mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 21:23:23 +00:00
7c48266593
When an rxrpc call is in its transmission phase and is sending a lot of packets, stalls occasionally occur that cause severe performance degradation (eg. increasing the transmission time for a 256MiB payload from 0.7s to 2.5s over a 10G link). rxrpc already implements TCP-style congestion control [RFC5681] and this helps mitigate the effects, but occasionally we're missing a time event that deals with a missing ACK, leading to a stall until the RTO expires. Fix this by implementing RACK/TLP in rxrpc. Signed-off-by: David Howells <dhowells@redhat.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org Signed-off-by: Jakub Kicinski <kuba@kernel.org>
1294 lines
36 KiB
C
1294 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Processing of received RxRPC packets
|
|
*
|
|
* Copyright (C) 2020 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include "ar-internal.h"
|
|
|
|
/* Override priority when generating ACKs for received DATA */
|
|
static const u8 rxrpc_ack_priority[RXRPC_ACK__INVALID] = {
|
|
[RXRPC_ACK_IDLE] = 1,
|
|
[RXRPC_ACK_DELAY] = 2,
|
|
[RXRPC_ACK_REQUESTED] = 3,
|
|
[RXRPC_ACK_DUPLICATE] = 4,
|
|
[RXRPC_ACK_EXCEEDS_WINDOW] = 5,
|
|
[RXRPC_ACK_NOSPACE] = 6,
|
|
[RXRPC_ACK_OUT_OF_SEQUENCE] = 7,
|
|
};
|
|
|
|
static void rxrpc_proto_abort(struct rxrpc_call *call, rxrpc_seq_t seq,
|
|
enum rxrpc_abort_reason why)
|
|
{
|
|
rxrpc_abort_call(call, seq, RX_PROTOCOL_ERROR, -EBADMSG, why);
|
|
}
|
|
|
|
/*
|
|
* Do TCP-style congestion management [RFC5681].
|
|
*/
|
|
static void rxrpc_congestion_management(struct rxrpc_call *call,
|
|
struct rxrpc_ack_summary *summary)
|
|
{
|
|
summary->change = rxrpc_cong_no_change;
|
|
summary->in_flight = rxrpc_tx_in_flight(call);
|
|
|
|
if (test_and_clear_bit(RXRPC_CALL_RETRANS_TIMEOUT, &call->flags)) {
|
|
summary->retrans_timeo = true;
|
|
call->cong_ssthresh = umax(summary->in_flight / 2, 2);
|
|
call->cong_cwnd = 1;
|
|
if (call->cong_cwnd >= call->cong_ssthresh &&
|
|
call->cong_ca_state == RXRPC_CA_SLOW_START) {
|
|
call->cong_ca_state = RXRPC_CA_CONGEST_AVOIDANCE;
|
|
call->cong_tstamp = call->acks_latest_ts;
|
|
call->cong_cumul_acks = 0;
|
|
}
|
|
}
|
|
|
|
call->cong_cumul_acks += summary->nr_new_sacks;
|
|
call->cong_cumul_acks += summary->nr_new_hacks;
|
|
if (call->cong_cumul_acks > 255)
|
|
call->cong_cumul_acks = 255;
|
|
|
|
switch (call->cong_ca_state) {
|
|
case RXRPC_CA_SLOW_START:
|
|
if (call->acks_nr_snacks > 0)
|
|
goto packet_loss_detected;
|
|
if (call->cong_cumul_acks > 0)
|
|
call->cong_cwnd += 1;
|
|
if (call->cong_cwnd >= call->cong_ssthresh) {
|
|
call->cong_ca_state = RXRPC_CA_CONGEST_AVOIDANCE;
|
|
call->cong_tstamp = call->acks_latest_ts;
|
|
}
|
|
goto out;
|
|
|
|
case RXRPC_CA_CONGEST_AVOIDANCE:
|
|
if (call->acks_nr_snacks > 0)
|
|
goto packet_loss_detected;
|
|
|
|
/* We analyse the number of packets that get ACK'd per RTT
|
|
* period and increase the window if we managed to fill it.
|
|
*/
|
|
if (call->rtt_count == 0)
|
|
goto out;
|
|
if (ktime_before(call->acks_latest_ts,
|
|
ktime_add_us(call->cong_tstamp,
|
|
call->srtt_us >> 3)))
|
|
goto out_no_clear_ca;
|
|
summary->change = rxrpc_cong_rtt_window_end;
|
|
call->cong_tstamp = call->acks_latest_ts;
|
|
if (call->cong_cumul_acks >= call->cong_cwnd)
|
|
call->cong_cwnd++;
|
|
goto out;
|
|
|
|
case RXRPC_CA_PACKET_LOSS:
|
|
if (call->acks_nr_snacks == 0)
|
|
goto resume_normality;
|
|
|
|
if (summary->new_low_snack) {
|
|
summary->change = rxrpc_cong_new_low_nack;
|
|
call->cong_dup_acks = 1;
|
|
if (call->cong_extra > 1)
|
|
call->cong_extra = 1;
|
|
goto send_extra_data;
|
|
}
|
|
|
|
call->cong_dup_acks++;
|
|
if (call->cong_dup_acks < 3)
|
|
goto send_extra_data;
|
|
|
|
summary->change = rxrpc_cong_begin_retransmission;
|
|
call->cong_ca_state = RXRPC_CA_FAST_RETRANSMIT;
|
|
call->cong_ssthresh = umax(summary->in_flight / 2, 2);
|
|
call->cong_cwnd = call->cong_ssthresh + 3;
|
|
call->cong_extra = 0;
|
|
call->cong_dup_acks = 0;
|
|
summary->need_retransmit = true;
|
|
summary->in_fast_or_rto_recovery = true;
|
|
goto out;
|
|
|
|
case RXRPC_CA_FAST_RETRANSMIT:
|
|
rxrpc_tlp_init(call);
|
|
summary->in_fast_or_rto_recovery = true;
|
|
if (!summary->new_low_snack) {
|
|
if (summary->nr_new_sacks == 0)
|
|
call->cong_cwnd += 1;
|
|
call->cong_dup_acks++;
|
|
if (call->cong_dup_acks == 2) {
|
|
summary->change = rxrpc_cong_retransmit_again;
|
|
call->cong_dup_acks = 0;
|
|
summary->need_retransmit = true;
|
|
}
|
|
} else {
|
|
summary->change = rxrpc_cong_progress;
|
|
call->cong_cwnd = call->cong_ssthresh;
|
|
if (call->acks_nr_snacks == 0) {
|
|
summary->exiting_fast_or_rto_recovery = true;
|
|
goto resume_normality;
|
|
}
|
|
}
|
|
goto out;
|
|
|
|
default:
|
|
BUG();
|
|
goto out;
|
|
}
|
|
|
|
resume_normality:
|
|
summary->change = rxrpc_cong_cleared_nacks;
|
|
call->cong_dup_acks = 0;
|
|
call->cong_extra = 0;
|
|
call->cong_tstamp = call->acks_latest_ts;
|
|
if (call->cong_cwnd < call->cong_ssthresh)
|
|
call->cong_ca_state = RXRPC_CA_SLOW_START;
|
|
else
|
|
call->cong_ca_state = RXRPC_CA_CONGEST_AVOIDANCE;
|
|
out:
|
|
call->cong_cumul_acks = 0;
|
|
out_no_clear_ca:
|
|
if (call->cong_cwnd >= RXRPC_TX_MAX_WINDOW)
|
|
call->cong_cwnd = RXRPC_TX_MAX_WINDOW;
|
|
trace_rxrpc_congest(call, summary);
|
|
return;
|
|
|
|
packet_loss_detected:
|
|
summary->change = rxrpc_cong_saw_nack;
|
|
call->cong_ca_state = RXRPC_CA_PACKET_LOSS;
|
|
call->cong_dup_acks = 0;
|
|
goto send_extra_data;
|
|
|
|
send_extra_data:
|
|
/* Send some previously unsent DATA if we have some to advance the ACK
|
|
* state.
|
|
*/
|
|
if (test_bit(RXRPC_CALL_TX_LAST, &call->flags) ||
|
|
call->acks_nr_sacks != call->tx_top - call->tx_bottom) {
|
|
call->cong_extra++;
|
|
wake_up(&call->waitq);
|
|
}
|
|
goto out_no_clear_ca;
|
|
}
|
|
|
|
/*
|
|
* Degrade the congestion window if we haven't transmitted a packet for >1RTT.
|
|
*/
|
|
void rxrpc_congestion_degrade(struct rxrpc_call *call)
|
|
{
|
|
ktime_t rtt, now, time_since;
|
|
|
|
if (call->cong_ca_state != RXRPC_CA_SLOW_START &&
|
|
call->cong_ca_state != RXRPC_CA_CONGEST_AVOIDANCE)
|
|
return;
|
|
if (__rxrpc_call_state(call) == RXRPC_CALL_CLIENT_AWAIT_REPLY)
|
|
return;
|
|
|
|
rtt = ns_to_ktime(call->srtt_us * (NSEC_PER_USEC / 8));
|
|
now = ktime_get_real();
|
|
time_since = ktime_sub(now, call->tx_last_sent);
|
|
if (ktime_before(time_since, rtt))
|
|
return;
|
|
|
|
trace_rxrpc_reset_cwnd(call, time_since, rtt);
|
|
rxrpc_inc_stat(call->rxnet, stat_tx_data_cwnd_reset);
|
|
call->tx_last_sent = now;
|
|
call->cong_ca_state = RXRPC_CA_SLOW_START;
|
|
call->cong_ssthresh = umax(call->cong_ssthresh, call->cong_cwnd * 3 / 4);
|
|
call->cong_cwnd = umax(call->cong_cwnd / 2, RXRPC_MIN_CWND);
|
|
}
|
|
|
|
/*
|
|
* Add an RTT sample derived from an ACK'd DATA packet.
|
|
*/
|
|
static void rxrpc_add_data_rtt_sample(struct rxrpc_call *call,
|
|
struct rxrpc_ack_summary *summary,
|
|
struct rxrpc_txqueue *tq,
|
|
int ix)
|
|
{
|
|
ktime_t xmit_ts = ktime_add_us(tq->xmit_ts_base, tq->segment_xmit_ts[ix]);
|
|
|
|
rxrpc_call_add_rtt(call, rxrpc_rtt_rx_data_ack, -1,
|
|
summary->acked_serial, summary->ack_serial,
|
|
xmit_ts, call->acks_latest_ts);
|
|
__clear_bit(ix, &tq->rtt_samples); /* Prevent repeat RTT sample */
|
|
}
|
|
|
|
/*
|
|
* Apply a hard ACK by advancing the Tx window.
|
|
*/
|
|
static bool rxrpc_rotate_tx_window(struct rxrpc_call *call, rxrpc_seq_t to,
|
|
struct rxrpc_ack_summary *summary)
|
|
{
|
|
struct rxrpc_txqueue *tq = call->tx_queue;
|
|
rxrpc_seq_t seq = call->tx_bottom + 1;
|
|
bool rot_last = false, trace = false;
|
|
|
|
_enter("%x,%x", call->tx_bottom, to);
|
|
|
|
trace_rxrpc_tx_rotate(call, seq, to);
|
|
trace_rxrpc_tq(call, tq, seq, rxrpc_tq_rotate);
|
|
|
|
if (call->acks_lowest_nak == call->tx_bottom) {
|
|
call->acks_lowest_nak = to;
|
|
} else if (after(to, call->acks_lowest_nak)) {
|
|
summary->new_low_snack = true;
|
|
call->acks_lowest_nak = to;
|
|
}
|
|
|
|
/* We may have a left over fully-consumed buffer at the front that we
|
|
* couldn't drop before (rotate_and_keep below).
|
|
*/
|
|
if (seq == call->tx_qbase + RXRPC_NR_TXQUEUE) {
|
|
call->tx_qbase += RXRPC_NR_TXQUEUE;
|
|
call->tx_queue = tq->next;
|
|
trace_rxrpc_tq(call, tq, seq, rxrpc_tq_rotate_and_free);
|
|
kfree(tq);
|
|
tq = call->tx_queue;
|
|
}
|
|
|
|
do {
|
|
unsigned int ix = seq - call->tx_qbase;
|
|
|
|
_debug("tq=%x seq=%x i=%d f=%x", tq->qbase, seq, ix, tq->bufs[ix]->flags);
|
|
if (tq->bufs[ix]->flags & RXRPC_LAST_PACKET) {
|
|
set_bit(RXRPC_CALL_TX_LAST, &call->flags);
|
|
rot_last = true;
|
|
}
|
|
|
|
if (summary->acked_serial == tq->segment_serial[ix] &&
|
|
test_bit(ix, &tq->rtt_samples))
|
|
rxrpc_add_data_rtt_sample(call, summary, tq, ix);
|
|
|
|
if (ix == tq->nr_reported_acks) {
|
|
/* Packet directly hard ACK'd. */
|
|
tq->nr_reported_acks++;
|
|
rxrpc_input_rack_one(call, summary, tq, ix);
|
|
if (seq == call->tlp_seq)
|
|
summary->tlp_probe_acked = true;
|
|
summary->nr_new_hacks++;
|
|
__set_bit(ix, &tq->segment_acked);
|
|
trace_rxrpc_rotate(call, tq, summary, seq, rxrpc_rotate_trace_hack);
|
|
} else if (test_bit(ix, &tq->segment_acked)) {
|
|
/* Soft ACK -> hard ACK. */
|
|
call->acks_nr_sacks--;
|
|
trace_rxrpc_rotate(call, tq, summary, seq, rxrpc_rotate_trace_sack);
|
|
} else {
|
|
/* Soft NAK -> hard ACK. */
|
|
call->acks_nr_snacks--;
|
|
rxrpc_input_rack_one(call, summary, tq, ix);
|
|
if (seq == call->tlp_seq)
|
|
summary->tlp_probe_acked = true;
|
|
summary->nr_new_hacks++;
|
|
__set_bit(ix, &tq->segment_acked);
|
|
trace_rxrpc_rotate(call, tq, summary, seq, rxrpc_rotate_trace_snak);
|
|
}
|
|
|
|
call->tx_nr_sent--;
|
|
if (__test_and_clear_bit(ix, &tq->segment_lost))
|
|
call->tx_nr_lost--;
|
|
if (__test_and_clear_bit(ix, &tq->segment_retransmitted))
|
|
call->tx_nr_resent--;
|
|
__clear_bit(ix, &tq->ever_retransmitted);
|
|
|
|
rxrpc_put_txbuf(tq->bufs[ix], rxrpc_txbuf_put_rotated);
|
|
tq->bufs[ix] = NULL;
|
|
|
|
WRITE_ONCE(call->tx_bottom, seq);
|
|
trace_rxrpc_txqueue(call, (rot_last ?
|
|
rxrpc_txqueue_rotate_last :
|
|
rxrpc_txqueue_rotate));
|
|
|
|
seq++;
|
|
trace = true;
|
|
if (!(seq & RXRPC_TXQ_MASK)) {
|
|
trace_rxrpc_rack_update(call, summary);
|
|
trace = false;
|
|
prefetch(tq->next);
|
|
if (tq != call->tx_qtail) {
|
|
call->tx_qbase += RXRPC_NR_TXQUEUE;
|
|
call->tx_queue = tq->next;
|
|
trace_rxrpc_tq(call, tq, seq, rxrpc_tq_rotate_and_free);
|
|
kfree(tq);
|
|
tq = call->tx_queue;
|
|
} else {
|
|
trace_rxrpc_tq(call, tq, seq, rxrpc_tq_rotate_and_keep);
|
|
tq = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
} while (before_eq(seq, to));
|
|
|
|
if (trace)
|
|
trace_rxrpc_rack_update(call, summary);
|
|
|
|
if (rot_last) {
|
|
set_bit(RXRPC_CALL_TX_ALL_ACKED, &call->flags);
|
|
if (tq) {
|
|
trace_rxrpc_tq(call, tq, seq, rxrpc_tq_rotate_and_free);
|
|
kfree(tq);
|
|
call->tx_queue = NULL;
|
|
}
|
|
}
|
|
|
|
_debug("%x,%x,%x,%d", to, call->tx_bottom, call->tx_top, rot_last);
|
|
|
|
wake_up(&call->waitq);
|
|
return rot_last;
|
|
}
|
|
|
|
/*
|
|
* End the transmission phase of a call.
|
|
*
|
|
* This occurs when we get an ACKALL packet, the first DATA packet of a reply,
|
|
* or a final ACK packet.
|
|
*/
|
|
static void rxrpc_end_tx_phase(struct rxrpc_call *call, bool reply_begun,
|
|
enum rxrpc_abort_reason abort_why)
|
|
{
|
|
ASSERT(test_bit(RXRPC_CALL_TX_LAST, &call->flags));
|
|
|
|
call->rack_timer_mode = RXRPC_CALL_RACKTIMER_OFF;
|
|
call->rack_timo_at = KTIME_MAX;
|
|
trace_rxrpc_rack_timer(call, 0, false);
|
|
trace_rxrpc_timer_can(call, rxrpc_timer_trace_rack_off + call->rack_timer_mode);
|
|
|
|
switch (__rxrpc_call_state(call)) {
|
|
case RXRPC_CALL_CLIENT_SEND_REQUEST:
|
|
case RXRPC_CALL_CLIENT_AWAIT_REPLY:
|
|
if (reply_begun) {
|
|
rxrpc_set_call_state(call, RXRPC_CALL_CLIENT_RECV_REPLY);
|
|
trace_rxrpc_txqueue(call, rxrpc_txqueue_end);
|
|
break;
|
|
}
|
|
|
|
rxrpc_set_call_state(call, RXRPC_CALL_CLIENT_AWAIT_REPLY);
|
|
trace_rxrpc_txqueue(call, rxrpc_txqueue_await_reply);
|
|
break;
|
|
|
|
case RXRPC_CALL_SERVER_AWAIT_ACK:
|
|
rxrpc_call_completed(call);
|
|
trace_rxrpc_txqueue(call, rxrpc_txqueue_end);
|
|
break;
|
|
|
|
default:
|
|
kdebug("end_tx %s", rxrpc_call_states[__rxrpc_call_state(call)]);
|
|
rxrpc_proto_abort(call, call->tx_top, abort_why);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Begin the reply reception phase of a call.
|
|
*/
|
|
static bool rxrpc_receiving_reply(struct rxrpc_call *call)
|
|
{
|
|
struct rxrpc_ack_summary summary = { 0 };
|
|
rxrpc_seq_t top = READ_ONCE(call->tx_top);
|
|
|
|
if (call->ackr_reason) {
|
|
call->delay_ack_at = KTIME_MAX;
|
|
trace_rxrpc_timer_can(call, rxrpc_timer_trace_delayed_ack);
|
|
}
|
|
|
|
if (!test_bit(RXRPC_CALL_TX_LAST, &call->flags)) {
|
|
if (!rxrpc_rotate_tx_window(call, top, &summary)) {
|
|
rxrpc_proto_abort(call, top, rxrpc_eproto_early_reply);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
rxrpc_end_tx_phase(call, true, rxrpc_eproto_unexpected_reply);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* End the packet reception phase.
|
|
*/
|
|
static void rxrpc_end_rx_phase(struct rxrpc_call *call, rxrpc_serial_t serial)
|
|
{
|
|
rxrpc_seq_t whigh = READ_ONCE(call->rx_highest_seq);
|
|
|
|
_enter("%d,%s", call->debug_id, rxrpc_call_states[__rxrpc_call_state(call)]);
|
|
|
|
trace_rxrpc_receive(call, rxrpc_receive_end, 0, whigh);
|
|
|
|
switch (__rxrpc_call_state(call)) {
|
|
case RXRPC_CALL_CLIENT_RECV_REPLY:
|
|
rxrpc_propose_delay_ACK(call, serial, rxrpc_propose_ack_terminal_ack);
|
|
rxrpc_call_completed(call);
|
|
break;
|
|
|
|
case RXRPC_CALL_SERVER_RECV_REQUEST:
|
|
rxrpc_set_call_state(call, RXRPC_CALL_SERVER_ACK_REQUEST);
|
|
call->expect_req_by = KTIME_MAX;
|
|
rxrpc_propose_delay_ACK(call, serial, rxrpc_propose_ack_processing_op);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void rxrpc_input_update_ack_window(struct rxrpc_call *call,
|
|
rxrpc_seq_t window, rxrpc_seq_t wtop)
|
|
{
|
|
call->ackr_window = window;
|
|
call->ackr_wtop = wtop;
|
|
}
|
|
|
|
/*
|
|
* Push a DATA packet onto the Rx queue.
|
|
*/
|
|
static void rxrpc_input_queue_data(struct rxrpc_call *call, struct sk_buff *skb,
|
|
rxrpc_seq_t window, rxrpc_seq_t wtop,
|
|
enum rxrpc_receive_trace why)
|
|
{
|
|
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
|
|
bool last = sp->hdr.flags & RXRPC_LAST_PACKET;
|
|
|
|
skb_queue_tail(&call->recvmsg_queue, skb);
|
|
rxrpc_input_update_ack_window(call, window, wtop);
|
|
trace_rxrpc_receive(call, last ? why + 1 : why, sp->hdr.serial, sp->hdr.seq);
|
|
if (last)
|
|
rxrpc_end_rx_phase(call, sp->hdr.serial);
|
|
}
|
|
|
|
/*
|
|
* Process a DATA packet.
|
|
*/
|
|
static void rxrpc_input_data_one(struct rxrpc_call *call, struct sk_buff *skb,
|
|
bool *_notify, rxrpc_serial_t *_ack_serial, int *_ack_reason)
|
|
{
|
|
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
|
|
struct sk_buff *oos;
|
|
rxrpc_serial_t serial = sp->hdr.serial;
|
|
unsigned int sack = call->ackr_sack_base;
|
|
rxrpc_seq_t window = call->ackr_window;
|
|
rxrpc_seq_t wtop = call->ackr_wtop;
|
|
rxrpc_seq_t wlimit = window + call->rx_winsize - 1;
|
|
rxrpc_seq_t seq = sp->hdr.seq;
|
|
bool last = sp->hdr.flags & RXRPC_LAST_PACKET;
|
|
int ack_reason = -1;
|
|
|
|
rxrpc_inc_stat(call->rxnet, stat_rx_data);
|
|
if (sp->hdr.flags & RXRPC_REQUEST_ACK)
|
|
rxrpc_inc_stat(call->rxnet, stat_rx_data_reqack);
|
|
if (sp->hdr.flags & RXRPC_JUMBO_PACKET)
|
|
rxrpc_inc_stat(call->rxnet, stat_rx_data_jumbo);
|
|
|
|
if (last) {
|
|
if (test_and_set_bit(RXRPC_CALL_RX_LAST, &call->flags) &&
|
|
seq + 1 != wtop)
|
|
return rxrpc_proto_abort(call, seq, rxrpc_eproto_different_last);
|
|
} else {
|
|
if (test_bit(RXRPC_CALL_RX_LAST, &call->flags) &&
|
|
after_eq(seq, wtop)) {
|
|
pr_warn("Packet beyond last: c=%x q=%x window=%x-%x wlimit=%x\n",
|
|
call->debug_id, seq, window, wtop, wlimit);
|
|
return rxrpc_proto_abort(call, seq, rxrpc_eproto_data_after_last);
|
|
}
|
|
}
|
|
|
|
if (after(seq, call->rx_highest_seq))
|
|
call->rx_highest_seq = seq;
|
|
|
|
trace_rxrpc_rx_data(call->debug_id, seq, serial, sp->hdr.flags);
|
|
|
|
if (before(seq, window)) {
|
|
ack_reason = RXRPC_ACK_DUPLICATE;
|
|
goto send_ack;
|
|
}
|
|
if (after(seq, wlimit)) {
|
|
ack_reason = RXRPC_ACK_EXCEEDS_WINDOW;
|
|
goto send_ack;
|
|
}
|
|
|
|
/* Queue the packet. */
|
|
if (seq == window) {
|
|
if (sp->hdr.flags & RXRPC_REQUEST_ACK)
|
|
ack_reason = RXRPC_ACK_REQUESTED;
|
|
/* Send an immediate ACK if we fill in a hole */
|
|
else if (!skb_queue_empty(&call->rx_oos_queue))
|
|
ack_reason = RXRPC_ACK_DELAY;
|
|
|
|
window++;
|
|
if (after(window, wtop)) {
|
|
trace_rxrpc_sack(call, seq, sack, rxrpc_sack_none);
|
|
wtop = window;
|
|
} else {
|
|
trace_rxrpc_sack(call, seq, sack, rxrpc_sack_advance);
|
|
sack = (sack + 1) % RXRPC_SACK_SIZE;
|
|
}
|
|
|
|
|
|
rxrpc_get_skb(skb, rxrpc_skb_get_to_recvmsg);
|
|
|
|
rxrpc_input_queue_data(call, skb, window, wtop, rxrpc_receive_queue);
|
|
*_notify = true;
|
|
|
|
while ((oos = skb_peek(&call->rx_oos_queue))) {
|
|
struct rxrpc_skb_priv *osp = rxrpc_skb(oos);
|
|
|
|
if (after(osp->hdr.seq, window))
|
|
break;
|
|
|
|
__skb_unlink(oos, &call->rx_oos_queue);
|
|
last = osp->hdr.flags & RXRPC_LAST_PACKET;
|
|
seq = osp->hdr.seq;
|
|
call->ackr_sack_table[sack] = 0;
|
|
trace_rxrpc_sack(call, seq, sack, rxrpc_sack_fill);
|
|
sack = (sack + 1) % RXRPC_SACK_SIZE;
|
|
|
|
window++;
|
|
rxrpc_input_queue_data(call, oos, window, wtop,
|
|
rxrpc_receive_queue_oos);
|
|
}
|
|
|
|
call->ackr_sack_base = sack;
|
|
} else {
|
|
unsigned int slot;
|
|
|
|
ack_reason = RXRPC_ACK_OUT_OF_SEQUENCE;
|
|
|
|
slot = seq - window;
|
|
sack = (sack + slot) % RXRPC_SACK_SIZE;
|
|
|
|
if (call->ackr_sack_table[sack % RXRPC_SACK_SIZE]) {
|
|
ack_reason = RXRPC_ACK_DUPLICATE;
|
|
goto send_ack;
|
|
}
|
|
|
|
call->ackr_sack_table[sack % RXRPC_SACK_SIZE] |= 1;
|
|
trace_rxrpc_sack(call, seq, sack, rxrpc_sack_oos);
|
|
|
|
if (after(seq + 1, wtop)) {
|
|
wtop = seq + 1;
|
|
rxrpc_input_update_ack_window(call, window, wtop);
|
|
}
|
|
|
|
skb_queue_walk(&call->rx_oos_queue, oos) {
|
|
struct rxrpc_skb_priv *osp = rxrpc_skb(oos);
|
|
|
|
if (after(osp->hdr.seq, seq)) {
|
|
rxrpc_get_skb(skb, rxrpc_skb_get_to_recvmsg_oos);
|
|
__skb_queue_before(&call->rx_oos_queue, oos, skb);
|
|
goto oos_queued;
|
|
}
|
|
}
|
|
|
|
rxrpc_get_skb(skb, rxrpc_skb_get_to_recvmsg_oos);
|
|
__skb_queue_tail(&call->rx_oos_queue, skb);
|
|
oos_queued:
|
|
trace_rxrpc_receive(call, last ? rxrpc_receive_oos_last : rxrpc_receive_oos,
|
|
sp->hdr.serial, sp->hdr.seq);
|
|
}
|
|
|
|
send_ack:
|
|
if (ack_reason >= 0) {
|
|
if (rxrpc_ack_priority[ack_reason] > rxrpc_ack_priority[*_ack_reason]) {
|
|
*_ack_serial = serial;
|
|
*_ack_reason = ack_reason;
|
|
} else if (rxrpc_ack_priority[ack_reason] == rxrpc_ack_priority[*_ack_reason] &&
|
|
ack_reason == RXRPC_ACK_REQUESTED) {
|
|
*_ack_serial = serial;
|
|
*_ack_reason = ack_reason;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Split a jumbo packet and file the bits separately.
|
|
*/
|
|
static bool rxrpc_input_split_jumbo(struct rxrpc_call *call, struct sk_buff *skb)
|
|
{
|
|
struct rxrpc_jumbo_header jhdr;
|
|
struct rxrpc_skb_priv *sp = rxrpc_skb(skb), *jsp;
|
|
struct sk_buff *jskb;
|
|
rxrpc_serial_t ack_serial = 0;
|
|
unsigned int offset = sizeof(struct rxrpc_wire_header);
|
|
unsigned int len = skb->len - offset;
|
|
bool notify = false;
|
|
int ack_reason = 0, count = 1, stat_ix;
|
|
|
|
while (sp->hdr.flags & RXRPC_JUMBO_PACKET) {
|
|
if (len < RXRPC_JUMBO_SUBPKTLEN)
|
|
goto protocol_error;
|
|
if (sp->hdr.flags & RXRPC_LAST_PACKET)
|
|
goto protocol_error;
|
|
if (skb_copy_bits(skb, offset + RXRPC_JUMBO_DATALEN,
|
|
&jhdr, sizeof(jhdr)) < 0)
|
|
goto protocol_error;
|
|
|
|
jskb = skb_clone(skb, GFP_NOFS);
|
|
if (!jskb) {
|
|
kdebug("couldn't clone");
|
|
return false;
|
|
}
|
|
rxrpc_new_skb(jskb, rxrpc_skb_new_jumbo_subpacket);
|
|
jsp = rxrpc_skb(jskb);
|
|
jsp->offset = offset;
|
|
jsp->len = RXRPC_JUMBO_DATALEN;
|
|
rxrpc_input_data_one(call, jskb, ¬ify, &ack_serial, &ack_reason);
|
|
rxrpc_free_skb(jskb, rxrpc_skb_put_jumbo_subpacket);
|
|
|
|
sp->hdr.flags = jhdr.flags;
|
|
sp->hdr._rsvd = ntohs(jhdr._rsvd);
|
|
sp->hdr.seq++;
|
|
sp->hdr.serial++;
|
|
offset += RXRPC_JUMBO_SUBPKTLEN;
|
|
len -= RXRPC_JUMBO_SUBPKTLEN;
|
|
count++;
|
|
}
|
|
|
|
sp->offset = offset;
|
|
sp->len = len;
|
|
rxrpc_input_data_one(call, skb, ¬ify, &ack_serial, &ack_reason);
|
|
|
|
stat_ix = umin(count, ARRAY_SIZE(call->rxnet->stat_rx_jumbo)) - 1;
|
|
atomic_inc(&call->rxnet->stat_rx_jumbo[stat_ix]);
|
|
|
|
if (ack_reason > 0) {
|
|
rxrpc_send_ACK(call, ack_reason, ack_serial,
|
|
rxrpc_propose_ack_input_data);
|
|
} else {
|
|
call->ackr_nr_unacked++;
|
|
rxrpc_propose_delay_ACK(call, sp->hdr.serial,
|
|
rxrpc_propose_ack_input_data);
|
|
}
|
|
if (notify) {
|
|
trace_rxrpc_notify_socket(call->debug_id, sp->hdr.serial);
|
|
rxrpc_notify_socket(call);
|
|
}
|
|
return true;
|
|
|
|
protocol_error:
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Process a DATA packet, adding the packet to the Rx ring. The caller's
|
|
* packet ref must be passed on or discarded.
|
|
*/
|
|
static void rxrpc_input_data(struct rxrpc_call *call, struct sk_buff *skb)
|
|
{
|
|
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
|
|
rxrpc_serial_t serial = sp->hdr.serial;
|
|
rxrpc_seq_t seq0 = sp->hdr.seq;
|
|
|
|
_enter("{%x,%x,%x},{%u,%x}",
|
|
call->ackr_window, call->ackr_wtop, call->rx_highest_seq,
|
|
skb->len, seq0);
|
|
|
|
if (__rxrpc_call_is_complete(call))
|
|
return;
|
|
|
|
switch (__rxrpc_call_state(call)) {
|
|
case RXRPC_CALL_CLIENT_SEND_REQUEST:
|
|
case RXRPC_CALL_CLIENT_AWAIT_REPLY:
|
|
/* Received data implicitly ACKs all of the request
|
|
* packets we sent when we're acting as a client.
|
|
*/
|
|
if (!rxrpc_receiving_reply(call))
|
|
goto out_notify;
|
|
break;
|
|
|
|
case RXRPC_CALL_SERVER_RECV_REQUEST: {
|
|
unsigned long timo = READ_ONCE(call->next_req_timo);
|
|
|
|
if (timo) {
|
|
ktime_t delay = ms_to_ktime(timo);
|
|
|
|
call->expect_req_by = ktime_add(ktime_get_real(), delay);
|
|
trace_rxrpc_timer_set(call, delay, rxrpc_timer_trace_idle);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!rxrpc_input_split_jumbo(call, skb)) {
|
|
rxrpc_proto_abort(call, sp->hdr.seq, rxrpc_badmsg_bad_jumbo);
|
|
goto out_notify;
|
|
}
|
|
return;
|
|
|
|
out_notify:
|
|
trace_rxrpc_notify_socket(call->debug_id, serial);
|
|
rxrpc_notify_socket(call);
|
|
_leave(" [queued]");
|
|
}
|
|
|
|
/*
|
|
* See if there's a cached RTT probe to complete.
|
|
*/
|
|
static void rxrpc_complete_rtt_probe(struct rxrpc_call *call,
|
|
ktime_t resp_time,
|
|
rxrpc_serial_t acked_serial,
|
|
rxrpc_serial_t ack_serial,
|
|
enum rxrpc_rtt_rx_trace type)
|
|
{
|
|
rxrpc_serial_t orig_serial;
|
|
unsigned long avail;
|
|
ktime_t sent_at;
|
|
bool matched = false;
|
|
int i;
|
|
|
|
avail = READ_ONCE(call->rtt_avail);
|
|
smp_rmb(); /* Read avail bits before accessing data. */
|
|
|
|
for (i = 0; i < ARRAY_SIZE(call->rtt_serial); i++) {
|
|
if (!test_bit(i + RXRPC_CALL_RTT_PEND_SHIFT, &avail))
|
|
continue;
|
|
|
|
sent_at = call->rtt_sent_at[i];
|
|
orig_serial = call->rtt_serial[i];
|
|
|
|
if (orig_serial == acked_serial) {
|
|
clear_bit(i + RXRPC_CALL_RTT_PEND_SHIFT, &call->rtt_avail);
|
|
smp_mb(); /* Read data before setting avail bit */
|
|
set_bit(i, &call->rtt_avail);
|
|
rxrpc_call_add_rtt(call, type, i, acked_serial, ack_serial,
|
|
sent_at, resp_time);
|
|
matched = true;
|
|
}
|
|
|
|
/* If a later serial is being acked, then mark this slot as
|
|
* being available.
|
|
*/
|
|
if (after(acked_serial, orig_serial)) {
|
|
trace_rxrpc_rtt_rx(call, rxrpc_rtt_rx_obsolete, i,
|
|
orig_serial, acked_serial, 0, 0, 0);
|
|
clear_bit(i + RXRPC_CALL_RTT_PEND_SHIFT, &call->rtt_avail);
|
|
smp_wmb();
|
|
set_bit(i, &call->rtt_avail);
|
|
}
|
|
}
|
|
|
|
if (!matched)
|
|
trace_rxrpc_rtt_rx(call, rxrpc_rtt_rx_lost, 9, 0, acked_serial, 0, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* Process the extra information that may be appended to an ACK packet
|
|
*/
|
|
static void rxrpc_input_ack_trailer(struct rxrpc_call *call, struct sk_buff *skb,
|
|
struct rxrpc_acktrailer *trailer)
|
|
{
|
|
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
|
|
struct rxrpc_peer *peer = call->peer;
|
|
unsigned int max_data, capacity;
|
|
bool wake = false;
|
|
u32 max_mtu = ntohl(trailer->maxMTU);
|
|
//u32 if_mtu = ntohl(trailer->ifMTU);
|
|
u32 rwind = ntohl(trailer->rwind);
|
|
u32 jumbo_max = ntohl(trailer->jumbo_max);
|
|
|
|
if (rwind > RXRPC_TX_MAX_WINDOW)
|
|
rwind = RXRPC_TX_MAX_WINDOW;
|
|
if (call->tx_winsize != rwind) {
|
|
if (rwind > call->tx_winsize)
|
|
wake = true;
|
|
trace_rxrpc_rx_rwind_change(call, sp->hdr.serial, rwind, wake);
|
|
call->tx_winsize = rwind;
|
|
}
|
|
|
|
max_mtu = clamp(max_mtu, 500, 65535);
|
|
peer->ackr_max_data = max_mtu;
|
|
|
|
if (max_mtu < peer->max_data) {
|
|
trace_rxrpc_pmtud_reduce(peer, sp->hdr.serial, max_mtu,
|
|
rxrpc_pmtud_reduce_ack);
|
|
write_seqcount_begin(&peer->mtu_lock);
|
|
peer->max_data = max_mtu;
|
|
write_seqcount_end(&peer->mtu_lock);
|
|
}
|
|
|
|
max_data = umin(max_mtu, peer->max_data);
|
|
capacity = max_data;
|
|
capacity += sizeof(struct rxrpc_jumbo_header); /* First subpacket has main hdr, not jumbo */
|
|
capacity /= sizeof(struct rxrpc_jumbo_header) + RXRPC_JUMBO_DATALEN;
|
|
|
|
if (jumbo_max == 0) {
|
|
/* The peer says it supports pmtu discovery */
|
|
peer->ackr_adv_pmtud = true;
|
|
} else {
|
|
peer->ackr_adv_pmtud = false;
|
|
capacity = clamp(capacity, 1, jumbo_max);
|
|
}
|
|
|
|
call->tx_jumbo_max = capacity;
|
|
|
|
if (wake)
|
|
wake_up(&call->waitq);
|
|
}
|
|
|
|
#if defined(CONFIG_X86) && __GNUC__ && !defined(__clang__)
|
|
/* Clang doesn't support the %z constraint modifier */
|
|
#define shiftr_adv_rotr(shift_from, rotate_into) ({ \
|
|
asm(" shr%z1 %1\n" \
|
|
" inc %0\n" \
|
|
" rcr%z2 %2\n" \
|
|
: "+d"(shift_from), "+m"(*(shift_from)), "+rm"(rotate_into) \
|
|
); \
|
|
})
|
|
#else
|
|
#define shiftr_adv_rotr(shift_from, rotate_into) ({ \
|
|
typeof(rotate_into) __bit0 = *(shift_from) & 1; \
|
|
*(shift_from) >>= 1; \
|
|
shift_from++; \
|
|
rotate_into >>= 1; \
|
|
rotate_into |= __bit0 << (sizeof(rotate_into) * 8 - 1); \
|
|
})
|
|
#endif
|
|
|
|
/*
|
|
* Deal with RTT samples from soft ACKs.
|
|
*/
|
|
static void rxrpc_input_soft_rtt(struct rxrpc_call *call,
|
|
struct rxrpc_ack_summary *summary,
|
|
struct rxrpc_txqueue *tq)
|
|
{
|
|
for (int ix = 0; ix < RXRPC_NR_TXQUEUE; ix++)
|
|
if (summary->acked_serial == tq->segment_serial[ix])
|
|
return rxrpc_add_data_rtt_sample(call, summary, tq, ix);
|
|
}
|
|
|
|
/*
|
|
* Process a batch of soft ACKs specific to a transmission queue segment.
|
|
*/
|
|
static void rxrpc_input_soft_ack_tq(struct rxrpc_call *call,
|
|
struct rxrpc_ack_summary *summary,
|
|
struct rxrpc_txqueue *tq,
|
|
unsigned long extracted_acks,
|
|
int nr_reported,
|
|
rxrpc_seq_t seq,
|
|
rxrpc_seq_t *lowest_nak)
|
|
{
|
|
unsigned long old_reported = 0, flipped, new_acks = 0;
|
|
unsigned long a_to_n, n_to_a = 0;
|
|
int new, a, n;
|
|
|
|
if (tq->nr_reported_acks > 0)
|
|
old_reported = ~0UL >> (RXRPC_NR_TXQUEUE - tq->nr_reported_acks);
|
|
|
|
_enter("{%x,%lx,%d},%lx,%d,%x",
|
|
tq->qbase, tq->segment_acked, tq->nr_reported_acks,
|
|
extracted_acks, nr_reported, seq);
|
|
|
|
_debug("[%x]", tq->qbase);
|
|
_debug("tq %16lx %u", tq->segment_acked, tq->nr_reported_acks);
|
|
_debug("sack %16lx %u", extracted_acks, nr_reported);
|
|
|
|
/* See how many previously logged ACKs/NAKs have flipped. */
|
|
flipped = (tq->segment_acked ^ extracted_acks) & old_reported;
|
|
if (flipped) {
|
|
n_to_a = ~tq->segment_acked & flipped; /* Old NAK -> ACK */
|
|
a_to_n = tq->segment_acked & flipped; /* Old ACK -> NAK */
|
|
a = hweight_long(n_to_a);
|
|
n = hweight_long(a_to_n);
|
|
_debug("flip %16lx", flipped);
|
|
_debug("ntoa %16lx %d", n_to_a, a);
|
|
_debug("aton %16lx %d", a_to_n, n);
|
|
call->acks_nr_sacks += a - n;
|
|
call->acks_nr_snacks += n - a;
|
|
summary->nr_new_sacks += a;
|
|
summary->nr_new_snacks += n;
|
|
}
|
|
|
|
/* See how many new ACKs/NAKs have been acquired. */
|
|
new = nr_reported - tq->nr_reported_acks;
|
|
if (new > 0) {
|
|
new_acks = extracted_acks & ~old_reported;
|
|
if (new_acks) {
|
|
a = hweight_long(new_acks);
|
|
n = new - a;
|
|
_debug("new_a %16lx new=%d a=%d n=%d", new_acks, new, a, n);
|
|
call->acks_nr_sacks += a;
|
|
call->acks_nr_snacks += n;
|
|
summary->nr_new_sacks += a;
|
|
summary->nr_new_snacks += n;
|
|
} else {
|
|
call->acks_nr_snacks += new;
|
|
summary->nr_new_snacks += new;
|
|
}
|
|
}
|
|
|
|
tq->nr_reported_acks = nr_reported;
|
|
tq->segment_acked = extracted_acks;
|
|
trace_rxrpc_apply_acks(call, tq);
|
|
|
|
if (extracted_acks != ~0UL) {
|
|
rxrpc_seq_t lowest = seq + ffz(extracted_acks);
|
|
|
|
if (before(lowest, *lowest_nak))
|
|
*lowest_nak = lowest;
|
|
}
|
|
|
|
if (summary->acked_serial)
|
|
rxrpc_input_soft_rtt(call, summary, tq);
|
|
|
|
new_acks |= n_to_a;
|
|
if (new_acks)
|
|
rxrpc_input_rack(call, summary, tq, new_acks);
|
|
|
|
if (call->tlp_serial &&
|
|
rxrpc_seq_in_txq(tq, call->tlp_seq) &&
|
|
test_bit(call->tlp_seq - tq->qbase, &new_acks))
|
|
summary->tlp_probe_acked = true;
|
|
}
|
|
|
|
/*
|
|
* Process individual soft ACKs.
|
|
*
|
|
* Each ACK in the array corresponds to one packet and can be either an ACK or
|
|
* a NAK. If we get find an explicitly NAK'd packet we resend immediately;
|
|
* packets that lie beyond the end of the ACK list are scheduled for resend by
|
|
* the timer on the basis that the peer might just not have processed them at
|
|
* the time the ACK was sent.
|
|
*/
|
|
static void rxrpc_input_soft_acks(struct rxrpc_call *call,
|
|
struct rxrpc_ack_summary *summary,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
|
|
struct rxrpc_txqueue *tq = call->tx_queue;
|
|
unsigned long extracted = ~0UL;
|
|
unsigned int nr = 0;
|
|
rxrpc_seq_t seq = call->acks_hard_ack + 1;
|
|
rxrpc_seq_t lowest_nak = seq + sp->ack.nr_acks;
|
|
u8 *acks = skb->data + sizeof(struct rxrpc_wire_header) + sizeof(struct rxrpc_ackpacket);
|
|
|
|
_enter("%x,%x,%u", tq->qbase, seq, sp->ack.nr_acks);
|
|
|
|
while (after(seq, tq->qbase + RXRPC_NR_TXQUEUE - 1))
|
|
tq = tq->next;
|
|
|
|
for (unsigned int i = 0; i < sp->ack.nr_acks; i++) {
|
|
/* Decant ACKs until we hit a txqueue boundary. */
|
|
shiftr_adv_rotr(acks, extracted);
|
|
if (i == 256) {
|
|
acks -= i;
|
|
i = 0;
|
|
}
|
|
seq++;
|
|
nr++;
|
|
if ((seq & RXRPC_TXQ_MASK) != 0)
|
|
continue;
|
|
|
|
_debug("bound %16lx %u", extracted, nr);
|
|
|
|
rxrpc_input_soft_ack_tq(call, summary, tq, extracted, RXRPC_NR_TXQUEUE,
|
|
seq - RXRPC_NR_TXQUEUE, &lowest_nak);
|
|
extracted = ~0UL;
|
|
nr = 0;
|
|
tq = tq->next;
|
|
prefetch(tq);
|
|
}
|
|
|
|
if (nr) {
|
|
unsigned int nr_reported = seq & RXRPC_TXQ_MASK;
|
|
|
|
extracted >>= RXRPC_NR_TXQUEUE - nr_reported;
|
|
_debug("tail %16lx %u", extracted, nr_reported);
|
|
rxrpc_input_soft_ack_tq(call, summary, tq, extracted, nr_reported,
|
|
seq & ~RXRPC_TXQ_MASK, &lowest_nak);
|
|
}
|
|
|
|
/* We *can* have more nacks than we did - the peer is permitted to drop
|
|
* packets it has soft-acked and re-request them. Further, it is
|
|
* possible for the nack distribution to change whilst the number of
|
|
* nacks stays the same or goes down.
|
|
*/
|
|
if (lowest_nak != call->acks_lowest_nak) {
|
|
call->acks_lowest_nak = lowest_nak;
|
|
summary->new_low_snack = true;
|
|
}
|
|
|
|
_debug("summary A=%d+%d N=%d+%d",
|
|
call->acks_nr_sacks, summary->nr_new_sacks,
|
|
call->acks_nr_snacks, summary->nr_new_snacks);
|
|
}
|
|
|
|
/*
|
|
* Return true if the ACK is valid - ie. it doesn't appear to have regressed
|
|
* with respect to the ack state conveyed by preceding ACKs.
|
|
*/
|
|
static bool rxrpc_is_ack_valid(struct rxrpc_call *call,
|
|
rxrpc_seq_t hard_ack, rxrpc_seq_t prev_pkt)
|
|
{
|
|
rxrpc_seq_t base = READ_ONCE(call->acks_hard_ack);
|
|
|
|
if (after(hard_ack, base))
|
|
return true; /* The window advanced */
|
|
|
|
if (before(hard_ack, base))
|
|
return false; /* firstPacket regressed */
|
|
|
|
if (after_eq(prev_pkt, call->acks_prev_seq))
|
|
return true; /* previousPacket hasn't regressed. */
|
|
|
|
/* Some rx implementations put a serial number in previousPacket. */
|
|
if (after(prev_pkt, base + call->tx_winsize))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Process an ACK packet.
|
|
*
|
|
* ack.firstPacket is the sequence number of the first soft-ACK'd/NAK'd packet
|
|
* in the ACK array. Anything before that is hard-ACK'd and may be discarded.
|
|
*
|
|
* A hard-ACK means that a packet has been processed and may be discarded; a
|
|
* soft-ACK means that the packet may be discarded and retransmission
|
|
* requested. A phase is complete when all packets are hard-ACK'd.
|
|
*/
|
|
static void rxrpc_input_ack(struct rxrpc_call *call, struct sk_buff *skb)
|
|
{
|
|
struct rxrpc_ack_summary summary = { 0 };
|
|
struct rxrpc_acktrailer trailer;
|
|
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
|
|
rxrpc_seq_t first_soft_ack, hard_ack, prev_pkt;
|
|
int nr_acks, offset, ioffset;
|
|
|
|
_enter("");
|
|
|
|
offset = sizeof(struct rxrpc_wire_header) + sizeof(struct rxrpc_ackpacket);
|
|
|
|
summary.ack_serial = sp->hdr.serial;
|
|
first_soft_ack = sp->ack.first_ack;
|
|
prev_pkt = sp->ack.prev_ack;
|
|
nr_acks = sp->ack.nr_acks;
|
|
hard_ack = first_soft_ack - 1;
|
|
summary.acked_serial = sp->ack.acked_serial;
|
|
summary.ack_reason = (sp->ack.reason < RXRPC_ACK__INVALID ?
|
|
sp->ack.reason : RXRPC_ACK__INVALID);
|
|
|
|
trace_rxrpc_rx_ack(call, sp);
|
|
rxrpc_inc_stat(call->rxnet, stat_rx_acks[summary.ack_reason]);
|
|
prefetch(call->tx_queue);
|
|
|
|
/* If we get an EXCEEDS_WINDOW ACK from the server, it probably
|
|
* indicates that the client address changed due to NAT. The server
|
|
* lost the call because it switched to a different peer.
|
|
*/
|
|
if (unlikely(summary.ack_reason == RXRPC_ACK_EXCEEDS_WINDOW) &&
|
|
hard_ack == 0 &&
|
|
prev_pkt == 0 &&
|
|
rxrpc_is_client_call(call)) {
|
|
rxrpc_set_call_completion(call, RXRPC_CALL_REMOTELY_ABORTED,
|
|
0, -ENETRESET);
|
|
goto send_response;
|
|
}
|
|
|
|
/* If we get an OUT_OF_SEQUENCE ACK from the server, that can also
|
|
* indicate a change of address. However, we can retransmit the call
|
|
* if we still have it buffered to the beginning.
|
|
*/
|
|
if (unlikely(summary.ack_reason == RXRPC_ACK_OUT_OF_SEQUENCE) &&
|
|
hard_ack == 0 &&
|
|
prev_pkt == 0 &&
|
|
call->tx_bottom == 0 &&
|
|
rxrpc_is_client_call(call)) {
|
|
rxrpc_set_call_completion(call, RXRPC_CALL_REMOTELY_ABORTED,
|
|
0, -ENETRESET);
|
|
goto send_response;
|
|
}
|
|
|
|
/* Discard any out-of-order or duplicate ACKs (outside lock). */
|
|
if (!rxrpc_is_ack_valid(call, hard_ack, prev_pkt)) {
|
|
trace_rxrpc_rx_discard_ack(call, summary.ack_serial, hard_ack, prev_pkt);
|
|
goto send_response; /* Still respond if requested. */
|
|
}
|
|
|
|
trailer.maxMTU = 0;
|
|
ioffset = offset + nr_acks + 3;
|
|
if (skb->len >= ioffset + sizeof(trailer) &&
|
|
skb_copy_bits(skb, ioffset, &trailer, sizeof(trailer)) < 0)
|
|
return rxrpc_proto_abort(call, 0, rxrpc_badmsg_short_ack_trailer);
|
|
|
|
if (nr_acks > 0)
|
|
skb_condense(skb);
|
|
|
|
call->acks_latest_ts = ktime_get_real();
|
|
call->acks_hard_ack = hard_ack;
|
|
call->acks_prev_seq = prev_pkt;
|
|
|
|
if (summary.acked_serial) {
|
|
switch (summary.ack_reason) {
|
|
case RXRPC_ACK_PING_RESPONSE:
|
|
rxrpc_complete_rtt_probe(call, call->acks_latest_ts,
|
|
summary.acked_serial, summary.ack_serial,
|
|
rxrpc_rtt_rx_ping_response);
|
|
break;
|
|
default:
|
|
if (after(summary.acked_serial, call->acks_highest_serial))
|
|
call->acks_highest_serial = summary.acked_serial;
|
|
summary.rtt_sample_avail = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Parse rwind and mtu sizes if provided. */
|
|
if (trailer.maxMTU)
|
|
rxrpc_input_ack_trailer(call, skb, &trailer);
|
|
|
|
if (hard_ack + 1 == 0)
|
|
return rxrpc_proto_abort(call, 0, rxrpc_eproto_ackr_zero);
|
|
|
|
/* Ignore ACKs unless we are or have just been transmitting. */
|
|
switch (__rxrpc_call_state(call)) {
|
|
case RXRPC_CALL_CLIENT_SEND_REQUEST:
|
|
case RXRPC_CALL_CLIENT_AWAIT_REPLY:
|
|
case RXRPC_CALL_SERVER_SEND_REPLY:
|
|
case RXRPC_CALL_SERVER_AWAIT_ACK:
|
|
break;
|
|
default:
|
|
goto send_response;
|
|
}
|
|
|
|
if (before(hard_ack, call->tx_bottom) ||
|
|
after(hard_ack, call->tx_top))
|
|
return rxrpc_proto_abort(call, 0, rxrpc_eproto_ackr_outside_window);
|
|
if (nr_acks > call->tx_top - hard_ack)
|
|
return rxrpc_proto_abort(call, 0, rxrpc_eproto_ackr_sack_overflow);
|
|
|
|
if (after(hard_ack, call->tx_bottom)) {
|
|
if (rxrpc_rotate_tx_window(call, hard_ack, &summary)) {
|
|
rxrpc_end_tx_phase(call, false, rxrpc_eproto_unexpected_ack);
|
|
goto send_response;
|
|
}
|
|
}
|
|
|
|
if (nr_acks > 0) {
|
|
if (offset > (int)skb->len - nr_acks)
|
|
return rxrpc_proto_abort(call, 0, rxrpc_eproto_ackr_short_sack);
|
|
rxrpc_input_soft_acks(call, &summary, skb);
|
|
}
|
|
|
|
if (test_bit(RXRPC_CALL_TX_LAST, &call->flags) &&
|
|
call->acks_nr_sacks == call->tx_top - hard_ack &&
|
|
rxrpc_is_client_call(call))
|
|
rxrpc_propose_ping(call, summary.ack_serial,
|
|
rxrpc_propose_ack_ping_for_lost_reply);
|
|
|
|
/* Drive the congestion management algorithm first and then RACK-TLP as
|
|
* the latter depends on the state/change in state in the former.
|
|
*/
|
|
rxrpc_congestion_management(call, &summary);
|
|
rxrpc_rack_detect_loss_and_arm_timer(call, &summary);
|
|
rxrpc_tlp_process_ack(call, &summary);
|
|
if (call->tlp_serial && after_eq(summary.acked_serial, call->tlp_serial))
|
|
call->tlp_serial = 0;
|
|
|
|
send_response:
|
|
if (summary.ack_reason == RXRPC_ACK_PING)
|
|
rxrpc_send_ACK(call, RXRPC_ACK_PING_RESPONSE, summary.ack_serial,
|
|
rxrpc_propose_ack_respond_to_ping);
|
|
else if (sp->hdr.flags & RXRPC_REQUEST_ACK)
|
|
rxrpc_send_ACK(call, RXRPC_ACK_REQUESTED, summary.ack_serial,
|
|
rxrpc_propose_ack_respond_to_ack);
|
|
}
|
|
|
|
/*
|
|
* Process an ACKALL packet.
|
|
*/
|
|
static void rxrpc_input_ackall(struct rxrpc_call *call, struct sk_buff *skb)
|
|
{
|
|
struct rxrpc_ack_summary summary = { 0 };
|
|
|
|
if (rxrpc_rotate_tx_window(call, call->tx_top, &summary))
|
|
rxrpc_end_tx_phase(call, false, rxrpc_eproto_unexpected_ackall);
|
|
}
|
|
|
|
/*
|
|
* Process an ABORT packet directed at a call.
|
|
*/
|
|
static void rxrpc_input_abort(struct rxrpc_call *call, struct sk_buff *skb)
|
|
{
|
|
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
|
|
|
|
trace_rxrpc_rx_abort(call, sp->hdr.serial, skb->priority);
|
|
|
|
rxrpc_set_call_completion(call, RXRPC_CALL_REMOTELY_ABORTED,
|
|
skb->priority, -ECONNABORTED);
|
|
}
|
|
|
|
/*
|
|
* Process an incoming call packet.
|
|
*/
|
|
void rxrpc_input_call_packet(struct rxrpc_call *call, struct sk_buff *skb)
|
|
{
|
|
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
|
|
unsigned long timo;
|
|
|
|
_enter("%p,%p", call, skb);
|
|
|
|
if (sp->hdr.serviceId != call->dest_srx.srx_service)
|
|
call->dest_srx.srx_service = sp->hdr.serviceId;
|
|
if ((int)sp->hdr.serial - (int)call->rx_serial > 0)
|
|
call->rx_serial = sp->hdr.serial;
|
|
if (!test_bit(RXRPC_CALL_RX_HEARD, &call->flags))
|
|
set_bit(RXRPC_CALL_RX_HEARD, &call->flags);
|
|
|
|
timo = READ_ONCE(call->next_rx_timo);
|
|
if (timo) {
|
|
ktime_t delay = ms_to_ktime(timo);
|
|
|
|
call->expect_rx_by = ktime_add(ktime_get_real(), delay);
|
|
trace_rxrpc_timer_set(call, delay, rxrpc_timer_trace_expect_rx);
|
|
}
|
|
|
|
switch (sp->hdr.type) {
|
|
case RXRPC_PACKET_TYPE_DATA:
|
|
return rxrpc_input_data(call, skb);
|
|
|
|
case RXRPC_PACKET_TYPE_ACK:
|
|
return rxrpc_input_ack(call, skb);
|
|
|
|
case RXRPC_PACKET_TYPE_BUSY:
|
|
/* Just ignore BUSY packets from the server; the retry and
|
|
* lifespan timers will take care of business. BUSY packets
|
|
* from the client don't make sense.
|
|
*/
|
|
return;
|
|
|
|
case RXRPC_PACKET_TYPE_ABORT:
|
|
return rxrpc_input_abort(call, skb);
|
|
|
|
case RXRPC_PACKET_TYPE_ACKALL:
|
|
return rxrpc_input_ackall(call, skb);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle a new service call on a channel implicitly completing the preceding
|
|
* call on that channel. This does not apply to client conns.
|
|
*
|
|
* TODO: If callNumber > call_id + 1, renegotiate security.
|
|
*/
|
|
void rxrpc_implicit_end_call(struct rxrpc_call *call, struct sk_buff *skb)
|
|
{
|
|
switch (__rxrpc_call_state(call)) {
|
|
case RXRPC_CALL_SERVER_AWAIT_ACK:
|
|
rxrpc_call_completed(call);
|
|
fallthrough;
|
|
case RXRPC_CALL_COMPLETE:
|
|
break;
|
|
default:
|
|
rxrpc_abort_call(call, 0, RX_CALL_DEAD, -ESHUTDOWN,
|
|
rxrpc_eproto_improper_term);
|
|
trace_rxrpc_improper_term(call);
|
|
break;
|
|
}
|
|
|
|
rxrpc_input_call_event(call);
|
|
}
|