mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-16 13:34:30 +00:00
029cfd6b74
libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
318 lines
8.1 KiB
C
318 lines
8.1 KiB
C
/*
|
|
* pata_efar.c - EFAR PIIX clone controller driver
|
|
*
|
|
* (C) 2005 Red Hat <alan@redhat.com>
|
|
*
|
|
* Some parts based on ata_piix.c by Jeff Garzik and others.
|
|
*
|
|
* The EFAR is a PIIX4 clone with UDMA66 support. Unlike the later
|
|
* Intel ICH controllers the EFAR widened the UDMA mode register bits
|
|
* and doesn't require the funky clock selection.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <linux/libata.h>
|
|
#include <linux/ata.h>
|
|
|
|
#define DRV_NAME "pata_efar"
|
|
#define DRV_VERSION "0.4.4"
|
|
|
|
/**
|
|
* efar_pre_reset - Enable bits
|
|
* @link: ATA link
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Perform cable detection for the EFAR ATA interface. This is
|
|
* different to the PIIX arrangement
|
|
*/
|
|
|
|
static int efar_pre_reset(struct ata_link *link, unsigned long deadline)
|
|
{
|
|
static const struct pci_bits efar_enable_bits[] = {
|
|
{ 0x41U, 1U, 0x80UL, 0x80UL }, /* port 0 */
|
|
{ 0x43U, 1U, 0x80UL, 0x80UL }, /* port 1 */
|
|
};
|
|
struct ata_port *ap = link->ap;
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
|
|
|
if (!pci_test_config_bits(pdev, &efar_enable_bits[ap->port_no]))
|
|
return -ENOENT;
|
|
|
|
return ata_std_prereset(link, deadline);
|
|
}
|
|
|
|
/**
|
|
* efar_probe_reset - Probe specified port on PATA host controller
|
|
* @ap: Port to probe
|
|
*
|
|
* LOCKING:
|
|
* None (inherited from caller).
|
|
*/
|
|
|
|
static void efar_error_handler(struct ata_port *ap)
|
|
{
|
|
ata_bmdma_drive_eh(ap, efar_pre_reset, ata_std_softreset, NULL, ata_std_postreset);
|
|
}
|
|
|
|
/**
|
|
* efar_cable_detect - check for 40/80 pin
|
|
* @ap: Port
|
|
*
|
|
* Perform cable detection for the EFAR ATA interface. This is
|
|
* different to the PIIX arrangement
|
|
*/
|
|
|
|
static int efar_cable_detect(struct ata_port *ap)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
|
u8 tmp;
|
|
|
|
pci_read_config_byte(pdev, 0x47, &tmp);
|
|
if (tmp & (2 >> ap->port_no))
|
|
return ATA_CBL_PATA40;
|
|
return ATA_CBL_PATA80;
|
|
}
|
|
|
|
/**
|
|
* efar_set_piomode - Initialize host controller PATA PIO timings
|
|
* @ap: Port whose timings we are configuring
|
|
* @adev: um
|
|
*
|
|
* Set PIO mode for device, in host controller PCI config space.
|
|
*
|
|
* LOCKING:
|
|
* None (inherited from caller).
|
|
*/
|
|
|
|
static void efar_set_piomode (struct ata_port *ap, struct ata_device *adev)
|
|
{
|
|
unsigned int pio = adev->pio_mode - XFER_PIO_0;
|
|
struct pci_dev *dev = to_pci_dev(ap->host->dev);
|
|
unsigned int idetm_port= ap->port_no ? 0x42 : 0x40;
|
|
u16 idetm_data;
|
|
int control = 0;
|
|
|
|
/*
|
|
* See Intel Document 298600-004 for the timing programing rules
|
|
* for PIIX/ICH. The EFAR is a clone so very similar
|
|
*/
|
|
|
|
static const /* ISP RTC */
|
|
u8 timings[][2] = { { 0, 0 },
|
|
{ 0, 0 },
|
|
{ 1, 0 },
|
|
{ 2, 1 },
|
|
{ 2, 3 }, };
|
|
|
|
if (pio > 2)
|
|
control |= 1; /* TIME1 enable */
|
|
if (ata_pio_need_iordy(adev)) /* PIO 3/4 require IORDY */
|
|
control |= 2; /* IE enable */
|
|
/* Intel specifies that the PPE functionality is for disk only */
|
|
if (adev->class == ATA_DEV_ATA)
|
|
control |= 4; /* PPE enable */
|
|
|
|
pci_read_config_word(dev, idetm_port, &idetm_data);
|
|
|
|
/* Enable PPE, IE and TIME as appropriate */
|
|
|
|
if (adev->devno == 0) {
|
|
idetm_data &= 0xCCF0;
|
|
idetm_data |= control;
|
|
idetm_data |= (timings[pio][0] << 12) |
|
|
(timings[pio][1] << 8);
|
|
} else {
|
|
int shift = 4 * ap->port_no;
|
|
u8 slave_data;
|
|
|
|
idetm_data &= 0xCC0F;
|
|
idetm_data |= (control << 4);
|
|
|
|
/* Slave timing in separate register */
|
|
pci_read_config_byte(dev, 0x44, &slave_data);
|
|
slave_data &= 0x0F << shift;
|
|
slave_data |= ((timings[pio][0] << 2) | timings[pio][1]) << shift;
|
|
pci_write_config_byte(dev, 0x44, slave_data);
|
|
}
|
|
|
|
idetm_data |= 0x4000; /* Ensure SITRE is enabled */
|
|
pci_write_config_word(dev, idetm_port, idetm_data);
|
|
}
|
|
|
|
/**
|
|
* efar_set_dmamode - Initialize host controller PATA DMA timings
|
|
* @ap: Port whose timings we are configuring
|
|
* @adev: Device to program
|
|
*
|
|
* Set UDMA/MWDMA mode for device, in host controller PCI config space.
|
|
*
|
|
* LOCKING:
|
|
* None (inherited from caller).
|
|
*/
|
|
|
|
static void efar_set_dmamode (struct ata_port *ap, struct ata_device *adev)
|
|
{
|
|
struct pci_dev *dev = to_pci_dev(ap->host->dev);
|
|
u8 master_port = ap->port_no ? 0x42 : 0x40;
|
|
u16 master_data;
|
|
u8 speed = adev->dma_mode;
|
|
int devid = adev->devno + 2 * ap->port_no;
|
|
u8 udma_enable;
|
|
|
|
static const /* ISP RTC */
|
|
u8 timings[][2] = { { 0, 0 },
|
|
{ 0, 0 },
|
|
{ 1, 0 },
|
|
{ 2, 1 },
|
|
{ 2, 3 }, };
|
|
|
|
pci_read_config_word(dev, master_port, &master_data);
|
|
pci_read_config_byte(dev, 0x48, &udma_enable);
|
|
|
|
if (speed >= XFER_UDMA_0) {
|
|
unsigned int udma = adev->dma_mode - XFER_UDMA_0;
|
|
u16 udma_timing;
|
|
|
|
udma_enable |= (1 << devid);
|
|
|
|
/* Load the UDMA mode number */
|
|
pci_read_config_word(dev, 0x4A, &udma_timing);
|
|
udma_timing &= ~(7 << (4 * devid));
|
|
udma_timing |= udma << (4 * devid);
|
|
pci_write_config_word(dev, 0x4A, udma_timing);
|
|
} else {
|
|
/*
|
|
* MWDMA is driven by the PIO timings. We must also enable
|
|
* IORDY unconditionally along with TIME1. PPE has already
|
|
* been set when the PIO timing was set.
|
|
*/
|
|
unsigned int mwdma = adev->dma_mode - XFER_MW_DMA_0;
|
|
unsigned int control;
|
|
u8 slave_data;
|
|
const unsigned int needed_pio[3] = {
|
|
XFER_PIO_0, XFER_PIO_3, XFER_PIO_4
|
|
};
|
|
int pio = needed_pio[mwdma] - XFER_PIO_0;
|
|
|
|
control = 3; /* IORDY|TIME1 */
|
|
|
|
/* If the drive MWDMA is faster than it can do PIO then
|
|
we must force PIO into PIO0 */
|
|
|
|
if (adev->pio_mode < needed_pio[mwdma])
|
|
/* Enable DMA timing only */
|
|
control |= 8; /* PIO cycles in PIO0 */
|
|
|
|
if (adev->devno) { /* Slave */
|
|
master_data &= 0xFF4F; /* Mask out IORDY|TIME1|DMAONLY */
|
|
master_data |= control << 4;
|
|
pci_read_config_byte(dev, 0x44, &slave_data);
|
|
slave_data &= (0x0F + 0xE1 * ap->port_no);
|
|
/* Load the matching timing */
|
|
slave_data |= ((timings[pio][0] << 2) | timings[pio][1]) << (ap->port_no ? 4 : 0);
|
|
pci_write_config_byte(dev, 0x44, slave_data);
|
|
} else { /* Master */
|
|
master_data &= 0xCCF4; /* Mask out IORDY|TIME1|DMAONLY
|
|
and master timing bits */
|
|
master_data |= control;
|
|
master_data |=
|
|
(timings[pio][0] << 12) |
|
|
(timings[pio][1] << 8);
|
|
}
|
|
udma_enable &= ~(1 << devid);
|
|
pci_write_config_word(dev, master_port, master_data);
|
|
}
|
|
pci_write_config_byte(dev, 0x48, udma_enable);
|
|
}
|
|
|
|
static struct scsi_host_template efar_sht = {
|
|
ATA_BMDMA_SHT(DRV_NAME),
|
|
};
|
|
|
|
static struct ata_port_operations efar_ops = {
|
|
.inherits = &ata_bmdma_port_ops,
|
|
.cable_detect = efar_cable_detect,
|
|
.set_piomode = efar_set_piomode,
|
|
.set_dmamode = efar_set_dmamode,
|
|
.error_handler = efar_error_handler,
|
|
};
|
|
|
|
|
|
/**
|
|
* efar_init_one - Register EFAR ATA PCI device with kernel services
|
|
* @pdev: PCI device to register
|
|
* @ent: Entry in efar_pci_tbl matching with @pdev
|
|
*
|
|
* Called from kernel PCI layer.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from PCI layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, or -ERRNO value.
|
|
*/
|
|
|
|
static int efar_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
static int printed_version;
|
|
static const struct ata_port_info info = {
|
|
.sht = &efar_sht,
|
|
.flags = ATA_FLAG_SLAVE_POSS,
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.mwdma_mask = 0x07, /* mwdma1-2 */
|
|
.udma_mask = 0x0f, /* UDMA 66 */
|
|
.port_ops = &efar_ops,
|
|
};
|
|
const struct ata_port_info *ppi[] = { &info, NULL };
|
|
|
|
if (!printed_version++)
|
|
dev_printk(KERN_DEBUG, &pdev->dev,
|
|
"version " DRV_VERSION "\n");
|
|
|
|
return ata_pci_init_one(pdev, ppi);
|
|
}
|
|
|
|
static const struct pci_device_id efar_pci_tbl[] = {
|
|
{ PCI_VDEVICE(EFAR, 0x9130), },
|
|
|
|
{ } /* terminate list */
|
|
};
|
|
|
|
static struct pci_driver efar_pci_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = efar_pci_tbl,
|
|
.probe = efar_init_one,
|
|
.remove = ata_pci_remove_one,
|
|
#ifdef CONFIG_PM
|
|
.suspend = ata_pci_device_suspend,
|
|
.resume = ata_pci_device_resume,
|
|
#endif
|
|
};
|
|
|
|
static int __init efar_init(void)
|
|
{
|
|
return pci_register_driver(&efar_pci_driver);
|
|
}
|
|
|
|
static void __exit efar_exit(void)
|
|
{
|
|
pci_unregister_driver(&efar_pci_driver);
|
|
}
|
|
|
|
module_init(efar_init);
|
|
module_exit(efar_exit);
|
|
|
|
MODULE_AUTHOR("Alan Cox");
|
|
MODULE_DESCRIPTION("SCSI low-level driver for EFAR PIIX clones");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DEVICE_TABLE(pci, efar_pci_tbl);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|