma_assert_locked(vma);
spin_lock(ptl);
pte = huge_ptep_get(vma->vm_mm, addr, ptep);
if (unlikely(!is_hugetlb_entry_migration(pte))) {
spin_unlock(ptl);
hugetlb_vma_unlock_read(vma);
} else {
/*
* If migration entry existed, safe to release vma lock
* here because the pgtable page won't be freed without the
* pgtable lock released. See comment right above pgtable
* lock release in migration_entry_wait_on_locked().
*/
hugetlb_vma_unlock_read(vma);
migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
}
}
#endif
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
spinlock_t *ptl;
ptl = pmd_lock(mm, pmd);
if (!is_pmd_migration_entry(*pmd))
goto unlock;
migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
return;
unlock:
spin_unlock(ptl);
}
#endif
static int folio_expected_refs(struct address_space *mapping,
struct folio *folio)
{
int refs = 1;
if (!mapping)
return refs;
refs += folio_nr_pages(folio);
if (folio_test_private(folio))
refs++;
return refs;
}
/*
* Replace the folio in the mapping.
*
* The number of remaining references must be:
* 1 for anonymous folios without a mapping
* 2 for folios with a mapping
* 3 for folios with a mapping and the private flag set.
*/
static int __folio_migrate_mapping(struct address_space *mapping,
struct folio *newfolio, struct folio *folio, int expected_count)
{
XA_STATE(xas, &mapping->i_pages, folio_index(folio));
struct zone *oldzone, *newzone;
int dirty;
long nr = folio_nr_pages(folio);
long entries, i;
if (!mapping) {
/* Take off deferred split queue while frozen and memcg set */
if (folio_test_large(folio) &&
folio_test_large_rmappable(folio)) {
if (!folio_ref_freeze(folio, expected_count))
return -EAGAIN;
folio_unqueue_deferred_split(folio);
folio_ref_unfreeze(folio, expected_count);
}
/* No turning back from here */
newfolio->index = folio->index;
newfolio->mapping = folio->mapping;
if (folio_test_anon(folio) && folio_test_large(folio))
mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
if (folio_test_swapbacked(folio))
__folio_set_swapbacked(newfolio);
return MIGRATEPAGE_SUCCESS;
}
oldzone = folio_zone(folio);
newzone = folio_zone(newfolio);
xas_lock_irq(&xas);
if (!folio_ref_freeze(folio, expected_count)) {
xas_unlock_irq(&xas);
return -EAGAIN;
}
/* Take off deferred split queue while frozen and memcg set */
folio_unqueue_deferred_split(folio);
/*
* Now we know that no one else is looking at the folio:
* no turning back from here.
*/
newfolio->index = folio->index;
newfolio->mapping = folio->mapping;
if (folio_test_anon(folio) && folio_test_large(folio))
mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
folio_ref_add(newfolio, nr); /* add cache reference */
if (folio_test_swapbacked(folio)) {
__folio_set_swapbacked(newfolio);
if (folio_test_swapcache(folio)) {
folio_set_swapcache(newfolio);
newfolio->private = folio_get_private(folio);
}
entries = nr;
} else {
VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
entries = 1;
}
/* Move dirty while folio refs frozen and newfolio not yet exposed */
dirty = folio_test_dirty(folio);
if (dirty) {
folio_clear_dirty(folio);
folio_set_dirty(newfolio);
}
/* Swap cache still stores N entries instead of a high-order entry */
for (i = 0; i < entries; i++) {
xas_store(&xas, newfolio);
xas_next(&xas);
}
/*
* Drop cache reference from old folio by unfreezing
* to one less reference.
* We know this isn't the last reference.
*/
folio_ref_unfreeze(folio, expected_count - nr);
xas_unlock(&xas);
/* Leave irq disabled to prevent preemption while updating stats */
/*
* If moved to a different zone then also account
* the folio for that zone. Other VM counters will be
* taken care of when we establish references to the
* new folio and drop references to the old folio.
*
* Note that anonymous folios are accounted for
* via NR_FILE_PAGES and NR_ANON_MAPPED if they
* are mapped to swap space.
*/
if (newzone != oldzone) {
struct lruvec *old_lruvec, *new_lruvec;
struct mem_cgroup *memcg;
memcg = folio_memcg(folio);
old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
if (folio_test_pmd_mappable(folio)) {
__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
}
}
#ifdef CONFIG_SWAP
if (folio_test_swapcache(folio)) {
__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
}
#endif
if (dirty && mapping_can_writeback(mapping)) {
__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
}
}
local_irq_enable();
return MIGRATEPAGE_SUCCESS;
}
int folio_migrate_mapping(struct address_space *mapping,
struct folio *newfolio, struct folio *folio, int extra_count)
{
int expected_count = folio_expected_refs(mapping, folio) + extra_count;
if (folio_ref_count(folio) != expected_count)
return -EAGAIN;
return __folio_migrate_mapping(mapping, newfolio, folio, expected_count);
}
EXPORT_SYMBOL(folio_migrate_mapping);
/*
* The expected number of remaining references is the same as that
* of folio_migrate_mapping().
*/
int migrate_huge_page_move_mapping(struct address_space *mapping,
struct folio *dst, struct folio *src)
{
XA_STATE(xas, &mapping->i_pages, folio_index(src));
int rc, expected_count = folio_expected_refs(mapping, src);
if (folio_ref_count(src) != expected_count)
return -EAGAIN;
rc = folio_mc_copy(dst, src);
if (unlikely(rc))
return rc;
xas_lock_irq(&xas);
if (!folio_ref_freeze(src, expected_count)) {
xas_unlock_irq(&xas);
return -EAGAIN;
}
dst->index = src->index;
dst->mapping = src->mapping;
folio_ref_add(dst, folio_nr_pages(dst));
xas_store(&xas, dst);
folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
xas_unlock_irq(&xas);
return MIGRATEPAGE_SUCCESS;
}
/*
* Copy the flags and some other ancillary information
*/
void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
{
int cpupid;
if (folio_test_referenced(folio))
folio_set_referenced(newfolio);
if (folio_test_uptodate(folio))
folio_mark_uptodate(newfolio);
if (folio_test_clear_active(folio)) {
VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
folio_set_active(newfolio);
} else if (folio_test_clear_unevictable(folio))
folio_set_unevictable(newfolio);
if (folio_test_workingset(folio))
folio_set_workingset(newfolio);
if (folio_test_checked(folio))
folio_set_checked(newfolio);
/*
* PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
* migration entries. We can still have PG_anon_exclusive set on an
* effectively unmapped and unreferenced first sub-pages of an
* anonymous THP: we can simply copy it here via PG_mappedtodisk.
*/
if (folio_test_mappedtodisk(folio))
folio_set_mappedtodisk(newfolio);
/* Move dirty on pages not done by folio_migrate_mapping() */
if (folio_test_dirty(folio))
folio_set_dirty(newfolio);
if (folio_test_young(folio))
folio_set_young(newfolio);
if (folio_test_idle(folio))
folio_set_idle(newfolio);
folio_migrate_refs(newfolio, folio);
/*
* Copy NUMA information to the new page, to prevent over-eager
* future migrations of this same page.
*/
cpupid = folio_xchg_last_cpupid(folio, -1);
/*
* For memory tiering mode, when migrate between slow and fast
* memory node, reset cpupid, because that is used to record
* page access time in slow memory node.
*/
if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
bool f_toptier = node_is_toptier(folio_nid(folio));
bool t_toptier = node_is_toptier(folio_nid(newfolio));
if (f_toptier != t_toptier)
cpupid = -1;
}
folio_xchg_last_cpupid(newfolio, cpupid);
folio_migrate_ksm(newfolio, folio);
/*
* Please do not reorder this without considering how mm/ksm.c's
* ksm_get_folio() depends upon ksm_migrate_page() and the
* swapcache flag.
*/
if (folio_test_swapcache(folio))
folio_clear_swapcache(folio);
folio_clear_private(folio);
/* page->private contains hugetlb specific flags */
if (!folio_test_hugetlb(folio))
folio->private = NULL;
/*
* If any waiters have accumulated on the new page then
* wake them up.
*/
if (folio_test_writeback(newfolio))
folio_end_writeback(newfolio);
/*
* PG_readahead shares the same bit with PG_reclaim. The above
* end_page_writeback() may clear PG_readahead mistakenly, so set the
* bit after that.
*/
if (folio_test_readahead(folio))
folio_set_readahead(newfolio);
folio_copy_owner(newfolio, folio);
pgalloc_tag_swap(newfolio, folio);
mem_cgroup_migrate(folio, newfolio);
}
EXPORT_SYMBOL(folio_migrate_flags);
/************************************************************
* Migration functions
***********************************************************/
static int __migrate_folio(struct address_space *mapping, struct folio *dst,
struct folio *src, void *src_private,
enum migrate_mode mode)
{
int rc, expected_count = folio_expected_refs(mapping, src);
/* Check whether src does not have extra refs before we do more work */
if (folio_ref_count(src) != expected_count)
return -EAGAIN;
rc = folio_mc_copy(dst, src);
if (unlikely(rc))
return rc;
rc = __folio_migrate_mapping(mapping, dst, src, expected_count);
if (rc != MIGRATEPAGE_SUCCESS)
return rc;
if (src_private)
folio_attach_private(dst, folio_detach_private(src));
folio_migrate_flags(dst, src);
return MIGRATEPAGE_SUCCESS;
}
/**
* migrate_folio() - Simple folio migration.
* @mapping: The address_space containing the folio.
* @dst: The folio to migrate the data to.
* @src: The folio containing the current data.
* @mode: How to migrate the page.
*
* Common logic to directly migrate a single LRU folio suitable for
* folios that do not have private data.
*
* Folios are locked upon entry and exit.
*/
int migrate_folio(struct address_space *mapping, struct folio *dst,
struct folio *src, enum migrate_mode mode)
{
BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */
return __migrate_folio(mapping, dst, src, NULL, mode);
}
EXPORT_SYMBOL(migrate_folio);
#ifdef CONFIG_BUFFER_HEAD
/* Returns true if all buffers are successfully locked */
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
enum migrate_mode mode)
{
struct buffer_head *bh = head;
struct buffer_head *failed_bh;
do {
if (!trylock_buffer(bh)) {
if (mode == MIGRATE_ASYNC)
goto unlock;
if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
goto unlock;
lock_buffer(bh);
}
bh = bh->b_this_page;
} while (bh != head);
return true;
unlock:
/* We failed to lock the buffer and cannot stall. */
failed_bh = bh;
bh = head;
while (bh != failed_bh) {
unlock_buffer(bh);
bh = bh->b_this_page;
}
return false;
}
static int __buffer_migrate_folio(struct address_space *mapping,
struct folio *dst, struct folio *src, enum migrate_mode mode,
bool check_refs)
{
struct buffer_head *bh, *head;
int rc;
int expected_count;
head = folio_buffers(src);
if (!head)
return migrate_folio(mapping, dst, src, mode);
/* Check whether page does not have extra refs before we do more work */
expected_count = folio_expected_refs(mapping, src);
if (folio_ref_count(src) != expected_count)
return -EAGAIN;
if (!buffer_migrate_lock_buffers(head, mode))
return -EAGAIN;
if (check_refs) {
bool busy;
bool invalidated = false;
recheck_buffers:
busy = false;
spin_lock(&mapping->i_private_lock);
bh = head;
do {
if (atomic_read(&bh->b_count)) {
busy = true;
break;
}
bh = bh->b_this_page;
} while (bh != head);
if (busy) {
if (invalidated) {
rc = -EAGAIN;
goto unlock_buffers;
}
spin_unlock(&mapping->i_private_lock);
invalidate_bh_lrus();
invalidated = true;
goto recheck_buffers;
}
}
rc = filemap_migrate_folio(mapping, dst, src, mode);
if (rc != MIGRATEPAGE_SUCCESS)
goto unlock_buffers;
bh = head;
do {
folio_set_bh(bh, dst, bh_offset(bh));
bh = bh->b_this_page;
} while (bh != head);
unlock_buffers:
if (check_refs)
spin_unlock(&mapping->i_private_lock);
bh = head;
do {
unlock_buffer(bh);
bh = bh->b_this_page;
} while (bh != head);
return rc;
}
/**
* buffer_migrate_folio() - Migration function for folios with buffers.
* @mapping: The address space containing @src.
* @dst: The folio to migrate to.
* @src: The folio to migrate from.
* @mode: How to migrate the folio.
*
* This function can only be used if the underlying filesystem guarantees
* that no other references to @src exist. For example attached buffer
* heads are accessed only under the folio lock. If your filesystem cannot
* provide this guarantee, buffer_migrate_folio_norefs() may be more
* appropriate.
*
* Return: 0 on success or a negative errno on failure.
*/
int buffer_migrate_folio(struct address_space *mapping,
struct folio *dst, struct folio *src, enum migrate_mode mode)
{
return __buffer_migrate_folio(mapping, dst, src, mode, false);
}
EXPORT_SYMBOL(buffer_migrate_folio);
/**
* buffer_migrate_folio_norefs() - Migration function for folios with buffers.
* @mapping: The address space containing @src.
* @dst: The folio to migrate to.
* @src: The folio to migrate from.
* @mode: How to migrate the folio.
*
* Like buffer_migrate_folio() except that this variant is more careful
* and checks that there are also no buffer head references. This function
* is the right one for mappings where buffer heads are directly looked
* up and referenced (such as block device mappings).
*
* Return: 0 on success or a negative errno on failure.
*/
int buffer_migrate_folio_norefs(struct address_space *mapping,
struct folio *dst, struct folio *src, enum migrate_mode mode)
{
return __buffer_migrate_folio(mapping, dst, src, mode, true);
}
EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
#endif /* CONFIG_BUFFER_HEAD */
int filemap_migrate_folio(struct address_space *mapping,
struct folio *dst, struct folio *src, enum migrate_mode mode)
{
return __migrate_folio(mapping, dst, src, folio_get_private(src), mode);
}
EXPORT_SYMBOL_GPL(filemap_migrate_folio);
/*
* Writeback a folio to clean the dirty state
*/
static int writeout(struct address_space *mapping, struct folio *folio)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
.nr_to_write = 1,
.range_start = 0,
.range_end = LLONG_MAX,
.for_reclaim = 1
};
int rc;
if (!mapping->a_ops->writepage)
/* No write method for the address space */
return -EINVAL;
if (!folio_clear_dirty_for_io(folio))
/* Someone else already triggered a write */
return -EAGAIN;
/*
* A dirty folio may imply that the underlying filesystem has
* the folio on some queue. So the folio must be clean for
* migration. Writeout may mean we lose the lock and the
* folio state is no longer what we checked for earlier.
* At this point we know that the migration attempt cannot
* be successful.
*/
remove_migration_ptes(folio, folio, 0);
rc = mapping->a_ops->writepage(&folio->page, &wbc);
if (rc != AOP_WRITEPAGE_ACTIVATE)
/* unlocked. Relock */
folio_lock(folio);
return (rc < 0) ? -EIO : -EAGAIN;
}
/*
* Default handling if a filesystem does not provide a migration function.
*/
static int fallback_migrate_folio(struct address_space *mapping,
struct folio *dst, struct folio *src, enum migrate_mode mode)
{
if (folio_test_dirty(src)) {
/* Only writeback folios in full synchronous migration */
switch (mode) {
case MIGRATE_SYNC:
break;
default:
return -EBUSY;
}
return writeout(mapping, src);
}
/*
* Buffers may be managed in a filesystem specific way.
* We must have no buffers or drop them.
*/
if (!filemap_release_folio(src, GFP_KERNEL))
return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
return migrate_folio(mapping, dst, src, mode);
}
/*
* Move a page to a newly allocated page
* The page is locked and all ptes have been successfully removed.
*
* The new page will have replaced the old page if this function
* is successful.
*
* Return value:
* < 0 - error code
* MIGRATEPAGE_SUCCESS - success
*/
static int move_to_new_folio(struct folio *dst, struct folio *src,
enum migrate_mode mode)
{
int rc = -EAGAIN;
bool is_lru = !__folio_test_movable(src);
VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
if (likely(is_lru)) {
struct address_space *mapping = folio_mapping(src);
if (!mapping)
rc = migrate_folio(mapping, dst, src, mode);
else if (mapping_inaccessible(mapping))
rc = -EOPNOTSUPP;
else if (mapping->a_ops->migrate_folio)
/*
* Most folios have a mapping and most filesystems
* provide a migrate_folio callback. Anonymous folios
* are part of swap space which also has its own
* migrate_folio callback. This is the most common path
* for page migration.
*/
rc = mapping->a_ops->migrate_folio(mapping, dst, src,
mode);
else
rc = fallback_migrate_folio(mapping, dst, src, mode);
} else {
const struct movable_operations *mops;
/*
* In case of non-lru page, it could be released after
* isolation step. In that case, we shouldn't try migration.
*/
VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
if (!folio_test_movable(src)) {
rc = MIGRATEPAGE_SUCCESS;
folio_clear_isolated(src);
goto out;
}
mops = folio_movable_ops(src);
rc = mops->migrate_page(&dst->page, &src->page, mode);
WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
!folio_test_isolated(src));
}
/*
* When successful, old pagecache src->mapping must be cleared before
* src is freed; but stats require that PageAnon be left as PageAnon.
*/
if (rc == MIGRATEPAGE_SUCCESS) {
if (__folio_test_movable(src)) {
VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
/*
* We clear PG_movable under page_lock so any compactor
* cannot try to migrate this page.
*/
folio_clear_isolated(src);
}
/*
* Anonymous and movable src->mapping will be cleared by
* free_pages_prepare so don't reset it here for keeping
* the type to work PageAnon, for example.
*/
if (!folio_mapping_flags(src))
src->mapping = NULL;
if (likely(!folio_is_zone_device(dst)))
flush_dcache_folio(dst);
}
out:
return rc;
}
/*
* To record some information during migration, we use unused private
* field of struct folio of the newly allocated destination folio.
* This is safe because nobody is using it except us.
*/
enum {
PAGE_WAS_MAPPED = BIT(0),
PAGE_WAS_MLOCKED = BIT(1),
PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
};
static void __migrate_folio_record(struct folio *dst,
int old_page_state,
struct anon_vma *anon_vma)
{
dst->private = (void *)anon_vma + old_page_state;
}
static void __migrate_folio_extract(struct folio *dst,
int *old_page_state,
struct anon_vma **anon_vmap)
{
unsigned long private = (unsigned long)dst->private;
*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
*old_page_state = private & PAGE_OLD_STATES;
dst->private = NULL;
}
/* Restore the source folio to the original state upon failure */
static void migrate_folio_undo_src(struct folio *src,
int page_was_mapped,
struct anon_vma *anon_vma,
bool locked,
struct list_head *ret)
{
if (page_was_mapped)
remove_migration_ptes(src, src, 0);
/* Drop an anon_vma reference if we took one */
if (anon_vma)
put_anon_vma(anon_vma);
if (locked)
folio_unlock(src);
if (ret)
list_move_tail(&src->lru, ret);
}
/* Restore the destination folio to the original state upon failure */
static void migrate_folio_undo_dst(struct folio *dst, bool locked,
free_folio_t put_new_folio, unsigned long private)
{
if (locked)
folio_unlock(dst);
if (put_new_folio)
put_new_folio(dst, private);
else
folio_put(dst);
}
/* Cleanup src folio upon migration success */
static void migrate_folio_done(struct folio *src,
enum migrate_reason reason)
{
/*
* Compaction can migrate also non-LRU pages which are
* not accounted to NR_ISOLATED_*. They can be recognized
* as __folio_test_movable
*/
if (likely(!__folio_test_movable(src)) && reason != MR_DEMOTION)
mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
folio_is_file_lru(src), -folio_nr_pages(src));
if (reason != MR_MEMORY_FAILURE)
/* We release the page in page_handle_poison. */
folio_put(src);
}
/* Obtain the lock on page, remove all ptes. */
static int migrate_folio_unmap(new_folio_t get_new_folio,
free_folio_t put_new_folio, unsigned long private,
struct folio *src, struct folio **dstp, enum migrate_mode mode,
enum migrate_reason reason, struct list_head *ret)
{
struct folio *dst;
int rc = -EAGAIN;
int old_page_state = 0;
struct anon_vma *anon_vma = NULL;
bool is_lru = data_race(!__folio_test_movable(src));
bool locked = false;
bool dst_locked = false;
if (folio_ref_count(src) == 1) {
/* Folio was freed from under us. So we are done. */
folio_clear_active(src);
folio_clear_unevictable(src);
/* free_pages_prepare() will clear PG_isolated. */
list_del(&src->lru);
migrate_folio_done(src, reason);
return MIGRATEPAGE_SUCCESS;
}
dst = get_new_folio(src, private);
if (!dst)
return -ENOMEM;
*dstp = dst;
dst->private = NULL;
if (!folio_trylock(src)) {
if (mode == MIGRATE_ASYNC)
goto out;
/*
* It's not safe for direct compaction to call lock_page.
* For example, during page readahead pages are added locked
* to the LRU. Later, when the IO completes the pages are
* marked uptodate and unlocked. However, the queueing
* could be merging multiple pages for one bio (e.g.
* mpage_readahead). If an allocation happens for the
* second or third page, the process can end up locking
* the same page twice and deadlocking. Rather than
* trying to be clever about what pages can be locked,
* avoid the use of lock_page for direct compaction
* altogether.
*/
if (current->flags & PF_MEMALLOC)
goto out;
/*
* In "light" mode, we can wait for transient locks (eg
* inserting a page into the page table), but it's not
* worth waiting for I/O.
*/
if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
goto out;
folio_lock(src);
}
locked = true;
if (folio_test_mlocked(src))
old_page_state |= PAGE_WAS_MLOCKED;
if (folio_test_writeback(src)) {
/*
* Only in the case of a full synchronous migration is it
* necessary to wait for PageWriteback. In the async case,
* the retry loop is too short and in the sync-light case,
* the overhead of stalling is too much
*/
switch (mode) {
case MIGRATE_SYNC:
if (!src->mapping ||
!mapping_writeback_indeterminate(src->mapping))
break;
fallthrough;
default:
rc = -EBUSY;
goto out;
}
folio_wait_writeback(src);
}
/*
* By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
* we cannot notice that anon_vma is freed while we migrate a page.
* This get_anon_vma() delays freeing anon_vma pointer until the end
* of migration. File cache pages are no problem because of page_lock()
* File Caches may use write_page() or lock_page() in migration, then,
* just care Anon page here.
*
* Only folio_get_anon_vma() understands the subtleties of
* getting a hold on an anon_vma from outside one of its mms.
* But if we cannot get anon_vma, then we won't need it anyway,
* because that implies that the anon page is no longer mapped
* (and cannot be remapped so long as we hold the page lock).
*/
if (folio_test_anon(src) && !folio_test_ksm(src))
anon_vma = folio_get_anon_vma(src);
/*
* Block others from accessing the new page when we get around to
* establishing additional references. We are usually the only one
* holding a reference to dst at this point. We used to have a BUG
* here if folio_trylock(dst) fails, but would like to allow for
* cases where there might be a race with the previous use of dst.
* This is much like races on refcount of oldpage: just don't BUG().
*/
if (unlikely(!folio_trylock(dst)))
goto out;
dst_locked = true;
if (unlikely(!is_lru)) {
__migrate_folio_record(dst, old_page_state, anon_vma);
return MIGRATEPAGE_UNMAP;
}
/*
* Corner case handling:
* 1. When a new swap-cache page is read into, it is added to the LRU
* and treated as swapcache but it has no rmap yet.
* Calling try_to_unmap() against a src->mapping==NULL page will
* trigger a BUG. So handle it here.
* 2. An orphaned page (see truncate_cleanup_page) might have
* fs-private metadata. The page can be picked up due to memory
* offlining. Everywhere else except page reclaim, the page is
* invisible to the vm, so the page can not be migrated. So try to
* free the metadata, so the page can be freed.
*/
if (!src->mapping) {
if (folio_test_private(src)) {
try_to_free_buffers(src);
goto out;
}
} else if (folio_mapped(src)) {
/* Establish migration ptes */
VM_BUG_ON_FOLIO(folio_test_anon(src) &&
!folio_test_ksm(src) && !anon_vma, src);
try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
old_page_state |= PAGE_WAS_MAPPED;
}
if (!folio_mapped(src)) {
__migrate_folio_record(dst, old_page_state, anon_vma);
return MIGRATEPAGE_UNMAP;
}
out:
/*
* A folio that has not been unmapped will be restored to
* right list unless we want to retry.
*/
if (rc == -EAGAIN)
ret = NULL;
migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
anon_vma, locked, ret);
migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
return rc;
}
/* Migrate the folio to the newly allocated folio in dst. */
static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
struct folio *src, struct folio *dst,
enum migrate_mode mode, enum migrate_reason reason,
struct list_head *ret)
{
int rc;
int old_page_state = 0;
struct anon_vma *anon_vma = NULL;
bool is_lru = !__folio_test_movable(src);
struct list_head *prev;
__migrate_folio_extract(dst, &old_page_state, &anon_vma);
prev = dst->lru.prev;
list_del(&dst->lru);
rc = move_to_new_folio(dst, src, mode);
if (rc)
goto out;
if (unlikely(!is_lru))
goto out_unlock_both;
/*
* When successful, push dst to LRU immediately: so that if it
* turns out to be an mlocked page, remove_migration_ptes() will
* automatically build up the correct dst->mlock_count for it.
*
* We would like to do something similar for the old page, when
* unsuccessful, and other cases when a page has been temporarily
* isolated from the unevictable LRU: but this case is the easiest.
*/
folio_add_lru(dst);
if (old_page_state & PAGE_WAS_MLOCKED)
lru_add_drain();
if (old_page_state & PAGE_WAS_MAPPED)
remove_migration_ptes(src, dst, 0);
out_unlock_both:
folio_unlock(dst);
set_page_owner_migrate_reason(&dst->page, reason);
/*
* If migration is successful, decrease refcount of dst,
* which will not free the page because new page owner increased
* refcounter.
*/
folio_put(dst);
/*
* A folio that has been migrated has all references removed
* and will be freed.
*/
list_del(&src->lru);
/* Drop an anon_vma reference if we took one */
if (anon_vma)
put_anon_vma(anon_vma);
folio_unlock(src);
migrate_folio_done(src, reason);
return rc;
out:
/*
* A folio that has not been migrated will be restored to
* right list unless we want to retry.
*/
if (rc == -EAGAIN) {
list_add(&dst->lru, prev);
__migrate_folio_record(dst, old_page_state, anon_vma);
return rc;
}
migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
anon_vma, true, ret);
migrate_folio_undo_dst(dst, true, put_new_folio, private);
return rc;
}
/*
* Counterpart of unmap_and_move_page() for hugepage migration.
*
* This function doesn't wait the completion of hugepage I/O
* because there is no race between I/O and migration for hugepage.
* Note that currently hugepage I/O occurs only in direct I/O
* where no lock is held and PG_writeback is irrelevant,
* and writeback status of all subpages are counted in the reference
* count of the head page (i.e. if all subpages of a 2MB hugepage are
* under direct I/O, the reference of the head page is 512 and a bit more.)
* This means that when we try to migrate hugepage whose subpages are
* doing direct I/O, some references remain after try_to_unmap() and
* hugepage migration fails without data corruption.
*
* There is also no race when direct I/O is issued on the page under migration,
* because then pte is replaced with migration swap entry and direct I/O code
* will wait in the page fault for migration to complete.
*/
static int unmap_and_move_huge_page(new_folio_t get_new_folio,
free_folio_t put_new_folio, unsigned long private,
struct folio *src, int force, enum migrate_mode mode,
int reason, struct list_head *ret)
{
struct folio *dst;
int rc = -EAGAIN;
int page_was_mapped = 0;
struct anon_vma *anon_vma = NULL;
struct address_space *mapping = NULL;
if (folio_ref_count(src) == 1) {
/* page was freed from under us. So we are done. */
folio_putback_active_hugetlb(src);
return MIGRATEPAGE_SUCCESS;
}
dst = get_new_folio(src, private);
if (!dst)
return -ENOMEM;
if (!folio_trylock(src)) {
if (!force)
goto out;
switch (mode) {
case MIGRATE_SYNC:
break;
default:
goto out;
}
folio_lock(src);
}
/*
* Check for pages which are in the process of being freed. Without
* folio_mapping() set, hugetlbfs specific move page routine will not
* be called and we could leak usage counts for subpools.
*/
if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
rc = -EBUSY;
goto out_unlock;
}
if (folio_test_anon(src))
anon_vma = folio_get_anon_vma(src);
if (unlikely(!folio_trylock(dst)))
goto put_anon;
if (folio_mapped(src)) {
enum ttu_flags ttu = 0;
if (!folio_test_anon(src)) {
/*
* In shared mappings, try_to_unmap could potentially
* call huge_pmd_unshare. Because of this, take
* semaphore in write mode here and set TTU_RMAP_LOCKED
* to let lower levels know we have taken the lock.
*/
mapping = hugetlb_folio_mapping_lock_write(src);
if (unlikely(!mapping))
goto unlock_put_anon;
ttu = TTU_RMAP_LOCKED;
}
try_to_migrate(src, ttu);
page_was_mapped = 1;
if (ttu & TTU_RMAP_LOCKED)
i_mmap_unlock_write(mapping);
}
if (!folio_mapped(src))
rc = move_to_new_folio(dst, src, mode);
if (page_was_mapped)
remove_migration_ptes(src,
rc == MIGRATEPAGE_SUCCESS ? dst : src, 0);
unlock_put_anon:
folio_unlock(dst);
put_anon:
if (anon_vma)
put_anon_vma(anon_vma);
if (rc == MIGRATEPAGE_SUCCESS) {
move_hugetlb_state(src, dst, reason);
put_new_folio = NULL;
}
out_unlock:
folio_unlock(src);
out:
if (rc == MIGRATEPAGE_SUCCESS)
folio_putback_active_hugetlb(src);
else if (rc != -EAGAIN)
list_move_tail(&src->lru, ret);
/*
* If migration was not successful and there's a freeing callback, use
* it. Otherwise, put_page() will drop the reference grabbed during
* isolation.
*/
if (put_new_folio)
put_new_folio(dst, private);
else
folio_putback_active_hugetlb(dst);
return rc;
}
static inline int try_split_folio(struct folio *folio, struct list_head *split_folios,
enum migrate_mode mode)
{
int rc;
if (mode == MIGRATE_ASYNC) {
if (!folio_trylock(folio))
return -EAGAIN;
} else {
folio_lock(folio);
}
rc = split_folio_to_list(folio, split_folios);
folio_unlock(folio);
if (!rc)
list_move_tail(&folio->lru, split_folios);
return rc;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR
#else
#define NR_MAX_BATCHED_MIGRATION 512
#endif
#define NR_MAX_MIGRATE_PAGES_RETRY 10
#define NR_MAX_MIGRATE_ASYNC_RETRY 3
#define NR_MAX_MIGRATE_SYNC_RETRY \
(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
struct migrate_pages_stats {
int nr_succeeded; /* Normal and large folios migrated successfully, in
units of base pages */
int nr_failed_pages; /* Normal and large folios failed to be migrated, in
units of base pages. Untried folios aren't counted */
int nr_thp_succeeded; /* THP migrated successfully */
int nr_thp_failed; /* THP failed to be migrated */
int nr_thp_split; /* THP split before migrating */
int nr_split; /* Large folio (include THP) split before migrating */
};
/*
* Returns the number of hugetlb folios that were not migrated, or an error code
* after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
* any more because the list has become empty or no retryable hugetlb folios
* exist any more. It is caller's responsibility to call putback_movable_pages()
* only if ret != 0.
*/
static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
free_folio_t put_new_folio, unsigned long private,
enum migrate_mode mode, int reason,
struct migrate_pages_stats *stats,
struct list_head *ret_folios)
{
int retry = 1;
int nr_failed = 0;
int nr_retry_pages = 0;
int pass = 0;
struct folio *folio, *folio2;
int rc, nr_pages;
for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
retry = 0;
nr_retry_pages = 0;
list_for_each_entry_safe(folio, folio2, from, lru) {
if (!folio_test_hugetlb(folio))
continue;
nr_pages = folio_nr_pages(folio);
cond_resched();
/*
* Migratability of hugepages depends on architectures and
* their size. This check is necessary because some callers
* of hugepage migration like soft offline and memory
* hotremove don't walk through page tables or check whether
* the hugepage is pmd-based or not before kicking migration.
*/
if (!hugepage_migration_supported(folio_hstate(folio))) {
nr_failed++;
stats->nr_failed_pages += nr_pages;
list_move_tail(&folio->lru, ret_folios);
continue;
}
rc = unmap_and_move_huge_page(get_new_folio,
put_new_folio, private,
folio, pass > 2, mode,
reason, ret_folios);
/*
* The rules are:
* Success: hugetlb folio will be put back
* -EAGAIN: stay on the from list
* -ENOMEM: stay on the from list
* Other errno: put on ret_folios list
*/
switch(rc) {
case -ENOMEM:
/*
* When memory is low, don't bother to try to migrate
* other folios, just exit.
*/
stats->nr_failed_pages += nr_pages + nr_retry_pages;
return -ENOMEM;
case -EAGAIN:
retry++;
nr_retry_pages += nr_pages;
break;
case MIGRATEPAGE_SUCCESS:
stats->nr_succeeded += nr_pages;
break;
default:
/*
* Permanent failure (-EBUSY, etc.):
* unlike -EAGAIN case, the failed folio is
* removed from migration folio list and not
* retried in the next outer loop.
*/
nr_failed++;
stats->nr_failed_pages += nr_pages;
break;
}
}
}
/*
* nr_failed is number of hugetlb folios failed to be migrated. After
* NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
* folios as failed.
*/
nr_failed += retry;
stats->nr_failed_pages += nr_retry_pages;
return nr_failed;
}
/*
* migrate_pages_batch() first unmaps folios in the from list as many as
* possible, then move the unmapped folios.
*
* We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
* lock or bit when we have locked more than one folio. Which may cause
* deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the
* length of the from list must be <= 1.
*/
static int migrate_pages_batch(struct list_head *from,
new_folio_t get_new_folio, free_folio_t put_new_folio,
unsigned long private, enum migrate_mode mode, int reason,
struct list_head *ret_folios, struct list_head *split_folios,
struct migrate_pages_stats *stats, int nr_pass)
{
int retry = 1;
int thp_retry = 1;
int nr_failed = 0;
int nr_retry_pages = 0;
int pass = 0;
bool is_thp = false;
bool is_large = false;
struct folio *folio, *folio2, *dst = NULL, *dst2;
int rc, rc_saved = 0, nr_pages;
LIST_HEAD(unmap_folios);
LIST_HEAD(dst_folios);
bool nosplit = (reason == MR_NUMA_MISPLACED);
VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
!list_empty(from) && !list_is_singular(from));
for (pass = 0; pass < nr_pass && retry; pass++) {
retry = 0;
thp_retry = 0;
nr_retry_pages = 0;
list_for_each_entry_safe(folio, folio2, from, lru) {
is_large = folio_test_large(folio);
is_thp = folio_test_pmd_mappable(folio);
nr_pages = folio_nr_pages(folio);
cond_resched();
/*
* The rare folio on the deferred split list should
* be split now. It should not count as a failure:
* but increment nr_failed because, without doing so,
* migrate_pages() may report success with (split but
* unmigrated) pages still on its fromlist; whereas it
* always reports success when its fromlist is empty.
* stats->nr_thp_failed should be increased too,
* otherwise stats inconsistency will happen when
* migrate_pages_batch is called via migrate_pages()
* with MIGRATE_SYNC and MIGRATE_ASYNC.
*
* Only check it without removing it from the list.
* Since the folio can be on deferred_split_scan()
* local list and removing it can cause the local list
* corruption. Folio split process below can handle it
* with the help of folio_ref_freeze().
*
* nr_pages > 2 is needed to avoid checking order-1
* page cache folios. They exist, in contrast to
* non-existent order-1 anonymous folios, and do not
* use _deferred_list.
*/
if (nr_pages > 2 &&
!list_empty(&folio->_deferred_list) &&
folio_test_partially_mapped(folio)) {
if (!try_split_folio(folio, split_folios, mode)) {
nr_failed++;
stats->nr_thp_failed += is_thp;
stats->nr_thp_split += is_thp;
stats->nr_split++;
continue;
}
}
/*
* Large folio migration might be unsupported or
* the allocation might be failed so we should retry
* on the same folio with the large folio split
* to normal folios.
*
* Split folios are put in split_folios, and
* we will migrate them after the rest of the
* list is processed.
*/
if (!thp_migration_supported() && is_thp) {
nr_failed++;
stats->nr_thp_failed++;
if (!try_split_folio(folio, split_folios, mode)) {
stats->nr_thp_split++;
stats->nr_split++;
continue;
}
stats->nr_failed_pages += nr_pages;
list_move_tail(&folio->lru, ret_folios);
continue;
}
rc = migrate_folio_unmap(get_new_folio, put_new_folio,
private, folio, &dst, mode, reason,
ret_folios);
/*
* The rules are:
* Success: folio will be freed
* Unmap: folio will be put on unmap_folios list,
* dst folio put on dst_folios list
* -EAGAIN: stay on the from list
* -ENOMEM: stay on the from list
* Other errno: put on ret_folios list
*/
switch(rc) {
case -ENOMEM:
/*
* When memory is low, don't bother to try to migrate
* other folios, move unmapped folios, then exit.
*/
nr_failed++;
stats->nr_thp_failed += is_thp;
/* Large folio NUMA faulting doesn't split to retry. */
if (is_large && !nosplit) {
int ret = try_split_folio(folio, split_folios, mode);
if (!ret) {
stats->nr_thp_split += is_thp;
stats->nr_split++;
break;
} else if (reason == MR_LONGTERM_PIN &&
ret == -EAGAIN) {
/*
* Try again to split large folio to
* mitigate the failure of longterm pinning.
*/
retry++;
thp_retry += is_thp;
nr_retry_pages += nr_pages;
/* Undo duplicated failure counting. */
nr_failed--;
stats->nr_thp_failed -= is_thp;
break;
}
}
stats->nr_failed_pages += nr_pages + nr_retry_pages;
/* nr_failed isn't updated for not used */
stats->nr_thp_failed += thp_retry;
rc_saved = rc;
if (list_empty(&unmap_folios))
goto out;
else
goto move;
case -EAGAIN:
retry++;
thp_retry += is_thp;
nr_retry_pages += nr_pages;
break;
case MIGRATEPAGE_SUCCESS:
stats->nr_succeeded += nr_pages;
stats->nr_thp_succeeded += is_thp;
break;
case MIGRATEPAGE_UNMAP:
list_move_tail(&folio->lru, &unmap_folios);
list_add_tail(&dst->lru, &dst_folios);
break;
default:
/*
* Permanent failure (-EBUSY, etc.):
* unlike -EAGAIN case, the failed folio is
* removed from migration folio list and not
* retried in the next outer loop.
*/
nr_failed++;
stats->nr_thp_failed += is_thp;
stats->nr_failed_pages += nr_pages;
break;
}
}
}
nr_failed += retry;
stats->nr_thp_failed += thp_retry;
stats->nr_failed_pages += nr_retry_pages;
move:
/* Flush TLBs for all unmapped folios */
try_to_unmap_flush();
retry = 1;
for (pass = 0; pass < nr_pass && retry; pass++) {
retry = 0;
thp_retry = 0;
nr_retry_pages = 0;
dst = list_first_entry(&dst_folios, struct folio, lru);
dst2 = list_next_entry(dst, lru);
list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
nr_pages = folio_nr_pages(folio);
cond_resched();
rc = migrate_folio_move(put_new_folio, private,
folio, dst, mode,
reason, ret_folios);
/*
* The rules are:
* Success: folio will be freed
* -EAGAIN: stay on the unmap_folios list
* Other errno: put on ret_folios list
*/
switch(rc) {
case -EAGAIN:
retry++;
thp_retry += is_thp;
nr_retry_pages += nr_pages;
break;
case MIGRATEPAGE_SUCCESS:
stats->nr_succeeded += nr_pages;
stats->nr_thp_succeeded += is_thp;
break;
default:
nr_failed++;
stats->nr_thp_failed += is_thp;
stats->nr_failed_pages += nr_pages;
break;
}
dst = dst2;
dst2 = list_next_entry(dst, lru);
}
}
nr_failed += retry;
stats->nr_thp_failed += thp_retry;
stats->nr_failed_pages += nr_retry_pages;
rc = rc_saved ? : nr_failed;
out:
/* Cleanup remaining folios */
dst = list_first_entry(&dst_folios, struct folio, lru);
dst2 = list_next_entry(dst, lru);
list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
int old_page_state = 0;
struct anon_vma *anon_vma = NULL;
__migrate_folio_extract(dst, &old_page_state, &anon_vma);
migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
anon_vma, true, ret_folios);
list_del(&dst->lru);
migrate_folio_undo_dst(dst, true, put_new_folio, private);
dst = dst2;
dst2 = list_next_entry(dst, lru);
}
return rc;
}
static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
free_folio_t put_new_folio, unsigned long private,
enum migrate_mode mode, int reason,
struct list_head *ret_folios, struct list_head *split_folios,
struct migrate_pages_stats *stats)
{
int rc, nr_failed = 0;
LIST_HEAD(folios);
struct migrate_pages_stats astats;
memset(&astats, 0, sizeof(astats));
/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
reason, &folios, split_folios, &astats,
NR_MAX_MIGRATE_ASYNC_RETRY);
stats->nr_succeeded += astats.nr_succeeded;
stats->nr_thp_succeeded += astats.nr_thp_succeeded;
stats->nr_thp_split += astats.nr_thp_split;
stats->nr_split += astats.nr_split;
if (rc < 0) {
stats->nr_failed_pages += astats.nr_failed_pages;
stats->nr_thp_failed += astats.nr_thp_failed;
list_splice_tail(&folios, ret_folios);
return rc;
}
stats->nr_thp_failed += astats.nr_thp_split;
/*
* Do not count rc, as pages will be retried below.
* Count nr_split only, since it includes nr_thp_split.
*/
nr_failed += astats.nr_split;
/*
* Fall back to migrate all failed folios one by one synchronously. All
* failed folios except split THPs will be retried, so their failure
* isn't counted
*/
list_splice_tail_init(&folios, from);
while (!list_empty(from)) {
list_move(from->next, &folios);
rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
private, mode, reason, ret_folios,
split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
list_splice_tail_init(&folios, ret_folios);
if (rc < 0)
return rc;
nr_failed += rc;
}
return nr_failed;
}
/*
* migrate_pages - migrate the folios specified in a list, to the free folios
* supplied as the target for the page migration
*
* @from: The list of folios to be migrated.
* @get_new_folio: The function used to allocate free folios to be used
* as the target of the folio migration.
* @put_new_folio: The function used to free target folios if migration
* fails, or NULL if no special handling is necessary.
* @private: Private data to be passed on to get_new_folio()
* @mode: The migration mode that specifies the constraints for
* folio migration, if any.
* @reason: The reason for folio migration.
* @ret_succeeded: Set to the number of folios migrated successfully if
* the caller passes a non-NULL pointer.
*
* The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
* are movable any more because the list has become empty or no retryable folios
* exist any more. It is caller's responsibility to call putback_movable_pages()
* only if ret != 0.
*
* Returns the number of {normal folio, large folio, hugetlb} that were not
* migrated, or an error code. The number of large folio splits will be
* considered as the number of non-migrated large folio, no matter how many
* split folios of the large folio are migrated successfully.
*/
int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
free_folio_t put_new_folio, unsigned long private,
enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
{
int rc, rc_gather;
int nr_pages;
struct folio *folio, *folio2;
LIST_HEAD(folios);
LIST_HEAD(ret_folios);
LIST_HEAD(split_folios);
struct migrate_pages_stats stats;
trace_mm_migrate_pages_start(mode, reason);
memset(&stats, 0, sizeof(stats));
rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
mode, reason, &stats, &ret_folios);
if (rc_gather < 0)
goto out;
again:
nr_pages = 0;
list_for_each_entry_safe(folio, folio2, from, lru) {
/* Retried hugetlb folios will be kept in list */
if (folio_test_hugetlb(folio)) {
list_move_tail(&folio->lru, &ret_folios);
continue;
}
nr_pages += folio_nr_pages(folio);
if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
break;
}
if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
list_cut_before(&folios, from, &folio2->lru);
else
list_splice_init(from, &folios);
if (mode == MIGRATE_ASYNC)
rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
private, mode, reason, &ret_folios,
&split_folios, &stats,
NR_MAX_MIGRATE_PAGES_RETRY);
else
rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
private, mode, reason, &ret_folios,
&split_folios, &stats);
list_splice_tail_init(&folios, &ret_folios);
if (rc < 0) {
rc_gather = rc;
list_splice_tail(&split_folios, &ret_folios);
goto out;
}
if (!list_empty(&split_folios)) {
/*
* Failure isn't counted since all split folios of a large folio
* is counted as 1 failure already. And, we only try to migrate
* with minimal effort, force MIGRATE_ASYNC mode and retry once.
*/
migrate_pages_batch(&split_folios, get_new_folio,
put_new_folio, private, MIGRATE_ASYNC, reason,
&ret_folios, NULL, &stats, 1);
list_splice_tail_init(&split_folios, &ret_folios);
}
rc_gather += rc;
if (!list_empty(from))
goto again;
out:
/*
* Put the permanent failure folio back to migration list, they
* will be put back to the right list by the caller.
*/
list_splice(&ret_folios, from);
/*
* Return 0 in case all split folios of fail-to-migrate large folios
* are migrated successfully.
*/
if (list_empty(from))
rc_gather = 0;
count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
stats.nr_thp_succeeded, stats.nr_thp_failed,
stats.nr_thp_split, stats.nr_split, mode,
reason);
if (ret_succeeded)
*ret_succeeded = stats.nr_succeeded;
return rc_gather;
}
struct folio *alloc_migration_target(struct folio *src, unsigned long private)
{
struct migration_target_control *mtc;
gfp_t gfp_mask;
unsigned int order = 0;
int nid;
int zidx;
mtc = (struct migration_target_control *)private;
gfp_mask = mtc->gfp_mask;
nid = mtc->nid;
if (nid == NUMA_NO_NODE)
nid = folio_nid(src);
if (folio_test_hugetlb(src)) {
struct hstate *h = folio_hstate(src);
gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
return alloc_hugetlb_folio_nodemask(h, nid,
mtc->nmask, gfp_mask,
htlb_allow_alloc_fallback(mtc->reason));
}
if (folio_test_large(src)) {
/*
* clear __GFP_RECLAIM to make the migration callback
* consistent with regular THP allocations.
*/
gfp_mask &= ~__GFP_RECLAIM;
gfp_mask |= GFP_TRANSHUGE;
order = folio_order(src);
}
zidx = zone_idx(folio_zone(src));
if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
gfp_mask |= __GFP_HIGHMEM;
return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
}
#ifdef CONFIG_NUMA
static int store_status(int __user *status, int start, int value, int nr)
{
while (nr-- > 0) {
if (put_user(value, status + start))
return -EFAULT;
start++;
}
return 0;
}
static int do_move_pages_to_node(struct list_head *pagelist, int node)
{
int err;
struct migration_target_control mtc = {
.nid = node,
.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
.reason = MR_SYSCALL,
};
err = migrate_pages(pagelist, alloc_migration_target, NULL,
(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
if (err)
putback_movable_pages(pagelist);
return err;
}
static int __add_folio_for_migration(struct folio *folio, int node,
struct list_head *pagelist, bool migrate_all)
{
if (is_zero_folio(folio) || is_huge_zero_folio(folio))
return -EFAULT;
if (folio_is_zone_device(folio))
return -ENOENT;
if (folio_nid(folio) == node)
return 0;
if (folio_likely_mapped_shared(folio) && !migrate_all)
return -EACCES;
if (folio_test_hugetlb(folio)) {
if (isolate_hugetlb(folio, pagelist))
return 1;
} else if (folio_isolate_lru(folio)) {
list_add_tail(&folio->lru, pagelist);
node_stat_mod_folio(folio,
NR_ISOLATED_ANON + folio_is_file_lru(folio),
folio_nr_pages(folio));
return 1;
}
return -EBUSY;
}
/*
* Resolves the given address to a struct folio, isolates it from the LRU and
* puts it to the given pagelist.
* Returns:
* errno - if the folio cannot be found/isolated
* 0 - when it doesn't have to be migrated because it is already on the
* target node
* 1 - when it has been queued
*/
static int add_folio_for_migration(struct mm_struct *mm, const void __user *p,
int node, struct list_head *pagelist, bool migrate_all)
{
struct vm_area_struct *vma;
struct folio_walk fw;
struct folio *folio;
unsigned long addr;
int err = -EFAULT;
mmap_read_lock(mm);
addr = (unsigned long)untagged_addr_remote(mm, p);
vma = vma_lookup(mm, addr);
if (vma && vma_migratable(vma)) {
folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
if (folio) {
err = __add_folio_for_migration(folio, node, pagelist,
migrate_all);
folio_walk_end(&fw, vma);
} else {
err = -ENOENT;
}
}
mmap_read_unlock(mm);
return err;
}
static int move_pages_and_store_status(int node,
struct list_head *pagelist, int __user *status,
int start, int i, unsigned long nr_pages)
{
int err;
if (list_empty(pagelist))
return 0;
err = do_move_pages_to_node(pagelist, node);
if (err) {
/*
* Positive err means the number of failed
* pages to migrate. Since we are going to
* abort and return the number of non-migrated
* pages, so need to include the rest of the
* nr_pages that have not been attempted as
* well.
*/
if (err > 0)
err += nr_pages - i;
return err;
}
return store_status(status, start, node, i - start);
}
/*
* Migrate an array of page address onto an array of nodes and fill
* the corresponding array of status.
*/
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
unsigned long nr_pages,
const void __user * __user *pages,
const int __user *nodes,
int __user *status, int flags)
{
compat_uptr_t __user *compat_pages = (void __user *)pages;
int current_node = NUMA_NO_NODE;
LIST_HEAD(pagelist);
int start, i;
int err = 0, err1;
lru_cache_disable();
for (i = start = 0; i < nr_pages; i++) {
const void __user *p;
int node;
err = -EFAULT;
if (in_compat_syscall()) {
compat_uptr_t cp;
if (get_user(cp, compat_pages + i))
goto out_flush;
p = compat_ptr(cp);
} else {
if (get_user(p, pages + i))
goto out_flush;
}
if (get_user(node, nodes + i))
goto out_flush;
err = -ENODEV;
if (node < 0 || node >= MAX_NUMNODES)
goto out_flush;
if (!node_state(node, N_MEMORY))
goto out_flush;
err = -EACCES;
if (!node_isset(node, task_nodes))
goto out_flush;
if (current_node == NUMA_NO_NODE) {
current_node = node;
start = i;
} else if (node != current_node) {
err = move_pages_and_store_status(current_node,
&pagelist, status, start, i, nr_pages);
if (err)
goto out;
start = i;
current_node = node;
}
/*
* Errors in the page lookup or isolation are not fatal and we simply
* report them via status
*/
err = add_folio_for_migration(mm, p, current_node, &pagelist,
flags & MPOL_MF_MOVE_ALL);
if (err > 0) {
/* The page is successfully queued for migration */
continue;
}
/*
* The move_pages() man page does not have an -EEXIST choice, so
* use -EFAULT instead.
*/
if (err == -EEXIST)
err = -EFAULT;
/*
* If the page is already on the target node (!err), store the
* node, otherwise, store the err.
*/
err = store_status(status, i, err ? : current_node, 1);
if (err)
goto out_flush;
err = move_pages_and_store_status(current_node, &pagelist,
status, start, i, nr_pages);
if (err) {
/* We have accounted for page i */
if (err > 0)
err--;
goto out;
}
current_node = NUMA_NO_NODE;
}
out_flush:
/* Make sure we do not overwrite the existing error */
err1 = move_pages_and_store_status(current_node, &pagelist,
status, start, i, nr_pages);
if (err >= 0)
err = err1;
out:
lru_cache_enable();
return err;
}
/*
* Determine the nodes of an array of pages and store it in an array of status.
*/
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
const void __user **pages, int *status)
{
unsigned long i;
mmap_read_lock(mm);
for (i = 0; i < nr_pages; i++) {
unsigned long addr = (unsigned long)(*pages);
struct vm_area_struct *vma;
struct folio_walk fw;
struct folio *folio;
int err = -EFAULT;
vma = vma_lookup(mm, addr);
if (!vma)
goto set_status;
folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
if (folio) {
if (is_zero_folio(folio) || is_huge_zero_folio(folio))
err = -EFAULT;
else if (folio_is_zone_device(folio))
err = -ENOENT;
else
err = folio_nid(folio);
folio_walk_end(&fw, vma);
} else {
err = -ENOENT;
}
set_status:
*status = err;
pages++;
status++;
}
mmap_read_unlock(mm);
}
static int get_compat_pages_array(const void __user *chunk_pages[],
const void __user * __user *pages,
unsigned long chunk_nr)
{
compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
compat_uptr_t p;
int i;
for (i = 0; i < chunk_nr; i++) {
if (get_user(p, pages32 + i))
return -EFAULT;
chunk_pages[i] = compat_ptr(p);
}
return 0;
}
/*
* Determine the nodes of a user array of pages and store it in
* a user array of status.
*/
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
const void __user * __user *pages,
int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16UL
const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
int chunk_status[DO_PAGES_STAT_CHUNK_NR];
while (nr_pages) {
unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
if (in_compat_syscall()) {
if (get_compat_pages_array(chunk_pages, pages,
chunk_nr))
break;
} else {
if (copy_from_user(chunk_pages, pages,
chunk_nr * sizeof(*chunk_pages)))
break;
}
do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
break;
pages += chunk_nr;
status += chunk_nr;
nr_pages -= chunk_nr;
}
return nr_pages ? -EFAULT : 0;
}
static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
{
struct task_struct *task;
struct mm_struct *mm;
/*
* There is no need to check if current process has the right to modify
* the specified process when they are same.
*/
if (!pid) {
mmget(current->mm);
*mem_nodes = cpuset_mems_allowed(current);
return current->mm;
}
task = find_get_task_by_vpid(pid);
if (!task) {
return ERR_PTR(-ESRCH);
}
/*
* Check if this process has the right to modify the specified
* process. Use the regular "ptrace_may_access()" checks.
*/
if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
mm = ERR_PTR(-EPERM);
goto out;
}
mm = ERR_PTR(security_task_movememory(task));
if (IS_ERR(mm))
goto out;
*mem_nodes = cpuset_mems_allowed(task);
mm = get_task_mm(task);
out:
put_task_struct(task);
if (!mm)
mm = ERR_PTR(-EINVAL);
return mm;
}
/*
* Move a list of pages in the address space of the currently executing
* process.
*/
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
const void __user * __user *pages,
const int __user *nodes,
int __user *status, int flags)
{
struct mm_struct *mm;
int err;
nodemask_t task_nodes;
/* Check flags */
if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
return -EINVAL;
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
return -EPERM;
mm = find_mm_struct(pid, &task_nodes);
if (IS_ERR(mm))
return PTR_ERR(mm);
if (nodes)
err = do_pages_move(mm, task_nodes, nr_pages, pages,
nodes, status, flags);
else
err = do_pages_stat(mm, nr_pages, pages, status);
mmput(mm);
return err;
}
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
const void __user * __user *, pages,
const int __user *, nodes,
int __user *, status, int, flags)
{
return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}
#ifdef CONFIG_NUMA_BALANCING
/*
* Returns true if this is a safe migration target node for misplaced NUMA
* pages. Currently it only checks the watermarks which is crude.
*/
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
unsigned long nr_migrate_pages)
{
int z;
for (z = pgdat->nr_zones - 1; z >= 0; z--) {
struct zone *zone = pgdat->node_zones + z;
if (!managed_zone(zone))
continue;
/* Avoid waking kswapd by allocating pages_to_migrate pages. */
if (!zone_watermark_ok(zone, 0,
high_wmark_pages(zone) +
nr_migrate_pages,
ZONE_MOVABLE, ALLOC_CMA))
continue;
return true;
}
return false;
}
static struct folio *alloc_misplaced_dst_folio(struct folio *src,
unsigned long data)
{
int nid = (int) data;
int order = folio_order(src);
gfp_t gfp = __GFP_THISNODE;
if (order > 0)
gfp |= GFP_TRANSHUGE_LIGHT;
else {
gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
__GFP_NOWARN;
gfp &= ~__GFP_RECLAIM;
}
return __folio_alloc_node(gfp, order, nid);
}
/*
* Prepare for calling migrate_misplaced_folio() by isolating the folio if
* permitted. Must be called with the PTL still held.
*/
int migrate_misplaced_folio_prepare(struct folio *folio,
struct vm_area_struct *vma, int node)
{
int nr_pages = folio_nr_pages(folio);
pg_data_t *pgdat = NODE_DATA(node);
if (folio_is_file_lru(folio)) {
/*
* Do not migrate file folios that are mapped in multiple
* processes with execute permissions as they are probably
* shared libraries.
*
* See folio_likely_mapped_shared() on possible imprecision
* when we cannot easily detect if a folio is shared.
*/
if ((vma->vm_flags & VM_EXEC) &&
folio_likely_mapped_shared(folio))
return -EACCES;
/*
* Do not migrate dirty folios as not all filesystems can move
* dirty folios in MIGRATE_ASYNC mode which is a waste of
* cycles.
*/
if (folio_test_dirty(folio))
return -EAGAIN;
}
/* Avoid migrating to a node that is nearly full */
if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
int z;
if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
return -EAGAIN;
for (z = pgdat->nr_zones - 1; z >= 0; z--) {
if (managed_zone(pgdat->node_zones + z))
break;
}
/*
* If there are no managed zones, it should not proceed
* further.
*/
if (z < 0)
return -EAGAIN;
wakeup_kswapd(pgdat->node_zones + z, 0,
folio_order(folio), ZONE_MOVABLE);
return -EAGAIN;
}
if (!folio_isolate_lru(folio))
return -EAGAIN;
node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
nr_pages);
return 0;
}
/*
* Attempt to migrate a misplaced folio to the specified destination
* node. Caller is expected to have isolated the folio by calling
* migrate_misplaced_folio_prepare(), which will result in an
* elevated reference count on the folio. This function will un-isolate the
* folio, dereferencing the folio before returning.
*/
int migrate_misplaced_folio(struct folio *folio, int node)
{
pg_data_t *pgdat = NODE_DATA(node);
int nr_remaining;
unsigned int nr_succeeded;
LIST_HEAD(migratepages);
struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio);
struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
list_add(&folio->lru, &migratepages);
nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
NULL, node, MIGRATE_ASYNC,
MR_NUMA_MISPLACED, &nr_succeeded);
if (nr_remaining && !list_empty(&migratepages))
putback_movable_pages(&migratepages);
if (nr_succeeded) {
count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded);
if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
&& !node_is_toptier(folio_nid(folio))
&& node_is_toptier(node))
mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded);
}
mem_cgroup_put(memcg);
BUG_ON(!list_empty(&migratepages));
return nr_remaining ? -EAGAIN : 0;
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_NUMA */