mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-17 05:45:20 +00:00
a8cd4766d9
It is assigned a value of 1 and never incremented. Remove and replace puts with delete. Signed-off-by: Ian Rogers <irogers@google.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com> Cc: Ben Gainey <ben.gainey@arm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Clark <james.clark@arm.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: K Prateek Nayak <kprateek.nayak@amd.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Li Dong <lidong@vivo.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Paran Lee <p4ranlee@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@amd.com> Cc: Sun Haiyong <sunhaiyong@loongson.cn> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Yanteng Si <siyanteng@loongson.cn> Cc: Yicong Yang <yangyicong@hisilicon.com> Link: https://lore.kernel.org/r/20240507183545.1236093-5-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
743 lines
16 KiB
C
743 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <api/fs/fs.h>
|
|
#include "cpumap.h"
|
|
#include "debug.h"
|
|
#include "event.h"
|
|
#include <assert.h>
|
|
#include <dirent.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <linux/bitmap.h>
|
|
#include "asm/bug.h"
|
|
|
|
#include <linux/ctype.h>
|
|
#include <linux/zalloc.h>
|
|
#include <internal/cpumap.h>
|
|
|
|
static struct perf_cpu max_cpu_num;
|
|
static struct perf_cpu max_present_cpu_num;
|
|
static int max_node_num;
|
|
/**
|
|
* The numa node X as read from /sys/devices/system/node/nodeX indexed by the
|
|
* CPU number.
|
|
*/
|
|
static int *cpunode_map;
|
|
|
|
bool perf_record_cpu_map_data__test_bit(int i,
|
|
const struct perf_record_cpu_map_data *data)
|
|
{
|
|
int bit_word32 = i / 32;
|
|
__u32 bit_mask32 = 1U << (i & 31);
|
|
int bit_word64 = i / 64;
|
|
__u64 bit_mask64 = ((__u64)1) << (i & 63);
|
|
|
|
return (data->mask32_data.long_size == 4)
|
|
? (bit_word32 < data->mask32_data.nr) &&
|
|
(data->mask32_data.mask[bit_word32] & bit_mask32) != 0
|
|
: (bit_word64 < data->mask64_data.nr) &&
|
|
(data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
|
|
}
|
|
|
|
/* Read ith mask value from data into the given 64-bit sized bitmap */
|
|
static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
|
|
int i, unsigned long *bitmap)
|
|
{
|
|
#if __SIZEOF_LONG__ == 8
|
|
if (data->mask32_data.long_size == 4)
|
|
bitmap[0] = data->mask32_data.mask[i];
|
|
else
|
|
bitmap[0] = data->mask64_data.mask[i];
|
|
#else
|
|
if (data->mask32_data.long_size == 4) {
|
|
bitmap[0] = data->mask32_data.mask[i];
|
|
bitmap[1] = 0;
|
|
} else {
|
|
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
|
|
bitmap[1] = (unsigned long)data->mask64_data.mask[i];
|
|
#else
|
|
bitmap[0] = (unsigned long)data->mask64_data.mask[i];
|
|
bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
|
|
{
|
|
struct perf_cpu_map *map;
|
|
|
|
map = perf_cpu_map__empty_new(data->cpus_data.nr);
|
|
if (map) {
|
|
unsigned i;
|
|
|
|
for (i = 0; i < data->cpus_data.nr; i++) {
|
|
/*
|
|
* Special treatment for -1, which is not real cpu number,
|
|
* and we need to use (int) -1 to initialize map[i],
|
|
* otherwise it would become 65535.
|
|
*/
|
|
if (data->cpus_data.cpu[i] == (u16) -1)
|
|
RC_CHK_ACCESS(map)->map[i].cpu = -1;
|
|
else
|
|
RC_CHK_ACCESS(map)->map[i].cpu = (int) data->cpus_data.cpu[i];
|
|
}
|
|
}
|
|
|
|
return map;
|
|
}
|
|
|
|
static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
|
|
{
|
|
DECLARE_BITMAP(local_copy, 64);
|
|
int weight = 0, mask_nr = data->mask32_data.nr;
|
|
struct perf_cpu_map *map;
|
|
|
|
for (int i = 0; i < mask_nr; i++) {
|
|
perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
|
|
weight += bitmap_weight(local_copy, 64);
|
|
}
|
|
|
|
map = perf_cpu_map__empty_new(weight);
|
|
if (!map)
|
|
return NULL;
|
|
|
|
for (int i = 0, j = 0; i < mask_nr; i++) {
|
|
int cpus_per_i = (i * data->mask32_data.long_size * BITS_PER_BYTE);
|
|
int cpu;
|
|
|
|
perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
|
|
for_each_set_bit(cpu, local_copy, 64)
|
|
RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i;
|
|
}
|
|
return map;
|
|
|
|
}
|
|
|
|
static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
|
|
{
|
|
struct perf_cpu_map *map;
|
|
unsigned int i = 0;
|
|
|
|
map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
|
|
data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
|
|
if (!map)
|
|
return NULL;
|
|
|
|
if (data->range_cpu_data.any_cpu)
|
|
RC_CHK_ACCESS(map)->map[i++].cpu = -1;
|
|
|
|
for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
|
|
i++, cpu++)
|
|
RC_CHK_ACCESS(map)->map[i].cpu = cpu;
|
|
|
|
return map;
|
|
}
|
|
|
|
struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
|
|
{
|
|
switch (data->type) {
|
|
case PERF_CPU_MAP__CPUS:
|
|
return cpu_map__from_entries(data);
|
|
case PERF_CPU_MAP__MASK:
|
|
return cpu_map__from_mask(data);
|
|
case PERF_CPU_MAP__RANGE_CPUS:
|
|
return cpu_map__from_range(data);
|
|
default:
|
|
pr_err("cpu_map__new_data unknown type %d\n", data->type);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
|
|
{
|
|
#define BUFSIZE 1024
|
|
char buf[BUFSIZE];
|
|
|
|
cpu_map__snprint(map, buf, sizeof(buf));
|
|
return fprintf(fp, "%s\n", buf);
|
|
#undef BUFSIZE
|
|
}
|
|
|
|
struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
|
|
{
|
|
struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr);
|
|
|
|
if (cpus != NULL) {
|
|
for (int i = 0; i < nr; i++)
|
|
RC_CHK_ACCESS(cpus)->map[i].cpu = -1;
|
|
}
|
|
|
|
return cpus;
|
|
}
|
|
|
|
struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
|
|
{
|
|
struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
|
|
|
|
if (cpus != NULL) {
|
|
int i;
|
|
|
|
cpus->nr = nr;
|
|
for (i = 0; i < nr; i++)
|
|
cpus->map[i] = aggr_cpu_id__empty();
|
|
}
|
|
|
|
return cpus;
|
|
}
|
|
|
|
static int cpu__get_topology_int(int cpu, const char *name, int *value)
|
|
{
|
|
char path[PATH_MAX];
|
|
|
|
snprintf(path, PATH_MAX,
|
|
"devices/system/cpu/cpu%d/topology/%s", cpu, name);
|
|
|
|
return sysfs__read_int(path, value);
|
|
}
|
|
|
|
int cpu__get_socket_id(struct perf_cpu cpu)
|
|
{
|
|
int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
|
|
return ret ?: value;
|
|
}
|
|
|
|
struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
|
|
{
|
|
struct aggr_cpu_id id = aggr_cpu_id__empty();
|
|
|
|
id.socket = cpu__get_socket_id(cpu);
|
|
return id;
|
|
}
|
|
|
|
static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
|
|
{
|
|
struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
|
|
struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
|
|
|
|
if (a->node != b->node)
|
|
return a->node - b->node;
|
|
else if (a->socket != b->socket)
|
|
return a->socket - b->socket;
|
|
else if (a->die != b->die)
|
|
return a->die - b->die;
|
|
else if (a->cluster != b->cluster)
|
|
return a->cluster - b->cluster;
|
|
else if (a->cache_lvl != b->cache_lvl)
|
|
return a->cache_lvl - b->cache_lvl;
|
|
else if (a->cache != b->cache)
|
|
return a->cache - b->cache;
|
|
else if (a->core != b->core)
|
|
return a->core - b->core;
|
|
else
|
|
return a->thread_idx - b->thread_idx;
|
|
}
|
|
|
|
struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
|
|
aggr_cpu_id_get_t get_id,
|
|
void *data, bool needs_sort)
|
|
{
|
|
int idx;
|
|
struct perf_cpu cpu;
|
|
struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus));
|
|
|
|
if (!c)
|
|
return NULL;
|
|
|
|
/* Reset size as it may only be partially filled */
|
|
c->nr = 0;
|
|
|
|
perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
|
|
bool duplicate = false;
|
|
struct aggr_cpu_id cpu_id = get_id(cpu, data);
|
|
|
|
for (int j = 0; j < c->nr; j++) {
|
|
if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
|
|
duplicate = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!duplicate) {
|
|
c->map[c->nr] = cpu_id;
|
|
c->nr++;
|
|
}
|
|
}
|
|
/* Trim. */
|
|
if (c->nr != perf_cpu_map__nr(cpus)) {
|
|
struct cpu_aggr_map *trimmed_c =
|
|
realloc(c,
|
|
sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
|
|
|
|
if (trimmed_c)
|
|
c = trimmed_c;
|
|
}
|
|
|
|
/* ensure we process id in increasing order */
|
|
if (needs_sort)
|
|
qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
int cpu__get_die_id(struct perf_cpu cpu)
|
|
{
|
|
int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
|
|
|
|
return ret ?: value;
|
|
}
|
|
|
|
struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
|
|
{
|
|
struct aggr_cpu_id id;
|
|
int die;
|
|
|
|
die = cpu__get_die_id(cpu);
|
|
/* There is no die_id on legacy system. */
|
|
if (die == -1)
|
|
die = 0;
|
|
|
|
/*
|
|
* die_id is relative to socket, so start
|
|
* with the socket ID and then add die to
|
|
* make a unique ID.
|
|
*/
|
|
id = aggr_cpu_id__socket(cpu, data);
|
|
if (aggr_cpu_id__is_empty(&id))
|
|
return id;
|
|
|
|
id.die = die;
|
|
return id;
|
|
}
|
|
|
|
int cpu__get_cluster_id(struct perf_cpu cpu)
|
|
{
|
|
int value, ret = cpu__get_topology_int(cpu.cpu, "cluster_id", &value);
|
|
|
|
return ret ?: value;
|
|
}
|
|
|
|
struct aggr_cpu_id aggr_cpu_id__cluster(struct perf_cpu cpu, void *data)
|
|
{
|
|
int cluster = cpu__get_cluster_id(cpu);
|
|
struct aggr_cpu_id id;
|
|
|
|
/* There is no cluster_id on legacy system. */
|
|
if (cluster == -1)
|
|
cluster = 0;
|
|
|
|
id = aggr_cpu_id__die(cpu, data);
|
|
if (aggr_cpu_id__is_empty(&id))
|
|
return id;
|
|
|
|
id.cluster = cluster;
|
|
return id;
|
|
}
|
|
|
|
int cpu__get_core_id(struct perf_cpu cpu)
|
|
{
|
|
int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
|
|
return ret ?: value;
|
|
}
|
|
|
|
struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
|
|
{
|
|
struct aggr_cpu_id id;
|
|
int core = cpu__get_core_id(cpu);
|
|
|
|
/* aggr_cpu_id__die returns a struct with socket die, and cluster set. */
|
|
id = aggr_cpu_id__cluster(cpu, data);
|
|
if (aggr_cpu_id__is_empty(&id))
|
|
return id;
|
|
|
|
/*
|
|
* core_id is relative to socket and die, we need a global id.
|
|
* So we combine the result from cpu_map__get_die with the core id
|
|
*/
|
|
id.core = core;
|
|
return id;
|
|
|
|
}
|
|
|
|
struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
|
|
{
|
|
struct aggr_cpu_id id;
|
|
|
|
/* aggr_cpu_id__core returns a struct with socket, die and core set. */
|
|
id = aggr_cpu_id__core(cpu, data);
|
|
if (aggr_cpu_id__is_empty(&id))
|
|
return id;
|
|
|
|
id.cpu = cpu;
|
|
return id;
|
|
|
|
}
|
|
|
|
struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
|
|
{
|
|
struct aggr_cpu_id id = aggr_cpu_id__empty();
|
|
|
|
id.node = cpu__get_node(cpu);
|
|
return id;
|
|
}
|
|
|
|
struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
|
|
{
|
|
struct aggr_cpu_id id = aggr_cpu_id__empty();
|
|
|
|
/* it always aggregates to the cpu 0 */
|
|
cpu.cpu = 0;
|
|
id.cpu = cpu;
|
|
return id;
|
|
}
|
|
|
|
/* setup simple routines to easily access node numbers given a cpu number */
|
|
static int get_max_num(char *path, int *max)
|
|
{
|
|
size_t num;
|
|
char *buf;
|
|
int err = 0;
|
|
|
|
if (filename__read_str(path, &buf, &num))
|
|
return -1;
|
|
|
|
buf[num] = '\0';
|
|
|
|
/* start on the right, to find highest node num */
|
|
while (--num) {
|
|
if ((buf[num] == ',') || (buf[num] == '-')) {
|
|
num++;
|
|
break;
|
|
}
|
|
}
|
|
if (sscanf(&buf[num], "%d", max) < 1) {
|
|
err = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* convert from 0-based to 1-based */
|
|
(*max)++;
|
|
|
|
out:
|
|
free(buf);
|
|
return err;
|
|
}
|
|
|
|
/* Determine highest possible cpu in the system for sparse allocation */
|
|
static void set_max_cpu_num(void)
|
|
{
|
|
const char *mnt;
|
|
char path[PATH_MAX];
|
|
int ret = -1;
|
|
|
|
/* set up default */
|
|
max_cpu_num.cpu = 4096;
|
|
max_present_cpu_num.cpu = 4096;
|
|
|
|
mnt = sysfs__mountpoint();
|
|
if (!mnt)
|
|
goto out;
|
|
|
|
/* get the highest possible cpu number for a sparse allocation */
|
|
ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
|
|
if (ret >= PATH_MAX) {
|
|
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
|
|
goto out;
|
|
}
|
|
|
|
ret = get_max_num(path, &max_cpu_num.cpu);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* get the highest present cpu number for a sparse allocation */
|
|
ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
|
|
if (ret >= PATH_MAX) {
|
|
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
|
|
goto out;
|
|
}
|
|
|
|
ret = get_max_num(path, &max_present_cpu_num.cpu);
|
|
|
|
out:
|
|
if (ret)
|
|
pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
|
|
}
|
|
|
|
/* Determine highest possible node in the system for sparse allocation */
|
|
static void set_max_node_num(void)
|
|
{
|
|
const char *mnt;
|
|
char path[PATH_MAX];
|
|
int ret = -1;
|
|
|
|
/* set up default */
|
|
max_node_num = 8;
|
|
|
|
mnt = sysfs__mountpoint();
|
|
if (!mnt)
|
|
goto out;
|
|
|
|
/* get the highest possible cpu number for a sparse allocation */
|
|
ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
|
|
if (ret >= PATH_MAX) {
|
|
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
|
|
goto out;
|
|
}
|
|
|
|
ret = get_max_num(path, &max_node_num);
|
|
|
|
out:
|
|
if (ret)
|
|
pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
|
|
}
|
|
|
|
int cpu__max_node(void)
|
|
{
|
|
if (unlikely(!max_node_num))
|
|
set_max_node_num();
|
|
|
|
return max_node_num;
|
|
}
|
|
|
|
struct perf_cpu cpu__max_cpu(void)
|
|
{
|
|
if (unlikely(!max_cpu_num.cpu))
|
|
set_max_cpu_num();
|
|
|
|
return max_cpu_num;
|
|
}
|
|
|
|
struct perf_cpu cpu__max_present_cpu(void)
|
|
{
|
|
if (unlikely(!max_present_cpu_num.cpu))
|
|
set_max_cpu_num();
|
|
|
|
return max_present_cpu_num;
|
|
}
|
|
|
|
|
|
int cpu__get_node(struct perf_cpu cpu)
|
|
{
|
|
if (unlikely(cpunode_map == NULL)) {
|
|
pr_debug("cpu_map not initialized\n");
|
|
return -1;
|
|
}
|
|
|
|
return cpunode_map[cpu.cpu];
|
|
}
|
|
|
|
static int init_cpunode_map(void)
|
|
{
|
|
int i;
|
|
|
|
set_max_cpu_num();
|
|
set_max_node_num();
|
|
|
|
cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
|
|
if (!cpunode_map) {
|
|
pr_err("%s: calloc failed\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < max_cpu_num.cpu; i++)
|
|
cpunode_map[i] = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cpu__setup_cpunode_map(void)
|
|
{
|
|
struct dirent *dent1, *dent2;
|
|
DIR *dir1, *dir2;
|
|
unsigned int cpu, mem;
|
|
char buf[PATH_MAX];
|
|
char path[PATH_MAX];
|
|
const char *mnt;
|
|
int n;
|
|
|
|
/* initialize globals */
|
|
if (init_cpunode_map())
|
|
return -1;
|
|
|
|
mnt = sysfs__mountpoint();
|
|
if (!mnt)
|
|
return 0;
|
|
|
|
n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
|
|
if (n >= PATH_MAX) {
|
|
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
|
|
return -1;
|
|
}
|
|
|
|
dir1 = opendir(path);
|
|
if (!dir1)
|
|
return 0;
|
|
|
|
/* walk tree and setup map */
|
|
while ((dent1 = readdir(dir1)) != NULL) {
|
|
if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
|
|
continue;
|
|
|
|
n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
|
|
if (n >= PATH_MAX) {
|
|
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
|
|
continue;
|
|
}
|
|
|
|
dir2 = opendir(buf);
|
|
if (!dir2)
|
|
continue;
|
|
while ((dent2 = readdir(dir2)) != NULL) {
|
|
if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
|
|
continue;
|
|
cpunode_map[cpu] = mem;
|
|
}
|
|
closedir(dir2);
|
|
}
|
|
closedir(dir1);
|
|
return 0;
|
|
}
|
|
|
|
size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
|
|
{
|
|
int i, start = -1;
|
|
bool first = true;
|
|
size_t ret = 0;
|
|
|
|
#define COMMA first ? "" : ","
|
|
|
|
for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) {
|
|
struct perf_cpu cpu = { .cpu = INT_MAX };
|
|
bool last = i == perf_cpu_map__nr(map);
|
|
|
|
if (!last)
|
|
cpu = perf_cpu_map__cpu(map, i);
|
|
|
|
if (start == -1) {
|
|
start = i;
|
|
if (last) {
|
|
ret += snprintf(buf + ret, size - ret,
|
|
"%s%d", COMMA,
|
|
perf_cpu_map__cpu(map, i).cpu);
|
|
}
|
|
} else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) {
|
|
int end = i - 1;
|
|
|
|
if (start == end) {
|
|
ret += snprintf(buf + ret, size - ret,
|
|
"%s%d", COMMA,
|
|
perf_cpu_map__cpu(map, start).cpu);
|
|
} else {
|
|
ret += snprintf(buf + ret, size - ret,
|
|
"%s%d-%d", COMMA,
|
|
perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu);
|
|
}
|
|
first = false;
|
|
start = i;
|
|
}
|
|
}
|
|
|
|
#undef COMMA
|
|
|
|
pr_debug2("cpumask list: %s\n", buf);
|
|
return ret;
|
|
}
|
|
|
|
static char hex_char(unsigned char val)
|
|
{
|
|
if (val < 10)
|
|
return val + '0';
|
|
if (val < 16)
|
|
return val - 10 + 'a';
|
|
return '?';
|
|
}
|
|
|
|
size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
|
|
{
|
|
int idx;
|
|
char *ptr = buf;
|
|
unsigned char *bitmap;
|
|
struct perf_cpu c, last_cpu = perf_cpu_map__max(map);
|
|
|
|
if (buf == NULL)
|
|
return 0;
|
|
|
|
bitmap = zalloc(last_cpu.cpu / 8 + 1);
|
|
if (bitmap == NULL) {
|
|
buf[0] = '\0';
|
|
return 0;
|
|
}
|
|
|
|
perf_cpu_map__for_each_cpu(c, idx, map)
|
|
bitmap[c.cpu / 8] |= 1 << (c.cpu % 8);
|
|
|
|
for (int cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
|
|
unsigned char bits = bitmap[cpu / 8];
|
|
|
|
if (cpu % 8)
|
|
bits >>= 4;
|
|
else
|
|
bits &= 0xf;
|
|
|
|
*ptr++ = hex_char(bits);
|
|
if ((cpu % 32) == 0 && cpu > 0)
|
|
*ptr++ = ',';
|
|
}
|
|
*ptr = '\0';
|
|
free(bitmap);
|
|
|
|
buf[size - 1] = '\0';
|
|
return ptr - buf;
|
|
}
|
|
|
|
struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
|
|
{
|
|
static struct perf_cpu_map *online;
|
|
|
|
if (!online)
|
|
online = perf_cpu_map__new_online_cpus(); /* from /sys/devices/system/cpu/online */
|
|
|
|
return online;
|
|
}
|
|
|
|
bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
|
|
{
|
|
return a->thread_idx == b->thread_idx &&
|
|
a->node == b->node &&
|
|
a->socket == b->socket &&
|
|
a->die == b->die &&
|
|
a->cluster == b->cluster &&
|
|
a->cache_lvl == b->cache_lvl &&
|
|
a->cache == b->cache &&
|
|
a->core == b->core &&
|
|
a->cpu.cpu == b->cpu.cpu;
|
|
}
|
|
|
|
bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
|
|
{
|
|
return a->thread_idx == -1 &&
|
|
a->node == -1 &&
|
|
a->socket == -1 &&
|
|
a->die == -1 &&
|
|
a->cluster == -1 &&
|
|
a->cache_lvl == -1 &&
|
|
a->cache == -1 &&
|
|
a->core == -1 &&
|
|
a->cpu.cpu == -1;
|
|
}
|
|
|
|
struct aggr_cpu_id aggr_cpu_id__empty(void)
|
|
{
|
|
struct aggr_cpu_id ret = {
|
|
.thread_idx = -1,
|
|
.node = -1,
|
|
.socket = -1,
|
|
.die = -1,
|
|
.cluster = -1,
|
|
.cache_lvl = -1,
|
|
.cache = -1,
|
|
.core = -1,
|
|
.cpu = (struct perf_cpu){ .cpu = -1 },
|
|
};
|
|
return ret;
|
|
}
|