linux-next/drivers/scsi/sun_esp.c
Andrea Righi 27ac792ca0 PAGE_ALIGN(): correctly handle 64-bit values on 32-bit architectures
On 32-bit architectures PAGE_ALIGN() truncates 64-bit values to the 32-bit
boundary. For example:

	u64 val = PAGE_ALIGN(size);

always returns a value < 4GB even if size is greater than 4GB.

The problem resides in PAGE_MASK definition (from include/asm-x86/page.h for
example):

#define PAGE_SHIFT      12
#define PAGE_SIZE       (_AC(1,UL) << PAGE_SHIFT)
#define PAGE_MASK       (~(PAGE_SIZE-1))
...
#define PAGE_ALIGN(addr)       (((addr)+PAGE_SIZE-1)&PAGE_MASK)

The "~" is performed on a 32-bit value, so everything in "and" with
PAGE_MASK greater than 4GB will be truncated to the 32-bit boundary.
Using the ALIGN() macro seems to be the right way, because it uses
typeof(addr) for the mask.

Also move the PAGE_ALIGN() definitions out of include/asm-*/page.h in
include/linux/mm.h.

See also lkml discussion: http://lkml.org/lkml/2008/6/11/237

[akpm@linux-foundation.org: fix drivers/media/video/uvc/uvc_queue.c]
[akpm@linux-foundation.org: fix v850]
[akpm@linux-foundation.org: fix powerpc]
[akpm@linux-foundation.org: fix arm]
[akpm@linux-foundation.org: fix mips]
[akpm@linux-foundation.org: fix drivers/media/video/pvrusb2/pvrusb2-dvb.c]
[akpm@linux-foundation.org: fix drivers/mtd/maps/uclinux.c]
[akpm@linux-foundation.org: fix powerpc]
Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:21 -07:00

637 lines
14 KiB
C

/* sun_esp.c: ESP front-end for Sparc SBUS systems.
*
* Copyright (C) 2007 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/sbus.h>
#include <scsi/scsi_host.h>
#include "esp_scsi.h"
#define DRV_MODULE_NAME "sun_esp"
#define PFX DRV_MODULE_NAME ": "
#define DRV_VERSION "1.000"
#define DRV_MODULE_RELDATE "April 19, 2007"
#define dma_read32(REG) \
sbus_readl(esp->dma_regs + (REG))
#define dma_write32(VAL, REG) \
sbus_writel((VAL), esp->dma_regs + (REG))
static int __devinit esp_sbus_find_dma(struct esp *esp, struct sbus_dev *dma_sdev)
{
struct sbus_dev *sdev = esp->dev;
struct sbus_dma *dma;
if (dma_sdev != NULL) {
for_each_dvma(dma) {
if (dma->sdev == dma_sdev)
break;
}
} else {
for_each_dvma(dma) {
if (dma->sdev == NULL)
break;
/* If bus + slot are the same and it has the
* correct OBP name, it's ours.
*/
if (sdev->bus == dma->sdev->bus &&
sdev->slot == dma->sdev->slot &&
(!strcmp(dma->sdev->prom_name, "dma") ||
!strcmp(dma->sdev->prom_name, "espdma")))
break;
}
}
if (dma == NULL) {
printk(KERN_ERR PFX "[%s] Cannot find dma.\n",
sdev->ofdev.node->full_name);
return -ENODEV;
}
esp->dma = dma;
esp->dma_regs = dma->regs;
return 0;
}
static int __devinit esp_sbus_map_regs(struct esp *esp, int hme)
{
struct sbus_dev *sdev = esp->dev;
struct resource *res;
/* On HME, two reg sets exist, first is DVMA,
* second is ESP registers.
*/
if (hme)
res = &sdev->resource[1];
else
res = &sdev->resource[0];
esp->regs = sbus_ioremap(res, 0, SBUS_ESP_REG_SIZE, "ESP");
if (!esp->regs)
return -ENOMEM;
return 0;
}
static int __devinit esp_sbus_map_command_block(struct esp *esp)
{
struct sbus_dev *sdev = esp->dev;
esp->command_block = sbus_alloc_consistent(sdev, 16,
&esp->command_block_dma);
if (!esp->command_block)
return -ENOMEM;
return 0;
}
static int __devinit esp_sbus_register_irq(struct esp *esp)
{
struct Scsi_Host *host = esp->host;
struct sbus_dev *sdev = esp->dev;
host->irq = sdev->irqs[0];
return request_irq(host->irq, scsi_esp_intr, IRQF_SHARED, "ESP", esp);
}
static void __devinit esp_get_scsi_id(struct esp *esp)
{
struct sbus_dev *sdev = esp->dev;
struct device_node *dp = sdev->ofdev.node;
esp->scsi_id = of_getintprop_default(dp, "initiator-id", 0xff);
if (esp->scsi_id != 0xff)
goto done;
esp->scsi_id = of_getintprop_default(dp, "scsi-initiator-id", 0xff);
if (esp->scsi_id != 0xff)
goto done;
if (!sdev->bus) {
/* SUN4 */
esp->scsi_id = 7;
goto done;
}
esp->scsi_id = of_getintprop_default(sdev->bus->ofdev.node,
"scsi-initiator-id", 7);
done:
esp->host->this_id = esp->scsi_id;
esp->scsi_id_mask = (1 << esp->scsi_id);
}
static void __devinit esp_get_differential(struct esp *esp)
{
struct sbus_dev *sdev = esp->dev;
struct device_node *dp = sdev->ofdev.node;
if (of_find_property(dp, "differential", NULL))
esp->flags |= ESP_FLAG_DIFFERENTIAL;
else
esp->flags &= ~ESP_FLAG_DIFFERENTIAL;
}
static void __devinit esp_get_clock_params(struct esp *esp)
{
struct sbus_dev *sdev = esp->dev;
struct device_node *dp = sdev->ofdev.node;
struct device_node *bus_dp;
int fmhz;
bus_dp = NULL;
if (sdev != NULL && sdev->bus != NULL)
bus_dp = sdev->bus->ofdev.node;
fmhz = of_getintprop_default(dp, "clock-frequency", 0);
if (fmhz == 0)
fmhz = (!bus_dp) ? 0 :
of_getintprop_default(bus_dp, "clock-frequency", 0);
esp->cfreq = fmhz;
}
static void __devinit esp_get_bursts(struct esp *esp, struct sbus_dev *dma)
{
struct sbus_dev *sdev = esp->dev;
struct device_node *dp = sdev->ofdev.node;
u8 bursts;
bursts = of_getintprop_default(dp, "burst-sizes", 0xff);
if (dma) {
struct device_node *dma_dp = dma->ofdev.node;
u8 val = of_getintprop_default(dma_dp, "burst-sizes", 0xff);
if (val != 0xff)
bursts &= val;
}
if (sdev->bus) {
u8 val = of_getintprop_default(sdev->bus->ofdev.node,
"burst-sizes", 0xff);
if (val != 0xff)
bursts &= val;
}
if (bursts == 0xff ||
(bursts & DMA_BURST16) == 0 ||
(bursts & DMA_BURST32) == 0)
bursts = (DMA_BURST32 - 1);
esp->bursts = bursts;
}
static void __devinit esp_sbus_get_props(struct esp *esp, struct sbus_dev *espdma)
{
esp_get_scsi_id(esp);
esp_get_differential(esp);
esp_get_clock_params(esp);
esp_get_bursts(esp, espdma);
}
static void sbus_esp_write8(struct esp *esp, u8 val, unsigned long reg)
{
sbus_writeb(val, esp->regs + (reg * 4UL));
}
static u8 sbus_esp_read8(struct esp *esp, unsigned long reg)
{
return sbus_readb(esp->regs + (reg * 4UL));
}
static dma_addr_t sbus_esp_map_single(struct esp *esp, void *buf,
size_t sz, int dir)
{
return sbus_map_single(esp->dev, buf, sz, dir);
}
static int sbus_esp_map_sg(struct esp *esp, struct scatterlist *sg,
int num_sg, int dir)
{
return sbus_map_sg(esp->dev, sg, num_sg, dir);
}
static void sbus_esp_unmap_single(struct esp *esp, dma_addr_t addr,
size_t sz, int dir)
{
sbus_unmap_single(esp->dev, addr, sz, dir);
}
static void sbus_esp_unmap_sg(struct esp *esp, struct scatterlist *sg,
int num_sg, int dir)
{
sbus_unmap_sg(esp->dev, sg, num_sg, dir);
}
static int sbus_esp_irq_pending(struct esp *esp)
{
if (dma_read32(DMA_CSR) & (DMA_HNDL_INTR | DMA_HNDL_ERROR))
return 1;
return 0;
}
static void sbus_esp_reset_dma(struct esp *esp)
{
int can_do_burst16, can_do_burst32, can_do_burst64;
int can_do_sbus64, lim;
u32 val;
can_do_burst16 = (esp->bursts & DMA_BURST16) != 0;
can_do_burst32 = (esp->bursts & DMA_BURST32) != 0;
can_do_burst64 = 0;
can_do_sbus64 = 0;
if (sbus_can_dma_64bit(esp->dev))
can_do_sbus64 = 1;
if (sbus_can_burst64(esp->sdev))
can_do_burst64 = (esp->bursts & DMA_BURST64) != 0;
/* Put the DVMA into a known state. */
if (esp->dma->revision != dvmahme) {
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_RST_SCSI, DMA_CSR);
dma_write32(val & ~DMA_RST_SCSI, DMA_CSR);
}
switch (esp->dma->revision) {
case dvmahme:
dma_write32(DMA_RESET_FAS366, DMA_CSR);
dma_write32(DMA_RST_SCSI, DMA_CSR);
esp->prev_hme_dmacsr = (DMA_PARITY_OFF | DMA_2CLKS |
DMA_SCSI_DISAB | DMA_INT_ENAB);
esp->prev_hme_dmacsr &= ~(DMA_ENABLE | DMA_ST_WRITE |
DMA_BRST_SZ);
if (can_do_burst64)
esp->prev_hme_dmacsr |= DMA_BRST64;
else if (can_do_burst32)
esp->prev_hme_dmacsr |= DMA_BRST32;
if (can_do_sbus64) {
esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64;
sbus_set_sbus64(esp->dev, esp->bursts);
}
lim = 1000;
while (dma_read32(DMA_CSR) & DMA_PEND_READ) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA_PEND_READ "
"will not clear!\n",
esp->host->unique_id);
break;
}
udelay(1);
}
dma_write32(0, DMA_CSR);
dma_write32(esp->prev_hme_dmacsr, DMA_CSR);
dma_write32(0, DMA_ADDR);
break;
case dvmarev2:
if (esp->rev != ESP100) {
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_3CLKS, DMA_CSR);
}
break;
case dvmarev3:
val = dma_read32(DMA_CSR);
val &= ~DMA_3CLKS;
val |= DMA_2CLKS;
if (can_do_burst32) {
val &= ~DMA_BRST_SZ;
val |= DMA_BRST32;
}
dma_write32(val, DMA_CSR);
break;
case dvmaesc1:
val = dma_read32(DMA_CSR);
val |= DMA_ADD_ENABLE;
val &= ~DMA_BCNT_ENAB;
if (!can_do_burst32 && can_do_burst16) {
val |= DMA_ESC_BURST;
} else {
val &= ~(DMA_ESC_BURST);
}
dma_write32(val, DMA_CSR);
break;
default:
break;
}
/* Enable interrupts. */
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_INT_ENAB, DMA_CSR);
}
static void sbus_esp_dma_drain(struct esp *esp)
{
u32 csr;
int lim;
if (esp->dma->revision == dvmahme)
return;
csr = dma_read32(DMA_CSR);
if (!(csr & DMA_FIFO_ISDRAIN))
return;
if (esp->dma->revision != dvmarev3 && esp->dma->revision != dvmaesc1)
dma_write32(csr | DMA_FIFO_STDRAIN, DMA_CSR);
lim = 1000;
while (dma_read32(DMA_CSR) & DMA_FIFO_ISDRAIN) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA will not drain!\n",
esp->host->unique_id);
break;
}
udelay(1);
}
}
static void sbus_esp_dma_invalidate(struct esp *esp)
{
if (esp->dma->revision == dvmahme) {
dma_write32(DMA_RST_SCSI, DMA_CSR);
esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr |
(DMA_PARITY_OFF | DMA_2CLKS |
DMA_SCSI_DISAB | DMA_INT_ENAB)) &
~(DMA_ST_WRITE | DMA_ENABLE));
dma_write32(0, DMA_CSR);
dma_write32(esp->prev_hme_dmacsr, DMA_CSR);
/* This is necessary to avoid having the SCSI channel
* engine lock up on us.
*/
dma_write32(0, DMA_ADDR);
} else {
u32 val;
int lim;
lim = 1000;
while ((val = dma_read32(DMA_CSR)) & DMA_PEND_READ) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA will not "
"invalidate!\n", esp->host->unique_id);
break;
}
udelay(1);
}
val &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB);
val |= DMA_FIFO_INV;
dma_write32(val, DMA_CSR);
val &= ~DMA_FIFO_INV;
dma_write32(val, DMA_CSR);
}
}
static void sbus_esp_send_dma_cmd(struct esp *esp, u32 addr, u32 esp_count,
u32 dma_count, int write, u8 cmd)
{
u32 csr;
BUG_ON(!(cmd & ESP_CMD_DMA));
sbus_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
sbus_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
if (esp->rev == FASHME) {
sbus_esp_write8(esp, (esp_count >> 16) & 0xff, FAS_RLO);
sbus_esp_write8(esp, 0, FAS_RHI);
scsi_esp_cmd(esp, cmd);
csr = esp->prev_hme_dmacsr;
csr |= DMA_SCSI_DISAB | DMA_ENABLE;
if (write)
csr |= DMA_ST_WRITE;
else
csr &= ~DMA_ST_WRITE;
esp->prev_hme_dmacsr = csr;
dma_write32(dma_count, DMA_COUNT);
dma_write32(addr, DMA_ADDR);
dma_write32(csr, DMA_CSR);
} else {
csr = dma_read32(DMA_CSR);
csr |= DMA_ENABLE;
if (write)
csr |= DMA_ST_WRITE;
else
csr &= ~DMA_ST_WRITE;
dma_write32(csr, DMA_CSR);
if (esp->dma->revision == dvmaesc1) {
u32 end = PAGE_ALIGN(addr + dma_count + 16U);
dma_write32(end - addr, DMA_COUNT);
}
dma_write32(addr, DMA_ADDR);
scsi_esp_cmd(esp, cmd);
}
}
static int sbus_esp_dma_error(struct esp *esp)
{
u32 csr = dma_read32(DMA_CSR);
if (csr & DMA_HNDL_ERROR)
return 1;
return 0;
}
static const struct esp_driver_ops sbus_esp_ops = {
.esp_write8 = sbus_esp_write8,
.esp_read8 = sbus_esp_read8,
.map_single = sbus_esp_map_single,
.map_sg = sbus_esp_map_sg,
.unmap_single = sbus_esp_unmap_single,
.unmap_sg = sbus_esp_unmap_sg,
.irq_pending = sbus_esp_irq_pending,
.reset_dma = sbus_esp_reset_dma,
.dma_drain = sbus_esp_dma_drain,
.dma_invalidate = sbus_esp_dma_invalidate,
.send_dma_cmd = sbus_esp_send_dma_cmd,
.dma_error = sbus_esp_dma_error,
};
static int __devinit esp_sbus_probe_one(struct device *dev,
struct sbus_dev *esp_dev,
struct sbus_dev *espdma,
struct sbus_bus *sbus,
int hme)
{
struct scsi_host_template *tpnt = &scsi_esp_template;
struct Scsi_Host *host;
struct esp *esp;
int err;
host = scsi_host_alloc(tpnt, sizeof(struct esp));
err = -ENOMEM;
if (!host)
goto fail;
host->max_id = (hme ? 16 : 8);
esp = shost_priv(host);
esp->host = host;
esp->dev = esp_dev;
esp->ops = &sbus_esp_ops;
if (hme)
esp->flags |= ESP_FLAG_WIDE_CAPABLE;
err = esp_sbus_find_dma(esp, espdma);
if (err < 0)
goto fail_unlink;
err = esp_sbus_map_regs(esp, hme);
if (err < 0)
goto fail_unlink;
err = esp_sbus_map_command_block(esp);
if (err < 0)
goto fail_unmap_regs;
err = esp_sbus_register_irq(esp);
if (err < 0)
goto fail_unmap_command_block;
esp_sbus_get_props(esp, espdma);
/* Before we try to touch the ESP chip, ESC1 dma can
* come up with the reset bit set, so make sure that
* is clear first.
*/
if (esp->dma->revision == dvmaesc1) {
u32 val = dma_read32(DMA_CSR);
dma_write32(val & ~DMA_RST_SCSI, DMA_CSR);
}
dev_set_drvdata(&esp_dev->ofdev.dev, esp);
err = scsi_esp_register(esp, dev);
if (err)
goto fail_free_irq;
return 0;
fail_free_irq:
free_irq(host->irq, esp);
fail_unmap_command_block:
sbus_free_consistent(esp->dev, 16,
esp->command_block,
esp->command_block_dma);
fail_unmap_regs:
sbus_iounmap(esp->regs, SBUS_ESP_REG_SIZE);
fail_unlink:
scsi_host_put(host);
fail:
return err;
}
static int __devinit esp_sbus_probe(struct of_device *dev, const struct of_device_id *match)
{
struct sbus_dev *sdev = to_sbus_device(&dev->dev);
struct device_node *dp = dev->node;
struct sbus_dev *dma_sdev = NULL;
int hme = 0;
if (dp->parent &&
(!strcmp(dp->parent->name, "espdma") ||
!strcmp(dp->parent->name, "dma")))
dma_sdev = sdev->parent;
else if (!strcmp(dp->name, "SUNW,fas")) {
dma_sdev = sdev;
hme = 1;
}
return esp_sbus_probe_one(&dev->dev, sdev, dma_sdev,
sdev->bus, hme);
}
static int __devexit esp_sbus_remove(struct of_device *dev)
{
struct esp *esp = dev_get_drvdata(&dev->dev);
unsigned int irq = esp->host->irq;
u32 val;
scsi_esp_unregister(esp);
/* Disable interrupts. */
val = dma_read32(DMA_CSR);
dma_write32(val & ~DMA_INT_ENAB, DMA_CSR);
free_irq(irq, esp);
sbus_free_consistent(esp->dev, 16,
esp->command_block,
esp->command_block_dma);
sbus_iounmap(esp->regs, SBUS_ESP_REG_SIZE);
scsi_host_put(esp->host);
return 0;
}
static struct of_device_id esp_match[] = {
{
.name = "SUNW,esp",
},
{
.name = "SUNW,fas",
},
{
.name = "esp",
},
{},
};
MODULE_DEVICE_TABLE(of, esp_match);
static struct of_platform_driver esp_sbus_driver = {
.name = "esp",
.match_table = esp_match,
.probe = esp_sbus_probe,
.remove = __devexit_p(esp_sbus_remove),
};
static int __init sunesp_init(void)
{
return of_register_driver(&esp_sbus_driver, &sbus_bus_type);
}
static void __exit sunesp_exit(void)
{
of_unregister_driver(&esp_sbus_driver);
}
MODULE_DESCRIPTION("Sun ESP SCSI driver");
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
module_init(sunesp_init);
module_exit(sunesp_exit);