linux-next/mm/mmu_gather.c
Qi Zheng 62e76fb4ff x86: mm: free page table pages by RCU instead of semi RCU
Now, if CONFIG_MMU_GATHER_RCU_TABLE_FREE is selected, the page table pages
will be freed by semi RCU, that is:

 - batch table freeing: asynchronous free by RCU
 - single table freeing: IPI + synchronous free

In this way, the page table can be lockless traversed by disabling IRQ in
paths such as fast GUP.  But this is not enough to free the empty PTE page
table pages in paths other that munmap and exit_mmap path, because IPI
cannot be synchronized with rcu_read_lock() in pte_offset_map{_lock}().

In preparation for supporting empty PTE page table pages reclaimation, let
single table also be freed by RCU like batch table freeing.  Then we can
also use pte_offset_map() etc to prevent PTE page from being freed.

Like pte_free_defer(), we can also safely use ptdesc->pt_rcu_head to free
the page table pages:

 - The pt_rcu_head is unioned with pt_list and pmd_huge_pte.

 - For pt_list, it is used to manage the PGD page in x86. Fortunately
   tlb_remove_table() will not be used for free PGD pages, so it is safe
   to use pt_rcu_head.

 - For pmd_huge_pte, it is used for THPs, so it is safe.

After applying this patch, if CONFIG_PT_RECLAIM is enabled, the function
call of free_pte() is as follows:

free_pte
  pte_free_tlb
    __pte_free_tlb
      ___pte_free_tlb
        paravirt_tlb_remove_table
          tlb_remove_table [!CONFIG_PARAVIRT, Xen PV, Hyper-V, KVM]
            [no-free-memory slowpath:]
              tlb_table_invalidate
              tlb_remove_table_one
                __tlb_remove_table_one [frees via RCU]
            [fastpath:]
              tlb_table_flush
                tlb_remove_table_free [frees via RCU]
          native_tlb_remove_table [CONFIG_PARAVIRT on native]
            tlb_remove_table [see above]

Link: https://lkml.kernel.org/r/0287d442a973150b0e1019cc406e6322d148277a.1733305182.git.zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zach O'Keefe <zokeefe@google.com>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-12-18 19:50:48 -08:00

479 lines
12 KiB
C

#include <linux/gfp.h>
#include <linux/highmem.h>
#include <linux/kernel.h>
#include <linux/mmdebug.h>
#include <linux/mm_types.h>
#include <linux/mm_inline.h>
#include <linux/pagemap.h>
#include <linux/rcupdate.h>
#include <linux/smp.h>
#include <linux/swap.h>
#include <linux/rmap.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#ifndef CONFIG_MMU_GATHER_NO_GATHER
static bool tlb_next_batch(struct mmu_gather *tlb)
{
struct mmu_gather_batch *batch;
/* Limit batching if we have delayed rmaps pending */
if (tlb->delayed_rmap && tlb->active != &tlb->local)
return false;
batch = tlb->active;
if (batch->next) {
tlb->active = batch->next;
return true;
}
if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
return false;
batch = (void *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
if (!batch)
return false;
tlb->batch_count++;
batch->next = NULL;
batch->nr = 0;
batch->max = MAX_GATHER_BATCH;
tlb->active->next = batch;
tlb->active = batch;
return true;
}
#ifdef CONFIG_SMP
static void tlb_flush_rmap_batch(struct mmu_gather_batch *batch, struct vm_area_struct *vma)
{
struct encoded_page **pages = batch->encoded_pages;
for (int i = 0; i < batch->nr; i++) {
struct encoded_page *enc = pages[i];
if (encoded_page_flags(enc) & ENCODED_PAGE_BIT_DELAY_RMAP) {
struct page *page = encoded_page_ptr(enc);
unsigned int nr_pages = 1;
if (unlikely(encoded_page_flags(enc) &
ENCODED_PAGE_BIT_NR_PAGES_NEXT))
nr_pages = encoded_nr_pages(pages[++i]);
folio_remove_rmap_ptes(page_folio(page), page, nr_pages,
vma);
}
}
}
/**
* tlb_flush_rmaps - do pending rmap removals after we have flushed the TLB
* @tlb: the current mmu_gather
* @vma: The memory area from which the pages are being removed.
*
* Note that because of how tlb_next_batch() above works, we will
* never start multiple new batches with pending delayed rmaps, so
* we only need to walk through the current active batch and the
* original local one.
*/
void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma)
{
if (!tlb->delayed_rmap)
return;
tlb_flush_rmap_batch(&tlb->local, vma);
if (tlb->active != &tlb->local)
tlb_flush_rmap_batch(tlb->active, vma);
tlb->delayed_rmap = 0;
}
#endif
/*
* We might end up freeing a lot of pages. Reschedule on a regular
* basis to avoid soft lockups in configurations without full
* preemption enabled. The magic number of 512 folios seems to work.
*/
#define MAX_NR_FOLIOS_PER_FREE 512
static void __tlb_batch_free_encoded_pages(struct mmu_gather_batch *batch)
{
struct encoded_page **pages = batch->encoded_pages;
unsigned int nr, nr_pages;
while (batch->nr) {
if (!page_poisoning_enabled_static() && !want_init_on_free()) {
nr = min(MAX_NR_FOLIOS_PER_FREE, batch->nr);
/*
* Make sure we cover page + nr_pages, and don't leave
* nr_pages behind when capping the number of entries.
*/
if (unlikely(encoded_page_flags(pages[nr - 1]) &
ENCODED_PAGE_BIT_NR_PAGES_NEXT))
nr++;
} else {
/*
* With page poisoning and init_on_free, the time it
* takes to free memory grows proportionally with the
* actual memory size. Therefore, limit based on the
* actual memory size and not the number of involved
* folios.
*/
for (nr = 0, nr_pages = 0;
nr < batch->nr && nr_pages < MAX_NR_FOLIOS_PER_FREE;
nr++) {
if (unlikely(encoded_page_flags(pages[nr]) &
ENCODED_PAGE_BIT_NR_PAGES_NEXT))
nr_pages += encoded_nr_pages(pages[++nr]);
else
nr_pages++;
}
}
free_pages_and_swap_cache(pages, nr);
pages += nr;
batch->nr -= nr;
cond_resched();
}
}
static void tlb_batch_pages_flush(struct mmu_gather *tlb)
{
struct mmu_gather_batch *batch;
for (batch = &tlb->local; batch && batch->nr; batch = batch->next)
__tlb_batch_free_encoded_pages(batch);
tlb->active = &tlb->local;
}
static void tlb_batch_list_free(struct mmu_gather *tlb)
{
struct mmu_gather_batch *batch, *next;
for (batch = tlb->local.next; batch; batch = next) {
next = batch->next;
free_pages((unsigned long)batch, 0);
}
tlb->local.next = NULL;
}
static bool __tlb_remove_folio_pages_size(struct mmu_gather *tlb,
struct page *page, unsigned int nr_pages, bool delay_rmap,
int page_size)
{
int flags = delay_rmap ? ENCODED_PAGE_BIT_DELAY_RMAP : 0;
struct mmu_gather_batch *batch;
VM_BUG_ON(!tlb->end);
#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
VM_WARN_ON(tlb->page_size != page_size);
VM_WARN_ON_ONCE(nr_pages != 1 && page_size != PAGE_SIZE);
VM_WARN_ON_ONCE(page_folio(page) != page_folio(page + nr_pages - 1));
#endif
batch = tlb->active;
/*
* Add the page and check if we are full. If so
* force a flush.
*/
if (likely(nr_pages == 1)) {
batch->encoded_pages[batch->nr++] = encode_page(page, flags);
} else {
flags |= ENCODED_PAGE_BIT_NR_PAGES_NEXT;
batch->encoded_pages[batch->nr++] = encode_page(page, flags);
batch->encoded_pages[batch->nr++] = encode_nr_pages(nr_pages);
}
/*
* Make sure that we can always add another "page" + "nr_pages",
* requiring two entries instead of only a single one.
*/
if (batch->nr >= batch->max - 1) {
if (!tlb_next_batch(tlb))
return true;
batch = tlb->active;
}
VM_BUG_ON_PAGE(batch->nr > batch->max - 1, page);
return false;
}
bool __tlb_remove_folio_pages(struct mmu_gather *tlb, struct page *page,
unsigned int nr_pages, bool delay_rmap)
{
return __tlb_remove_folio_pages_size(tlb, page, nr_pages, delay_rmap,
PAGE_SIZE);
}
bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
bool delay_rmap, int page_size)
{
return __tlb_remove_folio_pages_size(tlb, page, 1, delay_rmap, page_size);
}
#endif /* MMU_GATHER_NO_GATHER */
#ifdef CONFIG_MMU_GATHER_TABLE_FREE
static void __tlb_remove_table_free(struct mmu_table_batch *batch)
{
int i;
for (i = 0; i < batch->nr; i++)
__tlb_remove_table(batch->tables[i]);
free_page((unsigned long)batch);
}
#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
/*
* Semi RCU freeing of the page directories.
*
* This is needed by some architectures to implement software pagetable walkers.
*
* gup_fast() and other software pagetable walkers do a lockless page-table
* walk and therefore needs some synchronization with the freeing of the page
* directories. The chosen means to accomplish that is by disabling IRQs over
* the walk.
*
* Architectures that use IPIs to flush TLBs will then automagically DTRT,
* since we unlink the page, flush TLBs, free the page. Since the disabling of
* IRQs delays the completion of the TLB flush we can never observe an already
* freed page.
*
* Architectures that do not have this (PPC) need to delay the freeing by some
* other means, this is that means.
*
* What we do is batch the freed directory pages (tables) and RCU free them.
* We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
* holds off grace periods.
*
* However, in order to batch these pages we need to allocate storage, this
* allocation is deep inside the MM code and can thus easily fail on memory
* pressure. To guarantee progress we fall back to single table freeing, see
* the implementation of tlb_remove_table_one().
*
*/
static void tlb_remove_table_smp_sync(void *arg)
{
/* Simply deliver the interrupt */
}
void tlb_remove_table_sync_one(void)
{
/*
* This isn't an RCU grace period and hence the page-tables cannot be
* assumed to be actually RCU-freed.
*
* It is however sufficient for software page-table walkers that rely on
* IRQ disabling.
*/
smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
}
static void tlb_remove_table_rcu(struct rcu_head *head)
{
__tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu));
}
static void tlb_remove_table_free(struct mmu_table_batch *batch)
{
call_rcu(&batch->rcu, tlb_remove_table_rcu);
}
#else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */
static void tlb_remove_table_free(struct mmu_table_batch *batch)
{
__tlb_remove_table_free(batch);
}
#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
/*
* If we want tlb_remove_table() to imply TLB invalidates.
*/
static inline void tlb_table_invalidate(struct mmu_gather *tlb)
{
if (tlb_needs_table_invalidate()) {
/*
* Invalidate page-table caches used by hardware walkers. Then
* we still need to RCU-sched wait while freeing the pages
* because software walkers can still be in-flight.
*/
tlb_flush_mmu_tlbonly(tlb);
}
}
#ifndef __tlb_remove_table_one
static inline void __tlb_remove_table_one(void *table)
{
tlb_remove_table_sync_one();
__tlb_remove_table(table);
}
#endif
static void tlb_remove_table_one(void *table)
{
__tlb_remove_table_one(table);
}
static void tlb_table_flush(struct mmu_gather *tlb)
{
struct mmu_table_batch **batch = &tlb->batch;
if (*batch) {
tlb_table_invalidate(tlb);
tlb_remove_table_free(*batch);
*batch = NULL;
}
}
void tlb_remove_table(struct mmu_gather *tlb, void *table)
{
struct mmu_table_batch **batch = &tlb->batch;
if (*batch == NULL) {
*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
if (*batch == NULL) {
tlb_table_invalidate(tlb);
tlb_remove_table_one(table);
return;
}
(*batch)->nr = 0;
}
(*batch)->tables[(*batch)->nr++] = table;
if ((*batch)->nr == MAX_TABLE_BATCH)
tlb_table_flush(tlb);
}
static inline void tlb_table_init(struct mmu_gather *tlb)
{
tlb->batch = NULL;
}
#else /* !CONFIG_MMU_GATHER_TABLE_FREE */
static inline void tlb_table_flush(struct mmu_gather *tlb) { }
static inline void tlb_table_init(struct mmu_gather *tlb) { }
#endif /* CONFIG_MMU_GATHER_TABLE_FREE */
static void tlb_flush_mmu_free(struct mmu_gather *tlb)
{
tlb_table_flush(tlb);
#ifndef CONFIG_MMU_GATHER_NO_GATHER
tlb_batch_pages_flush(tlb);
#endif
}
void tlb_flush_mmu(struct mmu_gather *tlb)
{
tlb_flush_mmu_tlbonly(tlb);
tlb_flush_mmu_free(tlb);
}
static void __tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
bool fullmm)
{
tlb->mm = mm;
tlb->fullmm = fullmm;
#ifndef CONFIG_MMU_GATHER_NO_GATHER
tlb->need_flush_all = 0;
tlb->local.next = NULL;
tlb->local.nr = 0;
tlb->local.max = ARRAY_SIZE(tlb->__pages);
tlb->active = &tlb->local;
tlb->batch_count = 0;
#endif
tlb->delayed_rmap = 0;
tlb_table_init(tlb);
#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
tlb->page_size = 0;
#endif
__tlb_reset_range(tlb);
inc_tlb_flush_pending(tlb->mm);
}
/**
* tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
* @tlb: the mmu_gather structure to initialize
* @mm: the mm_struct of the target address space
*
* Called to initialize an (on-stack) mmu_gather structure for page-table
* tear-down from @mm.
*/
void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm)
{
__tlb_gather_mmu(tlb, mm, false);
}
/**
* tlb_gather_mmu_fullmm - initialize an mmu_gather structure for page-table tear-down
* @tlb: the mmu_gather structure to initialize
* @mm: the mm_struct of the target address space
*
* In this case, @mm is without users and we're going to destroy the
* full address space (exit/execve).
*
* Called to initialize an (on-stack) mmu_gather structure for page-table
* tear-down from @mm.
*/
void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm)
{
__tlb_gather_mmu(tlb, mm, true);
}
/**
* tlb_finish_mmu - finish an mmu_gather structure
* @tlb: the mmu_gather structure to finish
*
* Called at the end of the shootdown operation to free up any resources that
* were required.
*/
void tlb_finish_mmu(struct mmu_gather *tlb)
{
/*
* If there are parallel threads are doing PTE changes on same range
* under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB
* flush by batching, one thread may end up seeing inconsistent PTEs
* and result in having stale TLB entries. So flush TLB forcefully
* if we detect parallel PTE batching threads.
*
* However, some syscalls, e.g. munmap(), may free page tables, this
* needs force flush everything in the given range. Otherwise this
* may result in having stale TLB entries for some architectures,
* e.g. aarch64, that could specify flush what level TLB.
*/
if (mm_tlb_flush_nested(tlb->mm)) {
/*
* The aarch64 yields better performance with fullmm by
* avoiding multiple CPUs spamming TLBI messages at the
* same time.
*
* On x86 non-fullmm doesn't yield significant difference
* against fullmm.
*/
tlb->fullmm = 1;
__tlb_reset_range(tlb);
tlb->freed_tables = 1;
}
tlb_flush_mmu(tlb);
#ifndef CONFIG_MMU_GATHER_NO_GATHER
tlb_batch_list_free(tlb);
#endif
dec_tlb_flush_pending(tlb->mm);
}