Miaoqian Lin 3755278f07 usb: dwc2: Fix memory leak in dwc2_hcd_init
usb_create_hcd will alloc memory for hcd, and we should
call usb_put_hcd to free it when platform_get_resource()
fails to prevent memory leak.
goto error2 label instead error1 to fix this.

Fixes: 856e6e8e0f93 ("usb: dwc2: check return value after calling platform_get_resource()")
Cc: stable <stable@kernel.org>
Acked-by: Minas Harutyunyan <hminas@synopsys.com>
Signed-off-by: Miaoqian Lin <linmq006@gmail.com>
Link: https://lore.kernel.org/r/20220530085413.44068-1-linmq006@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-10 11:12:20 +02:00

5982 lines
164 KiB
C

// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* hcd.c - DesignWare HS OTG Controller host-mode routines
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file contains the core HCD code, and implements the Linux hc_driver
* API
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>
#include "core.h"
#include "hcd.h"
/*
* =========================================================================
* Host Core Layer Functions
* =========================================================================
*/
/**
* dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
* used in both device and host modes
*
* @hsotg: Programming view of the DWC_otg controller
*/
static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
{
u32 intmsk;
/* Clear any pending OTG Interrupts */
dwc2_writel(hsotg, 0xffffffff, GOTGINT);
/* Clear any pending interrupts */
dwc2_writel(hsotg, 0xffffffff, GINTSTS);
/* Enable the interrupts in the GINTMSK */
intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
if (!hsotg->params.host_dma)
intmsk |= GINTSTS_RXFLVL;
if (!hsotg->params.external_id_pin_ctl)
intmsk |= GINTSTS_CONIDSTSCHNG;
intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
GINTSTS_SESSREQINT;
if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
intmsk |= GINTSTS_LPMTRANRCVD;
dwc2_writel(hsotg, intmsk, GINTMSK);
}
static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
{
u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
switch (hsotg->hw_params.arch) {
case GHWCFG2_EXT_DMA_ARCH:
dev_err(hsotg->dev, "External DMA Mode not supported\n");
return -EINVAL;
case GHWCFG2_INT_DMA_ARCH:
dev_dbg(hsotg->dev, "Internal DMA Mode\n");
if (hsotg->params.ahbcfg != -1) {
ahbcfg &= GAHBCFG_CTRL_MASK;
ahbcfg |= hsotg->params.ahbcfg &
~GAHBCFG_CTRL_MASK;
}
break;
case GHWCFG2_SLAVE_ONLY_ARCH:
default:
dev_dbg(hsotg->dev, "Slave Only Mode\n");
break;
}
if (hsotg->params.host_dma)
ahbcfg |= GAHBCFG_DMA_EN;
else
hsotg->params.dma_desc_enable = false;
dwc2_writel(hsotg, ahbcfg, GAHBCFG);
return 0;
}
static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
{
u32 usbcfg;
usbcfg = dwc2_readl(hsotg, GUSBCFG);
usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
switch (hsotg->hw_params.op_mode) {
case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
if (hsotg->params.otg_caps.hnp_support &&
hsotg->params.otg_caps.srp_support)
usbcfg |= GUSBCFG_HNPCAP;
fallthrough;
case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
if (hsotg->params.otg_caps.srp_support)
usbcfg |= GUSBCFG_SRPCAP;
break;
case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
default:
break;
}
dwc2_writel(hsotg, usbcfg, GUSBCFG);
}
static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
{
if (hsotg->vbus_supply)
return regulator_enable(hsotg->vbus_supply);
return 0;
}
static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
{
if (hsotg->vbus_supply)
return regulator_disable(hsotg->vbus_supply);
return 0;
}
/**
* dwc2_enable_host_interrupts() - Enables the Host mode interrupts
*
* @hsotg: Programming view of DWC_otg controller
*/
static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
{
u32 intmsk;
dev_dbg(hsotg->dev, "%s()\n", __func__);
/* Disable all interrupts */
dwc2_writel(hsotg, 0, GINTMSK);
dwc2_writel(hsotg, 0, HAINTMSK);
/* Enable the common interrupts */
dwc2_enable_common_interrupts(hsotg);
/* Enable host mode interrupts without disturbing common interrupts */
intmsk = dwc2_readl(hsotg, GINTMSK);
intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
dwc2_writel(hsotg, intmsk, GINTMSK);
}
/**
* dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
*
* @hsotg: Programming view of DWC_otg controller
*/
static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
{
u32 intmsk = dwc2_readl(hsotg, GINTMSK);
/* Disable host mode interrupts without disturbing common interrupts */
intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
dwc2_writel(hsotg, intmsk, GINTMSK);
}
/*
* dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
* For system that have a total fifo depth that is smaller than the default
* RX + TX fifo size.
*
* @hsotg: Programming view of DWC_otg controller
*/
static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
{
struct dwc2_core_params *params = &hsotg->params;
struct dwc2_hw_params *hw = &hsotg->hw_params;
u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
total_fifo_size = hw->total_fifo_size;
rxfsiz = params->host_rx_fifo_size;
nptxfsiz = params->host_nperio_tx_fifo_size;
ptxfsiz = params->host_perio_tx_fifo_size;
/*
* Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
* allocation with support for high bandwidth endpoints. Synopsys
* defines MPS(Max Packet size) for a periodic EP=1024, and for
* non-periodic as 512.
*/
if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
/*
* For Buffer DMA mode/Scatter Gather DMA mode
* 2 * ((Largest Packet size / 4) + 1 + 1) + n
* with n = number of host channel.
* 2 * ((1024/4) + 2) = 516
*/
rxfsiz = 516 + hw->host_channels;
/*
* min non-periodic tx fifo depth
* 2 * (largest non-periodic USB packet used / 4)
* 2 * (512/4) = 256
*/
nptxfsiz = 256;
/*
* min periodic tx fifo depth
* (largest packet size*MC)/4
* (1024 * 3)/4 = 768
*/
ptxfsiz = 768;
params->host_rx_fifo_size = rxfsiz;
params->host_nperio_tx_fifo_size = nptxfsiz;
params->host_perio_tx_fifo_size = ptxfsiz;
}
/*
* If the summation of RX, NPTX and PTX fifo sizes is still
* bigger than the total_fifo_size, then we have a problem.
*
* We won't be able to allocate as many endpoints. Right now,
* we're just printing an error message, but ideally this FIFO
* allocation algorithm would be improved in the future.
*
* FIXME improve this FIFO allocation algorithm.
*/
if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
dev_err(hsotg->dev, "invalid fifo sizes\n");
}
static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
{
struct dwc2_core_params *params = &hsotg->params;
u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
if (!params->enable_dynamic_fifo)
return;
dwc2_calculate_dynamic_fifo(hsotg);
/* Rx FIFO */
grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
grxfsiz |= params->host_rx_fifo_size <<
GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
dwc2_readl(hsotg, GRXFSIZ));
/* Non-periodic Tx FIFO */
dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
dwc2_readl(hsotg, GNPTXFSIZ));
nptxfsiz = params->host_nperio_tx_fifo_size <<
FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
nptxfsiz |= params->host_rx_fifo_size <<
FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
dwc2_readl(hsotg, GNPTXFSIZ));
/* Periodic Tx FIFO */
dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
dwc2_readl(hsotg, HPTXFSIZ));
hptxfsiz = params->host_perio_tx_fifo_size <<
FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
hptxfsiz |= (params->host_rx_fifo_size +
params->host_nperio_tx_fifo_size) <<
FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
dwc2_readl(hsotg, HPTXFSIZ));
if (hsotg->params.en_multiple_tx_fifo &&
hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
/*
* This feature was implemented in 2.91a version
* Global DFIFOCFG calculation for Host mode -
* include RxFIFO, NPTXFIFO and HPTXFIFO
*/
dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
dfifocfg |= (params->host_rx_fifo_size +
params->host_nperio_tx_fifo_size +
params->host_perio_tx_fifo_size) <<
GDFIFOCFG_EPINFOBASE_SHIFT &
GDFIFOCFG_EPINFOBASE_MASK;
dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
}
}
/**
* dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
* the HFIR register according to PHY type and speed
*
* @hsotg: Programming view of DWC_otg controller
*
* NOTE: The caller can modify the value of the HFIR register only after the
* Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
* has been set
*/
u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
{
u32 usbcfg;
u32 hprt0;
int clock = 60; /* default value */
usbcfg = dwc2_readl(hsotg, GUSBCFG);
hprt0 = dwc2_readl(hsotg, HPRT0);
if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
!(usbcfg & GUSBCFG_PHYIF16))
clock = 60;
if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
clock = 48;
if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
!(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
clock = 30;
if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
!(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
clock = 60;
if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
!(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
clock = 48;
if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
clock = 48;
if ((usbcfg & GUSBCFG_PHYSEL) &&
hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
clock = 48;
if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
/* High speed case */
return 125 * clock - 1;
/* FS/LS case */
return 1000 * clock - 1;
}
/**
* dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
* buffer
*
* @hsotg: Programming view of DWC_otg controller
* @dest: Destination buffer for the packet
* @bytes: Number of bytes to copy to the destination
*/
void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
{
u32 *data_buf = (u32 *)dest;
int word_count = (bytes + 3) / 4;
int i;
/*
* Todo: Account for the case where dest is not dword aligned. This
* requires reading data from the FIFO into a u32 temp buffer, then
* moving it into the data buffer.
*/
dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
for (i = 0; i < word_count; i++, data_buf++)
*data_buf = dwc2_readl(hsotg, HCFIFO(0));
}
/**
* dwc2_dump_channel_info() - Prints the state of a host channel
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Pointer to the channel to dump
*
* Must be called with interrupt disabled and spinlock held
*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
#ifdef VERBOSE_DEBUG
int num_channels = hsotg->params.host_channels;
struct dwc2_qh *qh;
u32 hcchar;
u32 hcsplt;
u32 hctsiz;
u32 hc_dma;
int i;
if (!chan)
return;
hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
hcchar, hcsplt);
dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
hctsiz, hc_dma);
dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
chan->dev_addr, chan->ep_num, chan->ep_is_in);
dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
(unsigned long)chan->xfer_dma);
dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
dev_dbg(hsotg->dev, " NP inactive sched:\n");
list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
qh_list_entry)
dev_dbg(hsotg->dev, " %p\n", qh);
dev_dbg(hsotg->dev, " NP waiting sched:\n");
list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
qh_list_entry)
dev_dbg(hsotg->dev, " %p\n", qh);
dev_dbg(hsotg->dev, " NP active sched:\n");
list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
qh_list_entry)
dev_dbg(hsotg->dev, " %p\n", qh);
dev_dbg(hsotg->dev, " Channels:\n");
for (i = 0; i < num_channels; i++) {
struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
}
#endif /* VERBOSE_DEBUG */
}
static int _dwc2_hcd_start(struct usb_hcd *hcd);
static void dwc2_host_start(struct dwc2_hsotg *hsotg)
{
struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
_dwc2_hcd_start(hcd);
}
static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
{
struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
hcd->self.is_b_host = 0;
}
static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
int *hub_addr, int *hub_port)
{
struct urb *urb = context;
if (urb->dev->tt)
*hub_addr = urb->dev->tt->hub->devnum;
else
*hub_addr = 0;
*hub_port = urb->dev->ttport;
}
/*
* =========================================================================
* Low Level Host Channel Access Functions
* =========================================================================
*/
static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 hcintmsk = HCINTMSK_CHHLTD;
switch (chan->ep_type) {
case USB_ENDPOINT_XFER_CONTROL:
case USB_ENDPOINT_XFER_BULK:
dev_vdbg(hsotg->dev, "control/bulk\n");
hcintmsk |= HCINTMSK_XFERCOMPL;
hcintmsk |= HCINTMSK_STALL;
hcintmsk |= HCINTMSK_XACTERR;
hcintmsk |= HCINTMSK_DATATGLERR;
if (chan->ep_is_in) {
hcintmsk |= HCINTMSK_BBLERR;
} else {
hcintmsk |= HCINTMSK_NAK;
hcintmsk |= HCINTMSK_NYET;
if (chan->do_ping)
hcintmsk |= HCINTMSK_ACK;
}
if (chan->do_split) {
hcintmsk |= HCINTMSK_NAK;
if (chan->complete_split)
hcintmsk |= HCINTMSK_NYET;
else
hcintmsk |= HCINTMSK_ACK;
}
if (chan->error_state)
hcintmsk |= HCINTMSK_ACK;
break;
case USB_ENDPOINT_XFER_INT:
if (dbg_perio())
dev_vdbg(hsotg->dev, "intr\n");
hcintmsk |= HCINTMSK_XFERCOMPL;
hcintmsk |= HCINTMSK_NAK;
hcintmsk |= HCINTMSK_STALL;
hcintmsk |= HCINTMSK_XACTERR;
hcintmsk |= HCINTMSK_DATATGLERR;
hcintmsk |= HCINTMSK_FRMOVRUN;
if (chan->ep_is_in)
hcintmsk |= HCINTMSK_BBLERR;
if (chan->error_state)
hcintmsk |= HCINTMSK_ACK;
if (chan->do_split) {
if (chan->complete_split)
hcintmsk |= HCINTMSK_NYET;
else
hcintmsk |= HCINTMSK_ACK;
}
break;
case USB_ENDPOINT_XFER_ISOC:
if (dbg_perio())
dev_vdbg(hsotg->dev, "isoc\n");
hcintmsk |= HCINTMSK_XFERCOMPL;
hcintmsk |= HCINTMSK_FRMOVRUN;
hcintmsk |= HCINTMSK_ACK;
if (chan->ep_is_in) {
hcintmsk |= HCINTMSK_XACTERR;
hcintmsk |= HCINTMSK_BBLERR;
}
break;
default:
dev_err(hsotg->dev, "## Unknown EP type ##\n");
break;
}
dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
}
static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 hcintmsk = HCINTMSK_CHHLTD;
/*
* For Descriptor DMA mode core halts the channel on AHB error.
* Interrupt is not required.
*/
if (!hsotg->params.dma_desc_enable) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "desc DMA disabled\n");
hcintmsk |= HCINTMSK_AHBERR;
} else {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "desc DMA enabled\n");
if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
hcintmsk |= HCINTMSK_XFERCOMPL;
}
if (chan->error_state && !chan->do_split &&
chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "setting ACK\n");
hcintmsk |= HCINTMSK_ACK;
if (chan->ep_is_in) {
hcintmsk |= HCINTMSK_DATATGLERR;
if (chan->ep_type != USB_ENDPOINT_XFER_INT)
hcintmsk |= HCINTMSK_NAK;
}
}
dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
}
static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 intmsk;
if (hsotg->params.host_dma) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "DMA enabled\n");
dwc2_hc_enable_dma_ints(hsotg, chan);
} else {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "DMA disabled\n");
dwc2_hc_enable_slave_ints(hsotg, chan);
}
/* Enable the top level host channel interrupt */
intmsk = dwc2_readl(hsotg, HAINTMSK);
intmsk |= 1 << chan->hc_num;
dwc2_writel(hsotg, intmsk, HAINTMSK);
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
/* Make sure host channel interrupts are enabled */
intmsk = dwc2_readl(hsotg, GINTMSK);
intmsk |= GINTSTS_HCHINT;
dwc2_writel(hsotg, intmsk, GINTMSK);
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
}
/**
* dwc2_hc_init() - Prepares a host channel for transferring packets to/from
* a specific endpoint
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* The HCCHARn register is set up with the characteristics specified in chan.
* Host channel interrupts that may need to be serviced while this transfer is
* in progress are enabled.
*/
static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
u8 hc_num = chan->hc_num;
u32 hcintmsk;
u32 hcchar;
u32 hcsplt = 0;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
/* Clear old interrupt conditions for this host channel */
hcintmsk = 0xffffffff;
hcintmsk &= ~HCINTMSK_RESERVED14_31;
dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
/* Enable channel interrupts required for this transfer */
dwc2_hc_enable_ints(hsotg, chan);
/*
* Program the HCCHARn register with the endpoint characteristics for
* the current transfer
*/
hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
if (chan->ep_is_in)
hcchar |= HCCHAR_EPDIR;
if (chan->speed == USB_SPEED_LOW)
hcchar |= HCCHAR_LSPDDEV;
hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
if (dbg_hc(chan)) {
dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
hc_num, hcchar);
dev_vdbg(hsotg->dev, "%s: Channel %d\n",
__func__, hc_num);
dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
chan->dev_addr);
dev_vdbg(hsotg->dev, " Ep Num: %d\n",
chan->ep_num);
dev_vdbg(hsotg->dev, " Is In: %d\n",
chan->ep_is_in);
dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
chan->speed == USB_SPEED_LOW);
dev_vdbg(hsotg->dev, " Ep Type: %d\n",
chan->ep_type);
dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
chan->max_packet);
}
/* Program the HCSPLT register for SPLITs */
if (chan->do_split) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev,
"Programming HC %d with split --> %s\n",
hc_num,
chan->complete_split ? "CSPLIT" : "SSPLIT");
if (chan->complete_split)
hcsplt |= HCSPLT_COMPSPLT;
hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
HCSPLT_XACTPOS_MASK;
hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
HCSPLT_HUBADDR_MASK;
hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
HCSPLT_PRTADDR_MASK;
if (dbg_hc(chan)) {
dev_vdbg(hsotg->dev, " comp split %d\n",
chan->complete_split);
dev_vdbg(hsotg->dev, " xact pos %d\n",
chan->xact_pos);
dev_vdbg(hsotg->dev, " hub addr %d\n",
chan->hub_addr);
dev_vdbg(hsotg->dev, " hub port %d\n",
chan->hub_port);
dev_vdbg(hsotg->dev, " is_in %d\n",
chan->ep_is_in);
dev_vdbg(hsotg->dev, " Max Pkt %d\n",
chan->max_packet);
dev_vdbg(hsotg->dev, " xferlen %d\n",
chan->xfer_len);
}
}
dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
}
/**
* dwc2_hc_halt() - Attempts to halt a host channel
*
* @hsotg: Controller register interface
* @chan: Host channel to halt
* @halt_status: Reason for halting the channel
*
* This function should only be called in Slave mode or to abort a transfer in
* either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
* controller halts the channel when the transfer is complete or a condition
* occurs that requires application intervention.
*
* In slave mode, checks for a free request queue entry, then sets the Channel
* Enable and Channel Disable bits of the Host Channel Characteristics
* register of the specified channel to intiate the halt. If there is no free
* request queue entry, sets only the Channel Disable bit of the HCCHARn
* register to flush requests for this channel. In the latter case, sets a
* flag to indicate that the host channel needs to be halted when a request
* queue slot is open.
*
* In DMA mode, always sets the Channel Enable and Channel Disable bits of the
* HCCHARn register. The controller ensures there is space in the request
* queue before submitting the halt request.
*
* Some time may elapse before the core flushes any posted requests for this
* host channel and halts. The Channel Halted interrupt handler completes the
* deactivation of the host channel.
*/
void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
enum dwc2_halt_status halt_status)
{
u32 nptxsts, hptxsts, hcchar;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
/*
* In buffer DMA or external DMA mode channel can't be halted
* for non-split periodic channels. At the end of the next
* uframe/frame (in the worst case), the core generates a channel
* halted and disables the channel automatically.
*/
if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
if (!chan->do_split &&
(chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
chan->ep_type == USB_ENDPOINT_XFER_INT)) {
dev_err(hsotg->dev, "%s() Channel can't be halted\n",
__func__);
return;
}
}
if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
halt_status == DWC2_HC_XFER_AHB_ERR) {
/*
* Disable all channel interrupts except Ch Halted. The QTD
* and QH state associated with this transfer has been cleared
* (in the case of URB_DEQUEUE), so the channel needs to be
* shut down carefully to prevent crashes.
*/
u32 hcintmsk = HCINTMSK_CHHLTD;
dev_vdbg(hsotg->dev, "dequeue/error\n");
dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
/*
* Make sure no other interrupts besides halt are currently
* pending. Handling another interrupt could cause a crash due
* to the QTD and QH state.
*/
dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
/*
* Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
* even if the channel was already halted for some other
* reason
*/
chan->halt_status = halt_status;
hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
if (!(hcchar & HCCHAR_CHENA)) {
/*
* The channel is either already halted or it hasn't
* started yet. In DMA mode, the transfer may halt if
* it finishes normally or a condition occurs that
* requires driver intervention. Don't want to halt
* the channel again. In either Slave or DMA mode,
* it's possible that the transfer has been assigned
* to a channel, but not started yet when an URB is
* dequeued. Don't want to halt a channel that hasn't
* started yet.
*/
return;
}
}
if (chan->halt_pending) {
/*
* A halt has already been issued for this channel. This might
* happen when a transfer is aborted by a higher level in
* the stack.
*/
dev_vdbg(hsotg->dev,
"*** %s: Channel %d, chan->halt_pending already set ***\n",
__func__, chan->hc_num);
return;
}
hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
/* No need to set the bit in DDMA for disabling the channel */
/* TODO check it everywhere channel is disabled */
if (!hsotg->params.dma_desc_enable) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "desc DMA disabled\n");
hcchar |= HCCHAR_CHENA;
} else {
if (dbg_hc(chan))
dev_dbg(hsotg->dev, "desc DMA enabled\n");
}
hcchar |= HCCHAR_CHDIS;
if (!hsotg->params.host_dma) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "DMA not enabled\n");
hcchar |= HCCHAR_CHENA;
/* Check for space in the request queue to issue the halt */
if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
chan->ep_type == USB_ENDPOINT_XFER_BULK) {
dev_vdbg(hsotg->dev, "control/bulk\n");
nptxsts = dwc2_readl(hsotg, GNPTXSTS);
if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
dev_vdbg(hsotg->dev, "Disabling channel\n");
hcchar &= ~HCCHAR_CHENA;
}
} else {
if (dbg_perio())
dev_vdbg(hsotg->dev, "isoc/intr\n");
hptxsts = dwc2_readl(hsotg, HPTXSTS);
if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
hsotg->queuing_high_bandwidth) {
if (dbg_perio())
dev_vdbg(hsotg->dev, "Disabling channel\n");
hcchar &= ~HCCHAR_CHENA;
}
}
} else {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "DMA enabled\n");
}
dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
chan->halt_status = halt_status;
if (hcchar & HCCHAR_CHENA) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Channel enabled\n");
chan->halt_pending = 1;
chan->halt_on_queue = 0;
} else {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Channel disabled\n");
chan->halt_on_queue = 1;
}
if (dbg_hc(chan)) {
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
chan->hc_num);
dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
hcchar);
dev_vdbg(hsotg->dev, " halt_pending: %d\n",
chan->halt_pending);
dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
chan->halt_on_queue);
dev_vdbg(hsotg->dev, " halt_status: %d\n",
chan->halt_status);
}
}
/**
* dwc2_hc_cleanup() - Clears the transfer state for a host channel
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Identifies the host channel to clean up
*
* This function is normally called after a transfer is done and the host
* channel is being released
*/
void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
{
u32 hcintmsk;
chan->xfer_started = 0;
list_del_init(&chan->split_order_list_entry);
/*
* Clear channel interrupt enables and any unhandled channel interrupt
* conditions
*/
dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
hcintmsk = 0xffffffff;
hcintmsk &= ~HCINTMSK_RESERVED14_31;
dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
}
/**
* dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
* which frame a periodic transfer should occur
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Identifies the host channel to set up and its properties
* @hcchar: Current value of the HCCHAR register for the specified host channel
*
* This function has no effect on non-periodic transfers
*/
static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan, u32 *hcchar)
{
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
int host_speed;
int xfer_ns;
int xfer_us;
int bytes_in_fifo;
u16 fifo_space;
u16 frame_number;
u16 wire_frame;
/*
* Try to figure out if we're an even or odd frame. If we set
* even and the current frame number is even the the transfer
* will happen immediately. Similar if both are odd. If one is
* even and the other is odd then the transfer will happen when
* the frame number ticks.
*
* There's a bit of a balancing act to get this right.
* Sometimes we may want to send data in the current frame (AK
* right away). We might want to do this if the frame number
* _just_ ticked, but we might also want to do this in order
* to continue a split transaction that happened late in a
* microframe (so we didn't know to queue the next transfer
* until the frame number had ticked). The problem is that we
* need a lot of knowledge to know if there's actually still
* time to send things or if it would be better to wait until
* the next frame.
*
* We can look at how much time is left in the current frame
* and make a guess about whether we'll have time to transfer.
* We'll do that.
*/
/* Get speed host is running at */
host_speed = (chan->speed != USB_SPEED_HIGH &&
!chan->do_split) ? chan->speed : USB_SPEED_HIGH;
/* See how many bytes are in the periodic FIFO right now */
fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
bytes_in_fifo = sizeof(u32) *
(hsotg->params.host_perio_tx_fifo_size -
fifo_space);
/*
* Roughly estimate bus time for everything in the periodic
* queue + our new transfer. This is "rough" because we're
* using a function that makes takes into account IN/OUT
* and INT/ISO and we're just slamming in one value for all
* transfers. This should be an over-estimate and that should
* be OK, but we can probably tighten it.
*/
xfer_ns = usb_calc_bus_time(host_speed, false, false,
chan->xfer_len + bytes_in_fifo);
xfer_us = NS_TO_US(xfer_ns);
/* See what frame number we'll be at by the time we finish */
frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
/* This is when we were scheduled to be on the wire */
wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
/*
* If we'd finish _after_ the frame we're scheduled in then
* it's hopeless. Just schedule right away and hope for the
* best. Note that it _might_ be wise to call back into the
* scheduler to pick a better frame, but this is better than
* nothing.
*/
if (dwc2_frame_num_gt(frame_number, wire_frame)) {
dwc2_sch_vdbg(hsotg,
"QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
chan->qh, wire_frame, frame_number,
dwc2_frame_num_dec(frame_number,
wire_frame));
wire_frame = frame_number;
/*
* We picked a different frame number; communicate this
* back to the scheduler so it doesn't try to schedule
* another in the same frame.
*
* Remember that next_active_frame is 1 before the wire
* frame.
*/
chan->qh->next_active_frame =
dwc2_frame_num_dec(frame_number, 1);
}
if (wire_frame & 1)
*hcchar |= HCCHAR_ODDFRM;
else
*hcchar &= ~HCCHAR_ODDFRM;
}
}
static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
{
/* Set up the initial PID for the transfer */
if (chan->speed == USB_SPEED_HIGH) {
if (chan->ep_is_in) {
if (chan->multi_count == 1)
chan->data_pid_start = DWC2_HC_PID_DATA0;
else if (chan->multi_count == 2)
chan->data_pid_start = DWC2_HC_PID_DATA1;
else
chan->data_pid_start = DWC2_HC_PID_DATA2;
} else {
if (chan->multi_count == 1)
chan->data_pid_start = DWC2_HC_PID_DATA0;
else
chan->data_pid_start = DWC2_HC_PID_MDATA;
}
} else {
chan->data_pid_start = DWC2_HC_PID_DATA0;
}
}
/**
* dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
* the Host Channel
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* This function should only be called in Slave mode. For a channel associated
* with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
* associated with a periodic EP, the periodic Tx FIFO is written.
*
* Upon return the xfer_buf and xfer_count fields in chan are incremented by
* the number of bytes written to the Tx FIFO.
*/
static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 i;
u32 remaining_count;
u32 byte_count;
u32 dword_count;
u32 *data_buf = (u32 *)chan->xfer_buf;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
remaining_count = chan->xfer_len - chan->xfer_count;
if (remaining_count > chan->max_packet)
byte_count = chan->max_packet;
else
byte_count = remaining_count;
dword_count = (byte_count + 3) / 4;
if (((unsigned long)data_buf & 0x3) == 0) {
/* xfer_buf is DWORD aligned */
for (i = 0; i < dword_count; i++, data_buf++)
dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
} else {
/* xfer_buf is not DWORD aligned */
for (i = 0; i < dword_count; i++, data_buf++) {
u32 data = data_buf[0] | data_buf[1] << 8 |
data_buf[2] << 16 | data_buf[3] << 24;
dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
}
}
chan->xfer_count += byte_count;
chan->xfer_buf += byte_count;
}
/**
* dwc2_hc_do_ping() - Starts a PING transfer
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* This function should only be called in Slave mode. The Do Ping bit is set in
* the HCTSIZ register, then the channel is enabled.
*/
static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 hcchar;
u32 hctsiz;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
chan->hc_num);
hctsiz = TSIZ_DOPNG;
hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
}
/**
* dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
* channel and starts the transfer
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel. The xfer_len value
* may be reduced to accommodate the max widths of the XferSize and
* PktCnt fields in the HCTSIZn register. The multi_count value may be
* changed to reflect the final xfer_len value.
*
* This function may be called in either Slave mode or DMA mode. In Slave mode,
* the caller must ensure that there is sufficient space in the request queue
* and Tx Data FIFO.
*
* For an OUT transfer in Slave mode, it loads a data packet into the
* appropriate FIFO. If necessary, additional data packets are loaded in the
* Host ISR.
*
* For an IN transfer in Slave mode, a data packet is requested. The data
* packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
* additional data packets are requested in the Host ISR.
*
* For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
* register along with a packet count of 1 and the channel is enabled. This
* causes a single PING transaction to occur. Other fields in HCTSIZ are
* simply set to 0 since no data transfer occurs in this case.
*
* For a PING transfer in DMA mode, the HCTSIZ register is initialized with
* all the information required to perform the subsequent data transfer. In
* addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
* controller performs the entire PING protocol, then starts the data
* transfer.
*/
static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
u16 max_hc_pkt_count = hsotg->params.max_packet_count;
u32 hcchar;
u32 hctsiz = 0;
u16 num_packets;
u32 ec_mc;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
if (chan->do_ping) {
if (!hsotg->params.host_dma) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "ping, no DMA\n");
dwc2_hc_do_ping(hsotg, chan);
chan->xfer_started = 1;
return;
}
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "ping, DMA\n");
hctsiz |= TSIZ_DOPNG;
}
if (chan->do_split) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "split\n");
num_packets = 1;
if (chan->complete_split && !chan->ep_is_in)
/*
* For CSPLIT OUT Transfer, set the size to 0 so the
* core doesn't expect any data written to the FIFO
*/
chan->xfer_len = 0;
else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
chan->xfer_len = chan->max_packet;
else if (!chan->ep_is_in && chan->xfer_len > 188)
chan->xfer_len = 188;
hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
TSIZ_XFERSIZE_MASK;
/* For split set ec_mc for immediate retries */
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC)
ec_mc = 3;
else
ec_mc = 1;
} else {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "no split\n");
/*
* Ensure that the transfer length and packet count will fit
* in the widths allocated for them in the HCTSIZn register
*/
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
/*
* Make sure the transfer size is no larger than one
* (micro)frame's worth of data. (A check was done
* when the periodic transfer was accepted to ensure
* that a (micro)frame's worth of data can be
* programmed into a channel.)
*/
u32 max_periodic_len =
chan->multi_count * chan->max_packet;
if (chan->xfer_len > max_periodic_len)
chan->xfer_len = max_periodic_len;
} else if (chan->xfer_len > max_hc_xfer_size) {
/*
* Make sure that xfer_len is a multiple of max packet
* size
*/
chan->xfer_len =
max_hc_xfer_size - chan->max_packet + 1;
}
if (chan->xfer_len > 0) {
num_packets = (chan->xfer_len + chan->max_packet - 1) /
chan->max_packet;
if (num_packets > max_hc_pkt_count) {
num_packets = max_hc_pkt_count;
chan->xfer_len = num_packets * chan->max_packet;
} else if (chan->ep_is_in) {
/*
* Always program an integral # of max packets
* for IN transfers.
* Note: This assumes that the input buffer is
* aligned and sized accordingly.
*/
chan->xfer_len = num_packets * chan->max_packet;
}
} else {
/* Need 1 packet for transfer length of 0 */
num_packets = 1;
}
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC)
/*
* Make sure that the multi_count field matches the
* actual transfer length
*/
chan->multi_count = num_packets;
if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
dwc2_set_pid_isoc(chan);
hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
TSIZ_XFERSIZE_MASK;
/* The ec_mc gets the multi_count for non-split */
ec_mc = chan->multi_count;
}
chan->start_pkt_count = num_packets;
hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
TSIZ_SC_MC_PID_MASK;
dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
if (dbg_hc(chan)) {
dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
hctsiz, chan->hc_num);
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
chan->hc_num);
dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
(hctsiz & TSIZ_XFERSIZE_MASK) >>
TSIZ_XFERSIZE_SHIFT);
dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
(hctsiz & TSIZ_PKTCNT_MASK) >>
TSIZ_PKTCNT_SHIFT);
dev_vdbg(hsotg->dev, " Start PID: %d\n",
(hctsiz & TSIZ_SC_MC_PID_MASK) >>
TSIZ_SC_MC_PID_SHIFT);
}
if (hsotg->params.host_dma) {
dma_addr_t dma_addr;
if (chan->align_buf) {
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "align_buf\n");
dma_addr = chan->align_buf;
} else {
dma_addr = chan->xfer_dma;
}
dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
(unsigned long)dma_addr, chan->hc_num);
}
/* Start the split */
if (chan->do_split) {
u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
hcsplt |= HCSPLT_SPLTENA;
dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
}
hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
hcchar &= ~HCCHAR_MULTICNT_MASK;
hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
if (hcchar & HCCHAR_CHDIS)
dev_warn(hsotg->dev,
"%s: chdis set, channel %d, hcchar 0x%08x\n",
__func__, chan->hc_num, hcchar);
/* Set host channel enable after all other setup is complete */
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
(hcchar & HCCHAR_MULTICNT_MASK) >>
HCCHAR_MULTICNT_SHIFT);
dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
chan->hc_num);
chan->xfer_started = 1;
chan->requests++;
if (!hsotg->params.host_dma &&
!chan->ep_is_in && chan->xfer_len > 0)
/* Load OUT packet into the appropriate Tx FIFO */
dwc2_hc_write_packet(hsotg, chan);
}
/**
* dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
* host channel and starts the transfer in Descriptor DMA mode
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
* Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
* with micro-frame bitmap.
*
* Initializes HCDMA register with descriptor list address and CTD value then
* starts the transfer via enabling the channel.
*/
void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
u32 hcchar;
u32 hctsiz = 0;
if (chan->do_ping)
hctsiz |= TSIZ_DOPNG;
if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
dwc2_set_pid_isoc(chan);
/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
TSIZ_SC_MC_PID_MASK;
/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
/* Non-zero only for high-speed interrupt endpoints */
hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
if (dbg_hc(chan)) {
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
chan->hc_num);
dev_vdbg(hsotg->dev, " Start PID: %d\n",
chan->data_pid_start);
dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
}
dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
chan->desc_list_sz, DMA_TO_DEVICE);
dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
&chan->desc_list_addr, chan->hc_num);
hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
hcchar &= ~HCCHAR_MULTICNT_MASK;
hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
HCCHAR_MULTICNT_MASK;
if (hcchar & HCCHAR_CHDIS)
dev_warn(hsotg->dev,
"%s: chdis set, channel %d, hcchar 0x%08x\n",
__func__, chan->hc_num, hcchar);
/* Set host channel enable after all other setup is complete */
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
(hcchar & HCCHAR_MULTICNT_MASK) >>
HCCHAR_MULTICNT_SHIFT);
dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
chan->hc_num);
chan->xfer_started = 1;
chan->requests++;
}
/**
* dwc2_hc_continue_transfer() - Continues a data transfer that was started by
* a previous call to dwc2_hc_start_transfer()
*
* @hsotg: Programming view of DWC_otg controller
* @chan: Information needed to initialize the host channel
*
* The caller must ensure there is sufficient space in the request queue and Tx
* Data FIFO. This function should only be called in Slave mode. In DMA mode,
* the controller acts autonomously to complete transfers programmed to a host
* channel.
*
* For an OUT transfer, a new data packet is loaded into the appropriate FIFO
* if there is any data remaining to be queued. For an IN transfer, another
* data packet is always requested. For the SETUP phase of a control transfer,
* this function does nothing.
*
* Return: 1 if a new request is queued, 0 if no more requests are required
* for this transfer
*/
static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan)
{
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
chan->hc_num);
if (chan->do_split)
/* SPLITs always queue just once per channel */
return 0;
if (chan->data_pid_start == DWC2_HC_PID_SETUP)
/* SETUPs are queued only once since they can't be NAK'd */
return 0;
if (chan->ep_is_in) {
/*
* Always queue another request for other IN transfers. If
* back-to-back INs are issued and NAKs are received for both,
* the driver may still be processing the first NAK when the
* second NAK is received. When the interrupt handler clears
* the NAK interrupt for the first NAK, the second NAK will
* not be seen. So we can't depend on the NAK interrupt
* handler to requeue a NAK'd request. Instead, IN requests
* are issued each time this function is called. When the
* transfer completes, the extra requests for the channel will
* be flushed.
*/
u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
hcchar |= HCCHAR_CHENA;
hcchar &= ~HCCHAR_CHDIS;
if (dbg_hc(chan))
dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
hcchar);
dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
chan->requests++;
return 1;
}
/* OUT transfers */
if (chan->xfer_count < chan->xfer_len) {
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
u32 hcchar = dwc2_readl(hsotg,
HCCHAR(chan->hc_num));
dwc2_hc_set_even_odd_frame(hsotg, chan,
&hcchar);
}
/* Load OUT packet into the appropriate Tx FIFO */
dwc2_hc_write_packet(hsotg, chan);
chan->requests++;
return 1;
}
return 0;
}
/*
* =========================================================================
* HCD
* =========================================================================
*/
/*
* Processes all the URBs in a single list of QHs. Completes them with
* -ETIMEDOUT and frees the QTD.
*
* Must be called with interrupt disabled and spinlock held
*/
static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
struct list_head *qh_list)
{
struct dwc2_qh *qh, *qh_tmp;
struct dwc2_qtd *qtd, *qtd_tmp;
list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
qtd_list_entry) {
dwc2_host_complete(hsotg, qtd, -ECONNRESET);
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
}
}
}
static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
struct list_head *qh_list)
{
struct dwc2_qtd *qtd, *qtd_tmp;
struct dwc2_qh *qh, *qh_tmp;
unsigned long flags;
if (!qh_list->next)
/* The list hasn't been initialized yet */
return;
spin_lock_irqsave(&hsotg->lock, flags);
/* Ensure there are no QTDs or URBs left */
dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
dwc2_hcd_qh_unlink(hsotg, qh);
/* Free each QTD in the QH's QTD list */
list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
qtd_list_entry)
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
if (qh->channel && qh->channel->qh == qh)
qh->channel->qh = NULL;
spin_unlock_irqrestore(&hsotg->lock, flags);
dwc2_hcd_qh_free(hsotg, qh);
spin_lock_irqsave(&hsotg->lock, flags);
}
spin_unlock_irqrestore(&hsotg->lock, flags);
}
/*
* Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
* and periodic schedules. The QTD associated with each URB is removed from
* the schedule and freed. This function may be called when a disconnect is
* detected or when the HCD is being stopped.
*
* Must be called with interrupt disabled and spinlock held
*/
static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
{
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
}
/**
* dwc2_hcd_start() - Starts the HCD when switching to Host mode
*
* @hsotg: Pointer to struct dwc2_hsotg
*/
void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
{
u32 hprt0;
if (hsotg->op_state == OTG_STATE_B_HOST) {
/*
* Reset the port. During a HNP mode switch the reset
* needs to occur within 1ms and have a duration of at
* least 50ms.
*/
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_RST;
dwc2_writel(hsotg, hprt0, HPRT0);
}
queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
msecs_to_jiffies(50));
}
/* Must be called with interrupt disabled and spinlock held */
static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
{
int num_channels = hsotg->params.host_channels;
struct dwc2_host_chan *channel;
u32 hcchar;
int i;
if (!hsotg->params.host_dma) {
/* Flush out any channel requests in slave mode */
for (i = 0; i < num_channels; i++) {
channel = hsotg->hc_ptr_array[i];
if (!list_empty(&channel->hc_list_entry))
continue;
hcchar = dwc2_readl(hsotg, HCCHAR(i));
if (hcchar & HCCHAR_CHENA) {
hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
hcchar |= HCCHAR_CHDIS;
dwc2_writel(hsotg, hcchar, HCCHAR(i));
}
}
}
for (i = 0; i < num_channels; i++) {
channel = hsotg->hc_ptr_array[i];
if (!list_empty(&channel->hc_list_entry))
continue;
hcchar = dwc2_readl(hsotg, HCCHAR(i));
if (hcchar & HCCHAR_CHENA) {
/* Halt the channel */
hcchar |= HCCHAR_CHDIS;
dwc2_writel(hsotg, hcchar, HCCHAR(i));
}
dwc2_hc_cleanup(hsotg, channel);
list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
/*
* Added for Descriptor DMA to prevent channel double cleanup in
* release_channel_ddma(), which is called from ep_disable when
* device disconnects
*/
channel->qh = NULL;
}
/* All channels have been freed, mark them available */
if (hsotg->params.uframe_sched) {
hsotg->available_host_channels =
hsotg->params.host_channels;
} else {
hsotg->non_periodic_channels = 0;
hsotg->periodic_channels = 0;
}
}
/**
* dwc2_hcd_connect() - Handles connect of the HCD
*
* @hsotg: Pointer to struct dwc2_hsotg
*
* Must be called with interrupt disabled and spinlock held
*/
void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
{
if (hsotg->lx_state != DWC2_L0)
usb_hcd_resume_root_hub(hsotg->priv);
hsotg->flags.b.port_connect_status_change = 1;
hsotg->flags.b.port_connect_status = 1;
}
/**
* dwc2_hcd_disconnect() - Handles disconnect of the HCD
*
* @hsotg: Pointer to struct dwc2_hsotg
* @force: If true, we won't try to reconnect even if we see device connected.
*
* Must be called with interrupt disabled and spinlock held
*/
void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
{
u32 intr;
u32 hprt0;
/* Set status flags for the hub driver */
hsotg->flags.b.port_connect_status_change = 1;
hsotg->flags.b.port_connect_status = 0;
/*
* Shutdown any transfers in process by clearing the Tx FIFO Empty
* interrupt mask and status bits and disabling subsequent host
* channel interrupts.
*/
intr = dwc2_readl(hsotg, GINTMSK);
intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
dwc2_writel(hsotg, intr, GINTMSK);
intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
dwc2_writel(hsotg, intr, GINTSTS);
/*
* Turn off the vbus power only if the core has transitioned to device
* mode. If still in host mode, need to keep power on to detect a
* reconnection.
*/
if (dwc2_is_device_mode(hsotg)) {
if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
dwc2_writel(hsotg, 0, HPRT0);
}
dwc2_disable_host_interrupts(hsotg);
}
/* Respond with an error status to all URBs in the schedule */
dwc2_kill_all_urbs(hsotg);
if (dwc2_is_host_mode(hsotg))
/* Clean up any host channels that were in use */
dwc2_hcd_cleanup_channels(hsotg);
dwc2_host_disconnect(hsotg);
/*
* Add an extra check here to see if we're actually connected but
* we don't have a detection interrupt pending. This can happen if:
* 1. hardware sees connect
* 2. hardware sees disconnect
* 3. hardware sees connect
* 4. dwc2_port_intr() - clears connect interrupt
* 5. dwc2_handle_common_intr() - calls here
*
* Without the extra check here we will end calling disconnect
* and won't get any future interrupts to handle the connect.
*/
if (!force) {
hprt0 = dwc2_readl(hsotg, HPRT0);
if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
dwc2_hcd_connect(hsotg);
}
}
/**
* dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
*
* @hsotg: Pointer to struct dwc2_hsotg
*/
static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
{
if (hsotg->bus_suspended) {
hsotg->flags.b.port_suspend_change = 1;
usb_hcd_resume_root_hub(hsotg->priv);
}
if (hsotg->lx_state == DWC2_L1)
hsotg->flags.b.port_l1_change = 1;
}
/**
* dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
*
* @hsotg: Pointer to struct dwc2_hsotg
*
* Must be called with interrupt disabled and spinlock held
*/
void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
{
dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
/*
* The root hub should be disconnected before this function is called.
* The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
* and the QH lists (via ..._hcd_endpoint_disable).
*/
/* Turn off all host-specific interrupts */
dwc2_disable_host_interrupts(hsotg);
/* Turn off the vbus power */
dev_dbg(hsotg->dev, "PortPower off\n");
dwc2_writel(hsotg, 0, HPRT0);
}
/* Caller must hold driver lock */
static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
struct dwc2_qtd *qtd)
{
u32 intr_mask;
int retval;
int dev_speed;
if (!hsotg->flags.b.port_connect_status) {
/* No longer connected */
dev_err(hsotg->dev, "Not connected\n");
return -ENODEV;
}
dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
/* Some configurations cannot support LS traffic on a FS root port */
if ((dev_speed == USB_SPEED_LOW) &&
(hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
(hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
u32 hprt0 = dwc2_readl(hsotg, HPRT0);
u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
if (prtspd == HPRT0_SPD_FULL_SPEED)
return -ENODEV;
}
if (!qtd)
return -EINVAL;
dwc2_hcd_qtd_init(qtd, urb);
retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
if (retval) {
dev_err(hsotg->dev,
"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
retval);
return retval;
}
intr_mask = dwc2_readl(hsotg, GINTMSK);
if (!(intr_mask & GINTSTS_SOF)) {
enum dwc2_transaction_type tr_type;
if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
!(qtd->urb->flags & URB_GIVEBACK_ASAP))
/*
* Do not schedule SG transactions until qtd has
* URB_GIVEBACK_ASAP set
*/
return 0;
tr_type = dwc2_hcd_select_transactions(hsotg);
if (tr_type != DWC2_TRANSACTION_NONE)
dwc2_hcd_queue_transactions(hsotg, tr_type);
}
return 0;
}
/* Must be called with interrupt disabled and spinlock held */
static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
struct dwc2_hcd_urb *urb)
{
struct dwc2_qh *qh;
struct dwc2_qtd *urb_qtd;
urb_qtd = urb->qtd;
if (!urb_qtd) {
dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
return -EINVAL;
}
qh = urb_qtd->qh;
if (!qh) {
dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
return -EINVAL;
}
urb->priv = NULL;
if (urb_qtd->in_process && qh->channel) {
dwc2_dump_channel_info(hsotg, qh->channel);
/* The QTD is in process (it has been assigned to a channel) */
if (hsotg->flags.b.port_connect_status)
/*
* If still connected (i.e. in host mode), halt the
* channel so it can be used for other transfers. If
* no longer connected, the host registers can't be
* written to halt the channel since the core is in
* device mode.
*/
dwc2_hc_halt(hsotg, qh->channel,
DWC2_HC_XFER_URB_DEQUEUE);
}
/*
* Free the QTD and clean up the associated QH. Leave the QH in the
* schedule if it has any remaining QTDs.
*/
if (!hsotg->params.dma_desc_enable) {
u8 in_process = urb_qtd->in_process;
dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
if (in_process) {
dwc2_hcd_qh_deactivate(hsotg, qh, 0);
qh->channel = NULL;
} else if (list_empty(&qh->qtd_list)) {
dwc2_hcd_qh_unlink(hsotg, qh);
}
} else {
dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
}
return 0;
}
/* Must NOT be called with interrupt disabled or spinlock held */
static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
struct usb_host_endpoint *ep, int retry)
{
struct dwc2_qtd *qtd, *qtd_tmp;
struct dwc2_qh *qh;
unsigned long flags;
int rc;
spin_lock_irqsave(&hsotg->lock, flags);
qh = ep->hcpriv;
if (!qh) {
rc = -EINVAL;
goto err;
}
while (!list_empty(&qh->qtd_list) && retry--) {
if (retry == 0) {
dev_err(hsotg->dev,
"## timeout in dwc2_hcd_endpoint_disable() ##\n");
rc = -EBUSY;
goto err;
}
spin_unlock_irqrestore(&hsotg->lock, flags);
msleep(20);
spin_lock_irqsave(&hsotg->lock, flags);
qh = ep->hcpriv;
if (!qh) {
rc = -EINVAL;
goto err;
}
}
dwc2_hcd_qh_unlink(hsotg, qh);
/* Free each QTD in the QH's QTD list */
list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
ep->hcpriv = NULL;
if (qh->channel && qh->channel->qh == qh)
qh->channel->qh = NULL;
spin_unlock_irqrestore(&hsotg->lock, flags);
dwc2_hcd_qh_free(hsotg, qh);
return 0;
err:
ep->hcpriv = NULL;
spin_unlock_irqrestore(&hsotg->lock, flags);
return rc;
}
/* Must be called with interrupt disabled and spinlock held */
static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
struct usb_host_endpoint *ep)
{
struct dwc2_qh *qh = ep->hcpriv;
if (!qh)
return -EINVAL;
qh->data_toggle = DWC2_HC_PID_DATA0;
return 0;
}
/**
* dwc2_core_init() - Initializes the DWC_otg controller registers and
* prepares the core for device mode or host mode operation
*
* @hsotg: Programming view of the DWC_otg controller
* @initial_setup: If true then this is the first init for this instance.
*/
int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
{
u32 usbcfg, otgctl;
int retval;
dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
usbcfg = dwc2_readl(hsotg, GUSBCFG);
/* Set ULPI External VBUS bit if needed */
usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
if (hsotg->params.phy_ulpi_ext_vbus)
usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
/* Set external TS Dline pulsing bit if needed */
usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
if (hsotg->params.ts_dline)
usbcfg |= GUSBCFG_TERMSELDLPULSE;
dwc2_writel(hsotg, usbcfg, GUSBCFG);
/*
* Reset the Controller
*
* We only need to reset the controller if this is a re-init.
* For the first init we know for sure that earlier code reset us (it
* needed to in order to properly detect various parameters).
*/
if (!initial_setup) {
retval = dwc2_core_reset(hsotg, false);
if (retval) {
dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
__func__);
return retval;
}
}
/*
* This needs to happen in FS mode before any other programming occurs
*/
retval = dwc2_phy_init(hsotg, initial_setup);
if (retval)
return retval;
/* Program the GAHBCFG Register */
retval = dwc2_gahbcfg_init(hsotg);
if (retval)
return retval;
/* Program the GUSBCFG register */
dwc2_gusbcfg_init(hsotg);
/* Program the GOTGCTL register */
otgctl = dwc2_readl(hsotg, GOTGCTL);
otgctl &= ~GOTGCTL_OTGVER;
dwc2_writel(hsotg, otgctl, GOTGCTL);
/* Clear the SRP success bit for FS-I2c */
hsotg->srp_success = 0;
/* Enable common interrupts */
dwc2_enable_common_interrupts(hsotg);
/*
* Do device or host initialization based on mode during PCD and
* HCD initialization
*/
if (dwc2_is_host_mode(hsotg)) {
dev_dbg(hsotg->dev, "Host Mode\n");
hsotg->op_state = OTG_STATE_A_HOST;
} else {
dev_dbg(hsotg->dev, "Device Mode\n");
hsotg->op_state = OTG_STATE_B_PERIPHERAL;
}
return 0;
}
/**
* dwc2_core_host_init() - Initializes the DWC_otg controller registers for
* Host mode
*
* @hsotg: Programming view of DWC_otg controller
*
* This function flushes the Tx and Rx FIFOs and flushes any entries in the
* request queues. Host channels are reset to ensure that they are ready for
* performing transfers.
*/
static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
{
u32 hcfg, hfir, otgctl, usbcfg;
dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
/* Set HS/FS Timeout Calibration to 7 (max available value).
* The number of PHY clocks that the application programs in
* this field is added to the high/full speed interpacket timeout
* duration in the core to account for any additional delays
* introduced by the PHY. This can be required, because the delay
* introduced by the PHY in generating the linestate condition
* can vary from one PHY to another.
*/
usbcfg = dwc2_readl(hsotg, GUSBCFG);
usbcfg |= GUSBCFG_TOUTCAL(7);
dwc2_writel(hsotg, usbcfg, GUSBCFG);
/* Restart the Phy Clock */
dwc2_writel(hsotg, 0, PCGCTL);
/* Initialize Host Configuration Register */
dwc2_init_fs_ls_pclk_sel(hsotg);
if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
hcfg = dwc2_readl(hsotg, HCFG);
hcfg |= HCFG_FSLSSUPP;
dwc2_writel(hsotg, hcfg, HCFG);
}
/*
* This bit allows dynamic reloading of the HFIR register during
* runtime. This bit needs to be programmed during initial configuration
* and its value must not be changed during runtime.
*/
if (hsotg->params.reload_ctl) {
hfir = dwc2_readl(hsotg, HFIR);
hfir |= HFIR_RLDCTRL;
dwc2_writel(hsotg, hfir, HFIR);
}
if (hsotg->params.dma_desc_enable) {
u32 op_mode = hsotg->hw_params.op_mode;
if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
!hsotg->hw_params.dma_desc_enable ||
op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
dev_err(hsotg->dev,
"Hardware does not support descriptor DMA mode -\n");
dev_err(hsotg->dev,
"falling back to buffer DMA mode.\n");
hsotg->params.dma_desc_enable = false;
} else {
hcfg = dwc2_readl(hsotg, HCFG);
hcfg |= HCFG_DESCDMA;
dwc2_writel(hsotg, hcfg, HCFG);
}
}
/* Configure data FIFO sizes */
dwc2_config_fifos(hsotg);
/* TODO - check this */
/* Clear Host Set HNP Enable in the OTG Control Register */
otgctl = dwc2_readl(hsotg, GOTGCTL);
otgctl &= ~GOTGCTL_HSTSETHNPEN;
dwc2_writel(hsotg, otgctl, GOTGCTL);
/* Make sure the FIFOs are flushed */
dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
dwc2_flush_rx_fifo(hsotg);
/* Clear Host Set HNP Enable in the OTG Control Register */
otgctl = dwc2_readl(hsotg, GOTGCTL);
otgctl &= ~GOTGCTL_HSTSETHNPEN;
dwc2_writel(hsotg, otgctl, GOTGCTL);
if (!hsotg->params.dma_desc_enable) {
int num_channels, i;
u32 hcchar;
/* Flush out any leftover queued requests */
num_channels = hsotg->params.host_channels;
for (i = 0; i < num_channels; i++) {
hcchar = dwc2_readl(hsotg, HCCHAR(i));
if (hcchar & HCCHAR_CHENA) {
hcchar &= ~HCCHAR_CHENA;
hcchar |= HCCHAR_CHDIS;
hcchar &= ~HCCHAR_EPDIR;
dwc2_writel(hsotg, hcchar, HCCHAR(i));
}
}
/* Halt all channels to put them into a known state */
for (i = 0; i < num_channels; i++) {
hcchar = dwc2_readl(hsotg, HCCHAR(i));
if (hcchar & HCCHAR_CHENA) {
hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
hcchar &= ~HCCHAR_EPDIR;
dwc2_writel(hsotg, hcchar, HCCHAR(i));
dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
__func__, i);
if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
HCCHAR_CHENA,
1000)) {
dev_warn(hsotg->dev,
"Unable to clear enable on channel %d\n",
i);
}
}
}
}
/* Enable ACG feature in host mode, if supported */
dwc2_enable_acg(hsotg);
/* Turn on the vbus power */
dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
if (hsotg->op_state == OTG_STATE_A_HOST) {
u32 hprt0 = dwc2_read_hprt0(hsotg);
dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
!!(hprt0 & HPRT0_PWR));
if (!(hprt0 & HPRT0_PWR)) {
hprt0 |= HPRT0_PWR;
dwc2_writel(hsotg, hprt0, HPRT0);
}
}
dwc2_enable_host_interrupts(hsotg);
}
/*
* Initializes dynamic portions of the DWC_otg HCD state
*
* Must be called with interrupt disabled and spinlock held
*/
static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
{
struct dwc2_host_chan *chan, *chan_tmp;
int num_channels;
int i;
hsotg->flags.d32 = 0;
hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
if (hsotg->params.uframe_sched) {
hsotg->available_host_channels =
hsotg->params.host_channels;
} else {
hsotg->non_periodic_channels = 0;
hsotg->periodic_channels = 0;
}
/*
* Put all channels in the free channel list and clean up channel
* states
*/
list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
hc_list_entry)
list_del_init(&chan->hc_list_entry);
num_channels = hsotg->params.host_channels;
for (i = 0; i < num_channels; i++) {
chan = hsotg->hc_ptr_array[i];
list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
dwc2_hc_cleanup(hsotg, chan);
}
/* Initialize the DWC core for host mode operation */
dwc2_core_host_init(hsotg);
}
static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
{
int hub_addr, hub_port;
chan->do_split = 1;
chan->xact_pos = qtd->isoc_split_pos;
chan->complete_split = qtd->complete_split;
dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
chan->hub_addr = (u8)hub_addr;
chan->hub_port = (u8)hub_port;
}
static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
struct dwc2_qtd *qtd)
{
struct dwc2_hcd_urb *urb = qtd->urb;
struct dwc2_hcd_iso_packet_desc *frame_desc;
switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
case USB_ENDPOINT_XFER_CONTROL:
chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
switch (qtd->control_phase) {
case DWC2_CONTROL_SETUP:
dev_vdbg(hsotg->dev, " Control setup transaction\n");
chan->do_ping = 0;
chan->ep_is_in = 0;
chan->data_pid_start = DWC2_HC_PID_SETUP;
if (hsotg->params.host_dma)
chan->xfer_dma = urb->setup_dma;
else
chan->xfer_buf = urb->setup_packet;
chan->xfer_len = 8;
break;
case DWC2_CONTROL_DATA:
dev_vdbg(hsotg->dev, " Control data transaction\n");
chan->data_pid_start = qtd->data_toggle;
break;
case DWC2_CONTROL_STATUS:
/*
* Direction is opposite of data direction or IN if no
* data
*/
dev_vdbg(hsotg->dev, " Control status transaction\n");
if (urb->length == 0)
chan->ep_is_in = 1;
else
chan->ep_is_in =
dwc2_hcd_is_pipe_out(&urb->pipe_info);
if (chan->ep_is_in)
chan->do_ping = 0;
chan->data_pid_start = DWC2_HC_PID_DATA1;
chan->xfer_len = 0;
if (hsotg->params.host_dma)
chan->xfer_dma = hsotg->status_buf_dma;
else
chan->xfer_buf = hsotg->status_buf;
break;
}
break;
case USB_ENDPOINT_XFER_BULK:
chan->ep_type = USB_ENDPOINT_XFER_BULK;
break;
case USB_ENDPOINT_XFER_INT:
chan->ep_type = USB_ENDPOINT_XFER_INT;
break;
case USB_ENDPOINT_XFER_ISOC:
chan->ep_type = USB_ENDPOINT_XFER_ISOC;
if (hsotg->params.dma_desc_enable)
break;
frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
frame_desc->status = 0;
if (hsotg->params.host_dma) {
chan->xfer_dma = urb->dma;
chan->xfer_dma += frame_desc->offset +
qtd->isoc_split_offset;
} else {
chan->xfer_buf = urb->buf;
chan->xfer_buf += frame_desc->offset +
qtd->isoc_split_offset;
}
chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
if (chan->xfer_len <= 188)
chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
else
chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
}
break;
}
}
static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh,
struct dwc2_host_chan *chan)
{
if (!hsotg->unaligned_cache ||
chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
return -ENOMEM;
if (!qh->dw_align_buf) {
qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
GFP_ATOMIC | GFP_DMA);
if (!qh->dw_align_buf)
return -ENOMEM;
}
qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
DWC2_KMEM_UNALIGNED_BUF_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
dev_err(hsotg->dev, "can't map align_buf\n");
chan->align_buf = 0;
return -EINVAL;
}
chan->align_buf = qh->dw_align_buf_dma;
return 0;
}
#define DWC2_USB_DMA_ALIGN 4
static void dwc2_free_dma_aligned_buffer(struct urb *urb)
{
void *stored_xfer_buffer;
size_t length;
if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
return;
/* Restore urb->transfer_buffer from the end of the allocated area */
memcpy(&stored_xfer_buffer,
PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
dma_get_cache_alignment()),
sizeof(urb->transfer_buffer));
if (usb_urb_dir_in(urb)) {
if (usb_pipeisoc(urb->pipe))
length = urb->transfer_buffer_length;
else
length = urb->actual_length;
memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
}
kfree(urb->transfer_buffer);
urb->transfer_buffer = stored_xfer_buffer;
urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
}
static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
{
void *kmalloc_ptr;
size_t kmalloc_size;
if (urb->num_sgs || urb->sg ||
urb->transfer_buffer_length == 0 ||
!((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
return 0;
/*
* Allocate a buffer with enough padding for original transfer_buffer
* pointer. This allocation is guaranteed to be aligned properly for
* DMA
*/
kmalloc_size = urb->transfer_buffer_length +
(dma_get_cache_alignment() - 1) +
sizeof(urb->transfer_buffer);
kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
if (!kmalloc_ptr)
return -ENOMEM;
/*
* Position value of original urb->transfer_buffer pointer to the end
* of allocation for later referencing
*/
memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
dma_get_cache_alignment()),
&urb->transfer_buffer, sizeof(urb->transfer_buffer));
if (usb_urb_dir_out(urb))
memcpy(kmalloc_ptr, urb->transfer_buffer,
urb->transfer_buffer_length);
urb->transfer_buffer = kmalloc_ptr;
urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
return 0;
}
static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
gfp_t mem_flags)
{
int ret;
/* We assume setup_dma is always aligned; warn if not */
WARN_ON_ONCE(urb->setup_dma &&
(urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
if (ret)
return ret;
ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
if (ret)
dwc2_free_dma_aligned_buffer(urb);
return ret;
}
static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
{
usb_hcd_unmap_urb_for_dma(hcd, urb);
dwc2_free_dma_aligned_buffer(urb);
}
/**
* dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
* channel and initializes the host channel to perform the transactions. The
* host channel is removed from the free list.
*
* @hsotg: The HCD state structure
* @qh: Transactions from the first QTD for this QH are selected and assigned
* to a free host channel
*/
static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
struct dwc2_host_chan *chan;
struct dwc2_hcd_urb *urb;
struct dwc2_qtd *qtd;
if (dbg_qh(qh))
dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
if (list_empty(&qh->qtd_list)) {
dev_dbg(hsotg->dev, "No QTDs in QH list\n");
return -ENOMEM;
}
if (list_empty(&hsotg->free_hc_list)) {
dev_dbg(hsotg->dev, "No free channel to assign\n");
return -ENOMEM;
}
chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
hc_list_entry);
/* Remove host channel from free list */
list_del_init(&chan->hc_list_entry);
qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
urb = qtd->urb;
qh->channel = chan;
qtd->in_process = 1;
/*
* Use usb_pipedevice to determine device address. This address is
* 0 before the SET_ADDRESS command and the correct address afterward.
*/
chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
chan->speed = qh->dev_speed;
chan->max_packet = qh->maxp;
chan->xfer_started = 0;
chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
chan->error_state = (qtd->error_count > 0);
chan->halt_on_queue = 0;
chan->halt_pending = 0;
chan->requests = 0;
/*
* The following values may be modified in the transfer type section
* below. The xfer_len value may be reduced when the transfer is
* started to accommodate the max widths of the XferSize and PktCnt
* fields in the HCTSIZn register.
*/
chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
if (chan->ep_is_in)
chan->do_ping = 0;
else
chan->do_ping = qh->ping_state;
chan->data_pid_start = qh->data_toggle;
chan->multi_count = 1;
if (urb->actual_length > urb->length &&
!dwc2_hcd_is_pipe_in(&urb->pipe_info))
urb->actual_length = urb->length;
if (hsotg->params.host_dma)
chan->xfer_dma = urb->dma + urb->actual_length;
else
chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
chan->xfer_len = urb->length - urb->actual_length;
chan->xfer_count = 0;
/* Set the split attributes if required */
if (qh->do_split)
dwc2_hc_init_split(hsotg, chan, qtd, urb);
else
chan->do_split = 0;
/* Set the transfer attributes */
dwc2_hc_init_xfer(hsotg, chan, qtd);
/* For non-dword aligned buffers */
if (hsotg->params.host_dma && qh->do_split &&
chan->ep_is_in && (chan->xfer_dma & 0x3)) {
dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
dev_err(hsotg->dev,
"Failed to allocate memory to handle non-aligned buffer\n");
/* Add channel back to free list */
chan->align_buf = 0;
chan->multi_count = 0;
list_add_tail(&chan->hc_list_entry,
&hsotg->free_hc_list);
qtd->in_process = 0;
qh->channel = NULL;
return -ENOMEM;
}
} else {
/*
* We assume that DMA is always aligned in non-split
* case or split out case. Warn if not.
*/
WARN_ON_ONCE(hsotg->params.host_dma &&
(chan->xfer_dma & 0x3));
chan->align_buf = 0;
}
if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC)
/*
* This value may be modified when the transfer is started
* to reflect the actual transfer length
*/
chan->multi_count = qh->maxp_mult;
if (hsotg->params.dma_desc_enable) {
chan->desc_list_addr = qh->desc_list_dma;
chan->desc_list_sz = qh->desc_list_sz;
}
dwc2_hc_init(hsotg, chan);
chan->qh = qh;
return 0;
}
/**
* dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
* schedule and assigns them to available host channels. Called from the HCD
* interrupt handler functions.
*
* @hsotg: The HCD state structure
*
* Return: The types of new transactions that were assigned to host channels
*/
enum dwc2_transaction_type dwc2_hcd_select_transactions(
struct dwc2_hsotg *hsotg)
{
enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
struct list_head *qh_ptr;
struct dwc2_qh *qh;
int num_channels;
#ifdef DWC2_DEBUG_SOF
dev_vdbg(hsotg->dev, " Select Transactions\n");
#endif
/* Process entries in the periodic ready list */
qh_ptr = hsotg->periodic_sched_ready.next;
while (qh_ptr != &hsotg->periodic_sched_ready) {
if (list_empty(&hsotg->free_hc_list))
break;
if (hsotg->params.uframe_sched) {
if (hsotg->available_host_channels <= 1)
break;
hsotg->available_host_channels--;
}
qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
if (dwc2_assign_and_init_hc(hsotg, qh))
break;
/*
* Move the QH from the periodic ready schedule to the
* periodic assigned schedule
*/
qh_ptr = qh_ptr->next;
list_move_tail(&qh->qh_list_entry,
&hsotg->periodic_sched_assigned);
ret_val = DWC2_TRANSACTION_PERIODIC;
}
/*
* Process entries in the inactive portion of the non-periodic
* schedule. Some free host channels may not be used if they are
* reserved for periodic transfers.
*/
num_channels = hsotg->params.host_channels;
qh_ptr = hsotg->non_periodic_sched_inactive.next;
while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
if (!hsotg->params.uframe_sched &&
hsotg->non_periodic_channels >= num_channels -
hsotg->periodic_channels)
break;
if (list_empty(&hsotg->free_hc_list))
break;
qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
if (hsotg->params.uframe_sched) {
if (hsotg->available_host_channels < 1)
break;
hsotg->available_host_channels--;
}
if (dwc2_assign_and_init_hc(hsotg, qh))
break;
/*
* Move the QH from the non-periodic inactive schedule to the
* non-periodic active schedule
*/
qh_ptr = qh_ptr->next;
list_move_tail(&qh->qh_list_entry,
&hsotg->non_periodic_sched_active);
if (ret_val == DWC2_TRANSACTION_NONE)
ret_val = DWC2_TRANSACTION_NON_PERIODIC;
else
ret_val = DWC2_TRANSACTION_ALL;
if (!hsotg->params.uframe_sched)
hsotg->non_periodic_channels++;
}
return ret_val;
}
/**
* dwc2_queue_transaction() - Attempts to queue a single transaction request for
* a host channel associated with either a periodic or non-periodic transfer
*
* @hsotg: The HCD state structure
* @chan: Host channel descriptor associated with either a periodic or
* non-periodic transfer
* @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
* for periodic transfers or the non-periodic Tx FIFO
* for non-periodic transfers
*
* Return: 1 if a request is queued and more requests may be needed to
* complete the transfer, 0 if no more requests are required for this
* transfer, -1 if there is insufficient space in the Tx FIFO
*
* This function assumes that there is space available in the appropriate
* request queue. For an OUT transfer or SETUP transaction in Slave mode,
* it checks whether space is available in the appropriate Tx FIFO.
*
* Must be called with interrupt disabled and spinlock held
*/
static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
u16 fifo_dwords_avail)
{
int retval = 0;
if (chan->do_split)
/* Put ourselves on the list to keep order straight */
list_move_tail(&chan->split_order_list_entry,
&hsotg->split_order);
if (hsotg->params.host_dma && chan->qh) {
if (hsotg->params.dma_desc_enable) {
if (!chan->xfer_started ||
chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
chan->qh->ping_state = 0;
}
} else if (!chan->xfer_started) {
dwc2_hc_start_transfer(hsotg, chan);
chan->qh->ping_state = 0;
}
} else if (chan->halt_pending) {
/* Don't queue a request if the channel has been halted */
} else if (chan->halt_on_queue) {
dwc2_hc_halt(hsotg, chan, chan->halt_status);
} else if (chan->do_ping) {
if (!chan->xfer_started)
dwc2_hc_start_transfer(hsotg, chan);
} else if (!chan->ep_is_in ||
chan->data_pid_start == DWC2_HC_PID_SETUP) {
if ((fifo_dwords_avail * 4) >= chan->max_packet) {
if (!chan->xfer_started) {
dwc2_hc_start_transfer(hsotg, chan);
retval = 1;
} else {
retval = dwc2_hc_continue_transfer(hsotg, chan);
}
} else {
retval = -1;
}
} else {
if (!chan->xfer_started) {
dwc2_hc_start_transfer(hsotg, chan);
retval = 1;
} else {
retval = dwc2_hc_continue_transfer(hsotg, chan);
}
}
return retval;
}
/*
* Processes periodic channels for the next frame and queues transactions for
* these channels to the DWC_otg controller. After queueing transactions, the
* Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
* to queue as Periodic Tx FIFO or request queue space becomes available.
* Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
*
* Must be called with interrupt disabled and spinlock held
*/
static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
{
struct list_head *qh_ptr;
struct dwc2_qh *qh;
u32 tx_status;
u32 fspcavail;
u32 gintmsk;
int status;
bool no_queue_space = false;
bool no_fifo_space = false;
u32 qspcavail;
/* If empty list then just adjust interrupt enables */
if (list_empty(&hsotg->periodic_sched_assigned))
goto exit;
if (dbg_perio())
dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
tx_status = dwc2_readl(hsotg, HPTXSTS);
qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
TXSTS_QSPCAVAIL_SHIFT;
fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
TXSTS_FSPCAVAIL_SHIFT;
if (dbg_perio()) {
dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
qspcavail);
dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
fspcavail);
}
qh_ptr = hsotg->periodic_sched_assigned.next;
while (qh_ptr != &hsotg->periodic_sched_assigned) {
tx_status = dwc2_readl(hsotg, HPTXSTS);
qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
TXSTS_QSPCAVAIL_SHIFT;
if (qspcavail == 0) {
no_queue_space = true;
break;
}
qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
if (!qh->channel) {
qh_ptr = qh_ptr->next;
continue;
}
/* Make sure EP's TT buffer is clean before queueing qtds */
if (qh->tt_buffer_dirty) {
qh_ptr = qh_ptr->next;
continue;
}
/*
* Set a flag if we're queuing high-bandwidth in slave mode.
* The flag prevents any halts to get into the request queue in
* the middle of multiple high-bandwidth packets getting queued.
*/
if (!hsotg->params.host_dma &&
qh->channel->multi_count > 1)
hsotg->queuing_high_bandwidth = 1;
fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
TXSTS_FSPCAVAIL_SHIFT;
status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
if (status < 0) {
no_fifo_space = true;
break;
}
/*
* In Slave mode, stay on the current transfer until there is
* nothing more to do or the high-bandwidth request count is
* reached. In DMA mode, only need to queue one request. The
* controller automatically handles multiple packets for
* high-bandwidth transfers.
*/
if (hsotg->params.host_dma || status == 0 ||
qh->channel->requests == qh->channel->multi_count) {
qh_ptr = qh_ptr->next;
/*
* Move the QH from the periodic assigned schedule to
* the periodic queued schedule
*/
list_move_tail(&qh->qh_list_entry,
&hsotg->periodic_sched_queued);
/* done queuing high bandwidth */
hsotg->queuing_high_bandwidth = 0;
}
}
exit:
if (no_queue_space || no_fifo_space ||
(!hsotg->params.host_dma &&
!list_empty(&hsotg->periodic_sched_assigned))) {
/*
* May need to queue more transactions as the request
* queue or Tx FIFO empties. Enable the periodic Tx
* FIFO empty interrupt. (Always use the half-empty
* level to ensure that new requests are loaded as
* soon as possible.)
*/
gintmsk = dwc2_readl(hsotg, GINTMSK);
if (!(gintmsk & GINTSTS_PTXFEMP)) {
gintmsk |= GINTSTS_PTXFEMP;
dwc2_writel(hsotg, gintmsk, GINTMSK);
}
} else {
/*
* Disable the Tx FIFO empty interrupt since there are
* no more transactions that need to be queued right
* now. This function is called from interrupt
* handlers to queue more transactions as transfer
* states change.
*/
gintmsk = dwc2_readl(hsotg, GINTMSK);
if (gintmsk & GINTSTS_PTXFEMP) {
gintmsk &= ~GINTSTS_PTXFEMP;
dwc2_writel(hsotg, gintmsk, GINTMSK);
}
}
}
/*
* Processes active non-periodic channels and queues transactions for these
* channels to the DWC_otg controller. After queueing transactions, the NP Tx
* FIFO Empty interrupt is enabled if there are more transactions to queue as
* NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
* FIFO Empty interrupt is disabled.
*
* Must be called with interrupt disabled and spinlock held
*/
static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
{
struct list_head *orig_qh_ptr;
struct dwc2_qh *qh;
u32 tx_status;
u32 qspcavail;
u32 fspcavail;
u32 gintmsk;
int status;
int no_queue_space = 0;
int no_fifo_space = 0;
int more_to_do = 0;
dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
tx_status = dwc2_readl(hsotg, GNPTXSTS);
qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
TXSTS_QSPCAVAIL_SHIFT;
fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
TXSTS_FSPCAVAIL_SHIFT;
dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
qspcavail);
dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
fspcavail);
/*
* Keep track of the starting point. Skip over the start-of-list
* entry.
*/
if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
orig_qh_ptr = hsotg->non_periodic_qh_ptr;
/*
* Process once through the active list or until no more space is
* available in the request queue or the Tx FIFO
*/
do {
tx_status = dwc2_readl(hsotg, GNPTXSTS);
qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
TXSTS_QSPCAVAIL_SHIFT;
if (!hsotg->params.host_dma && qspcavail == 0) {
no_queue_space = 1;
break;
}
qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
qh_list_entry);
if (!qh->channel)
goto next;
/* Make sure EP's TT buffer is clean before queueing qtds */
if (qh->tt_buffer_dirty)
goto next;
fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
TXSTS_FSPCAVAIL_SHIFT;
status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
if (status > 0) {
more_to_do = 1;
} else if (status < 0) {
no_fifo_space = 1;
break;
}
next:
/* Advance to next QH, skipping start-of-list entry */
hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
if (hsotg->non_periodic_qh_ptr ==
&hsotg->non_periodic_sched_active)
hsotg->non_periodic_qh_ptr =
hsotg->non_periodic_qh_ptr->next;
} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
if (!hsotg->params.host_dma) {
tx_status = dwc2_readl(hsotg, GNPTXSTS);
qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
TXSTS_QSPCAVAIL_SHIFT;
fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
TXSTS_FSPCAVAIL_SHIFT;
dev_vdbg(hsotg->dev,
" NP Tx Req Queue Space Avail (after queue): %d\n",
qspcavail);
dev_vdbg(hsotg->dev,
" NP Tx FIFO Space Avail (after queue): %d\n",
fspcavail);
if (more_to_do || no_queue_space || no_fifo_space) {
/*
* May need to queue more transactions as the request
* queue or Tx FIFO empties. Enable the non-periodic
* Tx FIFO empty interrupt. (Always use the half-empty
* level to ensure that new requests are loaded as
* soon as possible.)
*/
gintmsk = dwc2_readl(hsotg, GINTMSK);
gintmsk |= GINTSTS_NPTXFEMP;
dwc2_writel(hsotg, gintmsk, GINTMSK);
} else {
/*
* Disable the Tx FIFO empty interrupt since there are
* no more transactions that need to be queued right
* now. This function is called from interrupt
* handlers to queue more transactions as transfer
* states change.
*/
gintmsk = dwc2_readl(hsotg, GINTMSK);
gintmsk &= ~GINTSTS_NPTXFEMP;
dwc2_writel(hsotg, gintmsk, GINTMSK);
}
}
}
/**
* dwc2_hcd_queue_transactions() - Processes the currently active host channels
* and queues transactions for these channels to the DWC_otg controller. Called
* from the HCD interrupt handler functions.
*
* @hsotg: The HCD state structure
* @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
* or both)
*
* Must be called with interrupt disabled and spinlock held
*/
void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
enum dwc2_transaction_type tr_type)
{
#ifdef DWC2_DEBUG_SOF
dev_vdbg(hsotg->dev, "Queue Transactions\n");
#endif
/* Process host channels associated with periodic transfers */
if (tr_type == DWC2_TRANSACTION_PERIODIC ||
tr_type == DWC2_TRANSACTION_ALL)
dwc2_process_periodic_channels(hsotg);
/* Process host channels associated with non-periodic transfers */
if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
tr_type == DWC2_TRANSACTION_ALL) {
if (!list_empty(&hsotg->non_periodic_sched_active)) {
dwc2_process_non_periodic_channels(hsotg);
} else {
/*
* Ensure NP Tx FIFO empty interrupt is disabled when
* there are no non-periodic transfers to process
*/
u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
gintmsk &= ~GINTSTS_NPTXFEMP;
dwc2_writel(hsotg, gintmsk, GINTMSK);
}
}
}
static void dwc2_conn_id_status_change(struct work_struct *work)
{
struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
wf_otg);
u32 count = 0;
u32 gotgctl;
unsigned long flags;
dev_dbg(hsotg->dev, "%s()\n", __func__);
gotgctl = dwc2_readl(hsotg, GOTGCTL);
dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
!!(gotgctl & GOTGCTL_CONID_B));
/* B-Device connector (Device Mode) */
if (gotgctl & GOTGCTL_CONID_B) {
dwc2_vbus_supply_exit(hsotg);
/* Wait for switch to device mode */
dev_dbg(hsotg->dev, "connId B\n");
if (hsotg->bus_suspended) {
dev_info(hsotg->dev,
"Do port resume before switching to device mode\n");
dwc2_port_resume(hsotg);
}
while (!dwc2_is_device_mode(hsotg)) {
dev_info(hsotg->dev,
"Waiting for Peripheral Mode, Mode=%s\n",
dwc2_is_host_mode(hsotg) ? "Host" :
"Peripheral");
msleep(20);
/*
* Sometimes the initial GOTGCTRL read is wrong, so
* check it again and jump to host mode if that was
* the case.
*/
gotgctl = dwc2_readl(hsotg, GOTGCTL);
if (!(gotgctl & GOTGCTL_CONID_B))
goto host;
if (++count > 250)
break;
}
if (count > 250)
dev_err(hsotg->dev,
"Connection id status change timed out\n");
/*
* Exit Partial Power Down without restoring registers.
* No need to check the return value as registers
* are not being restored.
*/
if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
dwc2_exit_partial_power_down(hsotg, 0, false);
hsotg->op_state = OTG_STATE_B_PERIPHERAL;
dwc2_core_init(hsotg, false);
dwc2_enable_global_interrupts(hsotg);
spin_lock_irqsave(&hsotg->lock, flags);
dwc2_hsotg_core_init_disconnected(hsotg, false);
spin_unlock_irqrestore(&hsotg->lock, flags);
/* Enable ACG feature in device mode,if supported */
dwc2_enable_acg(hsotg);
dwc2_hsotg_core_connect(hsotg);
} else {
host:
/* A-Device connector (Host Mode) */
dev_dbg(hsotg->dev, "connId A\n");
while (!dwc2_is_host_mode(hsotg)) {
dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
dwc2_is_host_mode(hsotg) ?
"Host" : "Peripheral");
msleep(20);
if (++count > 250)
break;
}
if (count > 250)
dev_err(hsotg->dev,
"Connection id status change timed out\n");
spin_lock_irqsave(&hsotg->lock, flags);
dwc2_hsotg_disconnect(hsotg);
spin_unlock_irqrestore(&hsotg->lock, flags);
hsotg->op_state = OTG_STATE_A_HOST;
/* Initialize the Core for Host mode */
dwc2_core_init(hsotg, false);
dwc2_enable_global_interrupts(hsotg);
dwc2_hcd_start(hsotg);
}
}
static void dwc2_wakeup_detected(struct timer_list *t)
{
struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
u32 hprt0;
dev_dbg(hsotg->dev, "%s()\n", __func__);
/*
* Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
* so that OPT tests pass with all PHYs.)
*/
hprt0 = dwc2_read_hprt0(hsotg);
dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
hprt0 &= ~HPRT0_RES;
dwc2_writel(hsotg, hprt0, HPRT0);
dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
dwc2_readl(hsotg, HPRT0));
dwc2_hcd_rem_wakeup(hsotg);
hsotg->bus_suspended = false;
/* Change to L0 state */
hsotg->lx_state = DWC2_L0;
}
static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
{
struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
return hcd->self.b_hnp_enable;
}
/**
* dwc2_port_suspend() - Put controller in suspend mode for host.
*
* @hsotg: Programming view of the DWC_otg controller
* @windex: The control request wIndex field
*
* Return: non-zero if failed to enter suspend mode for host.
*
* This function is for entering Host mode suspend.
* Must NOT be called with interrupt disabled or spinlock held.
*/
int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
{
unsigned long flags;
u32 pcgctl;
u32 gotgctl;
int ret = 0;
dev_dbg(hsotg->dev, "%s()\n", __func__);
spin_lock_irqsave(&hsotg->lock, flags);
if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
gotgctl = dwc2_readl(hsotg, GOTGCTL);
gotgctl |= GOTGCTL_HSTSETHNPEN;
dwc2_writel(hsotg, gotgctl, GOTGCTL);
hsotg->op_state = OTG_STATE_A_SUSPEND;
}
switch (hsotg->params.power_down) {
case DWC2_POWER_DOWN_PARAM_PARTIAL:
ret = dwc2_enter_partial_power_down(hsotg);
if (ret)
dev_err(hsotg->dev,
"enter partial_power_down failed.\n");
break;
case DWC2_POWER_DOWN_PARAM_HIBERNATION:
/*
* Perform spin unlock and lock because in
* "dwc2_host_enter_hibernation()" function there is a spinlock
* logic which prevents servicing of any IRQ during entering
* hibernation.
*/
spin_unlock_irqrestore(&hsotg->lock, flags);
ret = dwc2_enter_hibernation(hsotg, 1);
if (ret)
dev_err(hsotg->dev, "enter hibernation failed.\n");
spin_lock_irqsave(&hsotg->lock, flags);
break;
case DWC2_POWER_DOWN_PARAM_NONE:
/*
* If not hibernation nor partial power down are supported,
* clock gating is used to save power.
*/
if (!hsotg->params.no_clock_gating)
dwc2_host_enter_clock_gating(hsotg);
break;
}
/* For HNP the bus must be suspended for at least 200ms */
if (dwc2_host_is_b_hnp_enabled(hsotg)) {
pcgctl = dwc2_readl(hsotg, PCGCTL);
pcgctl &= ~PCGCTL_STOPPCLK;
dwc2_writel(hsotg, pcgctl, PCGCTL);
spin_unlock_irqrestore(&hsotg->lock, flags);
msleep(200);
} else {
spin_unlock_irqrestore(&hsotg->lock, flags);
}
return ret;
}
/**
* dwc2_port_resume() - Exit controller from suspend mode for host.
*
* @hsotg: Programming view of the DWC_otg controller
*
* Return: non-zero if failed to exit suspend mode for host.
*
* This function is for exiting Host mode suspend.
* Must NOT be called with interrupt disabled or spinlock held.
*/
int dwc2_port_resume(struct dwc2_hsotg *hsotg)
{
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&hsotg->lock, flags);
switch (hsotg->params.power_down) {
case DWC2_POWER_DOWN_PARAM_PARTIAL:
ret = dwc2_exit_partial_power_down(hsotg, 0, true);
if (ret)
dev_err(hsotg->dev,
"exit partial_power_down failed.\n");
break;
case DWC2_POWER_DOWN_PARAM_HIBERNATION:
/* Exit host hibernation. */
ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
if (ret)
dev_err(hsotg->dev, "exit hibernation failed.\n");
break;
case DWC2_POWER_DOWN_PARAM_NONE:
/*
* If not hibernation nor partial power down are supported,
* port resume is done using the clock gating programming flow.
*/
spin_unlock_irqrestore(&hsotg->lock, flags);
dwc2_host_exit_clock_gating(hsotg, 0);
spin_lock_irqsave(&hsotg->lock, flags);
break;
}
spin_unlock_irqrestore(&hsotg->lock, flags);
return ret;
}
/* Handles hub class-specific requests */
static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
u16 wvalue, u16 windex, char *buf, u16 wlength)
{
struct usb_hub_descriptor *hub_desc;
int retval = 0;
u32 hprt0;
u32 port_status;
u32 speed;
u32 pcgctl;
u32 pwr;
switch (typereq) {
case ClearHubFeature:
dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
switch (wvalue) {
case C_HUB_LOCAL_POWER:
case C_HUB_OVER_CURRENT:
/* Nothing required here */
break;
default:
retval = -EINVAL;
dev_err(hsotg->dev,
"ClearHubFeature request %1xh unknown\n",
wvalue);
}
break;
case ClearPortFeature:
if (wvalue != USB_PORT_FEAT_L1)
if (!windex || windex > 1)
goto error;
switch (wvalue) {
case USB_PORT_FEAT_ENABLE:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_ENA;
dwc2_writel(hsotg, hprt0, HPRT0);
break;
case USB_PORT_FEAT_SUSPEND:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
if (hsotg->bus_suspended)
retval = dwc2_port_resume(hsotg);
break;
case USB_PORT_FEAT_POWER:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_POWER\n");
hprt0 = dwc2_read_hprt0(hsotg);
pwr = hprt0 & HPRT0_PWR;
hprt0 &= ~HPRT0_PWR;
dwc2_writel(hsotg, hprt0, HPRT0);
if (pwr)
dwc2_vbus_supply_exit(hsotg);
break;
case USB_PORT_FEAT_INDICATOR:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
/* Port indicator not supported */
break;
case USB_PORT_FEAT_C_CONNECTION:
/*
* Clears driver's internal Connect Status Change flag
*/
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
hsotg->flags.b.port_connect_status_change = 0;
break;
case USB_PORT_FEAT_C_RESET:
/* Clears driver's internal Port Reset Change flag */
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
hsotg->flags.b.port_reset_change = 0;
break;
case USB_PORT_FEAT_C_ENABLE:
/*
* Clears the driver's internal Port Enable/Disable
* Change flag
*/
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
hsotg->flags.b.port_enable_change = 0;
break;
case USB_PORT_FEAT_C_SUSPEND:
/*
* Clears the driver's internal Port Suspend Change
* flag, which is set when resume signaling on the host
* port is complete
*/
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
hsotg->flags.b.port_suspend_change = 0;
break;
case USB_PORT_FEAT_C_PORT_L1:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
hsotg->flags.b.port_l1_change = 0;
break;
case USB_PORT_FEAT_C_OVER_CURRENT:
dev_dbg(hsotg->dev,
"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
hsotg->flags.b.port_over_current_change = 0;
break;
default:
retval = -EINVAL;
dev_err(hsotg->dev,
"ClearPortFeature request %1xh unknown or unsupported\n",
wvalue);
}
break;
case GetHubDescriptor:
dev_dbg(hsotg->dev, "GetHubDescriptor\n");
hub_desc = (struct usb_hub_descriptor *)buf;
hub_desc->bDescLength = 9;
hub_desc->bDescriptorType = USB_DT_HUB;
hub_desc->bNbrPorts = 1;
hub_desc->wHubCharacteristics =
cpu_to_le16(HUB_CHAR_COMMON_LPSM |
HUB_CHAR_INDV_PORT_OCPM);
hub_desc->bPwrOn2PwrGood = 1;
hub_desc->bHubContrCurrent = 0;
hub_desc->u.hs.DeviceRemovable[0] = 0;
hub_desc->u.hs.DeviceRemovable[1] = 0xff;
break;
case GetHubStatus:
dev_dbg(hsotg->dev, "GetHubStatus\n");
memset(buf, 0, 4);
break;
case GetPortStatus:
dev_vdbg(hsotg->dev,
"GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
hsotg->flags.d32);
if (!windex || windex > 1)
goto error;
port_status = 0;
if (hsotg->flags.b.port_connect_status_change)
port_status |= USB_PORT_STAT_C_CONNECTION << 16;
if (hsotg->flags.b.port_enable_change)
port_status |= USB_PORT_STAT_C_ENABLE << 16;
if (hsotg->flags.b.port_suspend_change)
port_status |= USB_PORT_STAT_C_SUSPEND << 16;
if (hsotg->flags.b.port_l1_change)
port_status |= USB_PORT_STAT_C_L1 << 16;
if (hsotg->flags.b.port_reset_change)
port_status |= USB_PORT_STAT_C_RESET << 16;
if (hsotg->flags.b.port_over_current_change) {
dev_warn(hsotg->dev, "Overcurrent change detected\n");
port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
}
if (!hsotg->flags.b.port_connect_status) {
/*
* The port is disconnected, which means the core is
* either in device mode or it soon will be. Just
* return 0's for the remainder of the port status
* since the port register can't be read if the core
* is in device mode.
*/
*(__le32 *)buf = cpu_to_le32(port_status);
break;
}
hprt0 = dwc2_readl(hsotg, HPRT0);
dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
if (hprt0 & HPRT0_CONNSTS)
port_status |= USB_PORT_STAT_CONNECTION;
if (hprt0 & HPRT0_ENA)
port_status |= USB_PORT_STAT_ENABLE;
if (hprt0 & HPRT0_SUSP)
port_status |= USB_PORT_STAT_SUSPEND;
if (hprt0 & HPRT0_OVRCURRACT)
port_status |= USB_PORT_STAT_OVERCURRENT;
if (hprt0 & HPRT0_RST)
port_status |= USB_PORT_STAT_RESET;
if (hprt0 & HPRT0_PWR)
port_status |= USB_PORT_STAT_POWER;
speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
if (speed == HPRT0_SPD_HIGH_SPEED)
port_status |= USB_PORT_STAT_HIGH_SPEED;
else if (speed == HPRT0_SPD_LOW_SPEED)
port_status |= USB_PORT_STAT_LOW_SPEED;
if (hprt0 & HPRT0_TSTCTL_MASK)
port_status |= USB_PORT_STAT_TEST;
/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
if (hsotg->params.dma_desc_fs_enable) {
/*
* Enable descriptor DMA only if a full speed
* device is connected.
*/
if (hsotg->new_connection &&
((port_status &
(USB_PORT_STAT_CONNECTION |
USB_PORT_STAT_HIGH_SPEED |
USB_PORT_STAT_LOW_SPEED)) ==
USB_PORT_STAT_CONNECTION)) {
u32 hcfg;
dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
hsotg->params.dma_desc_enable = true;
hcfg = dwc2_readl(hsotg, HCFG);
hcfg |= HCFG_DESCDMA;
dwc2_writel(hsotg, hcfg, HCFG);
hsotg->new_connection = false;
}
}
dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
*(__le32 *)buf = cpu_to_le32(port_status);
break;
case SetHubFeature:
dev_dbg(hsotg->dev, "SetHubFeature\n");
/* No HUB features supported */
break;
case SetPortFeature:
dev_dbg(hsotg->dev, "SetPortFeature\n");
if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
goto error;
if (!hsotg->flags.b.port_connect_status) {
/*
* The port is disconnected, which means the core is
* either in device mode or it soon will be. Just
* return without doing anything since the port
* register can't be written if the core is in device
* mode.
*/
break;
}
switch (wvalue) {
case USB_PORT_FEAT_SUSPEND:
dev_dbg(hsotg->dev,
"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
if (windex != hsotg->otg_port)
goto error;
if (!hsotg->bus_suspended)
retval = dwc2_port_suspend(hsotg, windex);
break;
case USB_PORT_FEAT_POWER:
dev_dbg(hsotg->dev,
"SetPortFeature - USB_PORT_FEAT_POWER\n");
hprt0 = dwc2_read_hprt0(hsotg);
pwr = hprt0 & HPRT0_PWR;
hprt0 |= HPRT0_PWR;
dwc2_writel(hsotg, hprt0, HPRT0);
if (!pwr)
dwc2_vbus_supply_init(hsotg);
break;
case USB_PORT_FEAT_RESET:
dev_dbg(hsotg->dev,
"SetPortFeature - USB_PORT_FEAT_RESET\n");
hprt0 = dwc2_read_hprt0(hsotg);
if (hsotg->hibernated) {
retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
if (retval)
dev_err(hsotg->dev,
"exit hibernation failed\n");
}
if (hsotg->in_ppd) {
retval = dwc2_exit_partial_power_down(hsotg, 1,
true);
if (retval)
dev_err(hsotg->dev,
"exit partial_power_down failed\n");
}
if (hsotg->params.power_down ==
DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
dwc2_host_exit_clock_gating(hsotg, 0);
pcgctl = dwc2_readl(hsotg, PCGCTL);
pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
dwc2_writel(hsotg, pcgctl, PCGCTL);
/* ??? Original driver does this */
dwc2_writel(hsotg, 0, PCGCTL);
hprt0 = dwc2_read_hprt0(hsotg);
pwr = hprt0 & HPRT0_PWR;
/* Clear suspend bit if resetting from suspend state */
hprt0 &= ~HPRT0_SUSP;
/*
* When B-Host the Port reset bit is set in the Start
* HCD Callback function, so that the reset is started
* within 1ms of the HNP success interrupt
*/
if (!dwc2_hcd_is_b_host(hsotg)) {
hprt0 |= HPRT0_PWR | HPRT0_RST;
dev_dbg(hsotg->dev,
"In host mode, hprt0=%08x\n", hprt0);
dwc2_writel(hsotg, hprt0, HPRT0);
if (!pwr)
dwc2_vbus_supply_init(hsotg);
}
/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
msleep(50);
hprt0 &= ~HPRT0_RST;
dwc2_writel(hsotg, hprt0, HPRT0);
hsotg->lx_state = DWC2_L0; /* Now back to On state */
break;
case USB_PORT_FEAT_INDICATOR:
dev_dbg(hsotg->dev,
"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
/* Not supported */
break;
case USB_PORT_FEAT_TEST:
hprt0 = dwc2_read_hprt0(hsotg);
dev_dbg(hsotg->dev,
"SetPortFeature - USB_PORT_FEAT_TEST\n");
hprt0 &= ~HPRT0_TSTCTL_MASK;
hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
dwc2_writel(hsotg, hprt0, HPRT0);
break;
default:
retval = -EINVAL;
dev_err(hsotg->dev,
"SetPortFeature %1xh unknown or unsupported\n",
wvalue);
break;
}
break;
default:
error:
retval = -EINVAL;
dev_dbg(hsotg->dev,
"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
typereq, windex, wvalue);
break;
}
return retval;
}
static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
{
int retval;
if (port != 1)
return -EINVAL;
retval = (hsotg->flags.b.port_connect_status_change ||
hsotg->flags.b.port_reset_change ||
hsotg->flags.b.port_enable_change ||
hsotg->flags.b.port_suspend_change ||
hsotg->flags.b.port_over_current_change);
if (retval) {
dev_dbg(hsotg->dev,
"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
hsotg->flags.b.port_connect_status_change);
dev_dbg(hsotg->dev, " port_reset_change: %d\n",
hsotg->flags.b.port_reset_change);
dev_dbg(hsotg->dev, " port_enable_change: %d\n",
hsotg->flags.b.port_enable_change);
dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
hsotg->flags.b.port_suspend_change);
dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
hsotg->flags.b.port_over_current_change);
}
return retval;
}
int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
{
u32 hfnum = dwc2_readl(hsotg, HFNUM);
#ifdef DWC2_DEBUG_SOF
dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
(hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
#endif
return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
}
int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
{
u32 hprt = dwc2_readl(hsotg, HPRT0);
u32 hfir = dwc2_readl(hsotg, HFIR);
u32 hfnum = dwc2_readl(hsotg, HFNUM);
unsigned int us_per_frame;
unsigned int frame_number;
unsigned int remaining;
unsigned int interval;
unsigned int phy_clks;
/* High speed has 125 us per (micro) frame; others are 1 ms per */
us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
/* Extract fields */
frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
/*
* Number of phy clocks since the last tick of the frame number after
* "us" has passed.
*/
phy_clks = (interval - remaining) +
DIV_ROUND_UP(interval * us, us_per_frame);
return dwc2_frame_num_inc(frame_number, phy_clks / interval);
}
int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
{
return hsotg->op_state == OTG_STATE_B_HOST;
}
static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
int iso_desc_count,
gfp_t mem_flags)
{
struct dwc2_hcd_urb *urb;
urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
if (urb)
urb->packet_count = iso_desc_count;
return urb;
}
static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
struct dwc2_hcd_urb *urb, u8 dev_addr,
u8 ep_num, u8 ep_type, u8 ep_dir,
u16 maxp, u16 maxp_mult)
{
if (dbg_perio() ||
ep_type == USB_ENDPOINT_XFER_BULK ||
ep_type == USB_ENDPOINT_XFER_CONTROL)
dev_vdbg(hsotg->dev,
"addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
urb->pipe_info.dev_addr = dev_addr;
urb->pipe_info.ep_num = ep_num;
urb->pipe_info.pipe_type = ep_type;
urb->pipe_info.pipe_dir = ep_dir;
urb->pipe_info.maxp = maxp;
urb->pipe_info.maxp_mult = maxp_mult;
}
/*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
struct dwc2_host_chan *chan;
struct dwc2_hcd_urb *urb;
struct dwc2_qtd *qtd;
int num_channels;
u32 np_tx_status;
u32 p_tx_status;
int i;
num_channels = hsotg->params.host_channels;
dev_dbg(hsotg->dev, "\n");
dev_dbg(hsotg->dev,
"************************************************************\n");
dev_dbg(hsotg->dev, "HCD State:\n");
dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
for (i = 0; i < num_channels; i++) {
chan = hsotg->hc_ptr_array[i];
dev_dbg(hsotg->dev, " Channel %d:\n", i);
dev_dbg(hsotg->dev,
" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
chan->dev_addr, chan->ep_num, chan->ep_is_in);
dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
dev_dbg(hsotg->dev, " data_pid_start: %d\n",
chan->data_pid_start);
dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
dev_dbg(hsotg->dev, " xfer_started: %d\n",
chan->xfer_started);
dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
(unsigned long)chan->xfer_dma);
dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
chan->halt_on_queue);
dev_dbg(hsotg->dev, " halt_pending: %d\n",
chan->halt_pending);
dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
dev_dbg(hsotg->dev, " complete_split: %d\n",
chan->complete_split);
dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
if (chan->xfer_started) {
u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
hfnum = dwc2_readl(hsotg, HFNUM);
hcchar = dwc2_readl(hsotg, HCCHAR(i));
hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
hcint = dwc2_readl(hsotg, HCINT(i));
hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
}
if (!(chan->xfer_started && chan->qh))
continue;
list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
if (!qtd->in_process)
break;
urb = qtd->urb;
dev_dbg(hsotg->dev, " URB Info:\n");
dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
qtd, urb);
if (urb) {
dev_dbg(hsotg->dev,
" Dev: %d, EP: %d %s\n",
dwc2_hcd_get_dev_addr(&urb->pipe_info),
dwc2_hcd_get_ep_num(&urb->pipe_info),
dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
"IN" : "OUT");
dev_dbg(hsotg->dev,
" Max packet size: %d (%d mult)\n",
dwc2_hcd_get_maxp(&urb->pipe_info),
dwc2_hcd_get_maxp_mult(&urb->pipe_info));
dev_dbg(hsotg->dev,
" transfer_buffer: %p\n",
urb->buf);
dev_dbg(hsotg->dev,
" transfer_dma: %08lx\n",
(unsigned long)urb->dma);
dev_dbg(hsotg->dev,
" transfer_buffer_length: %d\n",
urb->length);
dev_dbg(hsotg->dev, " actual_length: %d\n",
urb->actual_length);
}
}
}
dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
hsotg->non_periodic_channels);
dev_dbg(hsotg->dev, " periodic_channels: %d\n",
hsotg->periodic_channels);
dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
p_tx_status = dwc2_readl(hsotg, HPTXSTS);
dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
dwc2_dump_global_registers(hsotg);
dwc2_dump_host_registers(hsotg);
dev_dbg(hsotg->dev,
"************************************************************\n");
dev_dbg(hsotg->dev, "\n");
#endif
}
struct wrapper_priv_data {
struct dwc2_hsotg *hsotg;
};
/* Gets the dwc2_hsotg from a usb_hcd */
static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
{
struct wrapper_priv_data *p;
p = (struct wrapper_priv_data *)&hcd->hcd_priv;
return p->hsotg;
}
/**
* dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
*
* This will get the dwc2_tt structure (and ttport) associated with the given
* context (which is really just a struct urb pointer).
*
* The first time this is called for a given TT we allocate memory for our
* structure. When everyone is done and has called dwc2_host_put_tt_info()
* then the refcount for the structure will go to 0 and we'll free it.
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @context: The priv pointer from a struct dwc2_hcd_urb.
* @mem_flags: Flags for allocating memory.
* @ttport: We'll return this device's port number here. That's used to
* reference into the bitmap if we're on a multi_tt hub.
*
* Return: a pointer to a struct dwc2_tt. Don't forget to call
* dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
*/
struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
gfp_t mem_flags, int *ttport)
{
struct urb *urb = context;
struct dwc2_tt *dwc_tt = NULL;
if (urb->dev->tt) {
*ttport = urb->dev->ttport;
dwc_tt = urb->dev->tt->hcpriv;
if (!dwc_tt) {
size_t bitmap_size;
/*
* For single_tt we need one schedule. For multi_tt
* we need one per port.
*/
bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
sizeof(dwc_tt->periodic_bitmaps[0]);
if (urb->dev->tt->multi)
bitmap_size *= urb->dev->tt->hub->maxchild;
dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
mem_flags);
if (!dwc_tt)
return NULL;
dwc_tt->usb_tt = urb->dev->tt;
dwc_tt->usb_tt->hcpriv = dwc_tt;
}
dwc_tt->refcount++;
}
return dwc_tt;
}
/**
* dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
*
* Frees resources allocated by dwc2_host_get_tt_info() if all current holders
* of the structure are done.
*
* It's OK to call this with NULL.
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
*/
void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
{
/* Model kfree and make put of NULL a no-op */
if (!dwc_tt)
return;
WARN_ON(dwc_tt->refcount < 1);
dwc_tt->refcount--;
if (!dwc_tt->refcount) {
dwc_tt->usb_tt->hcpriv = NULL;
kfree(dwc_tt);
}
}
int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
{
struct urb *urb = context;
return urb->dev->speed;
}
static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
struct urb *urb)
{
struct usb_bus *bus = hcd_to_bus(hcd);
if (urb->interval)
bus->bandwidth_allocated += bw / urb->interval;
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
bus->bandwidth_isoc_reqs++;
else
bus->bandwidth_int_reqs++;
}
static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
struct urb *urb)
{
struct usb_bus *bus = hcd_to_bus(hcd);
if (urb->interval)
bus->bandwidth_allocated -= bw / urb->interval;
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
bus->bandwidth_isoc_reqs--;
else
bus->bandwidth_int_reqs--;
}
/*
* Sets the final status of an URB and returns it to the upper layer. Any
* required cleanup of the URB is performed.
*
* Must be called with interrupt disabled and spinlock held
*/
void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
int status)
{
struct urb *urb;
int i;
if (!qtd) {
dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
return;
}
if (!qtd->urb) {
dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
return;
}
urb = qtd->urb->priv;
if (!urb) {
dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
return;
}
urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
if (dbg_urb(urb))
dev_vdbg(hsotg->dev,
"%s: urb %p device %d ep %d-%s status %d actual %d\n",
__func__, urb, usb_pipedevice(urb->pipe),
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "IN" : "OUT", status,
urb->actual_length);
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
for (i = 0; i < urb->number_of_packets; ++i) {
urb->iso_frame_desc[i].actual_length =
dwc2_hcd_urb_get_iso_desc_actual_length(
qtd->urb, i);
urb->iso_frame_desc[i].status =
dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
}
}
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
for (i = 0; i < urb->number_of_packets; i++)
dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
i, urb->iso_frame_desc[i].status);
}
urb->status = status;
if (!status) {
if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
urb->actual_length < urb->transfer_buffer_length)
urb->status = -EREMOTEIO;
}
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
struct usb_host_endpoint *ep = urb->ep;
if (ep)
dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
dwc2_hcd_get_ep_bandwidth(hsotg, ep),
urb);
}
usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
urb->hcpriv = NULL;
kfree(qtd->urb);
qtd->urb = NULL;
usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
}
/*
* Work queue function for starting the HCD when A-Cable is connected
*/
static void dwc2_hcd_start_func(struct work_struct *work)
{
struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
start_work.work);
dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
dwc2_host_start(hsotg);
}
/*
* Reset work queue function
*/
static void dwc2_hcd_reset_func(struct work_struct *work)
{
struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
reset_work.work);
unsigned long flags;
u32 hprt0;
dev_dbg(hsotg->dev, "USB RESET function called\n");
spin_lock_irqsave(&hsotg->lock, flags);
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 &= ~HPRT0_RST;
dwc2_writel(hsotg, hprt0, HPRT0);
hsotg->flags.b.port_reset_change = 1;
spin_unlock_irqrestore(&hsotg->lock, flags);
}
static void dwc2_hcd_phy_reset_func(struct work_struct *work)
{
struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
phy_reset_work);
int ret;
ret = phy_reset(hsotg->phy);
if (ret)
dev_warn(hsotg->dev, "PHY reset failed\n");
}
/*
* =========================================================================
* Linux HC Driver Functions
* =========================================================================
*/
/*
* Initializes the DWC_otg controller and its root hub and prepares it for host
* mode operation. Activates the root port. Returns 0 on success and a negative
* error code on failure.
*/
static int _dwc2_hcd_start(struct usb_hcd *hcd)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
struct usb_bus *bus = hcd_to_bus(hcd);
unsigned long flags;
u32 hprt0;
int ret;
dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
spin_lock_irqsave(&hsotg->lock, flags);
hsotg->lx_state = DWC2_L0;
hcd->state = HC_STATE_RUNNING;
set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
if (dwc2_is_device_mode(hsotg)) {
spin_unlock_irqrestore(&hsotg->lock, flags);
return 0; /* why 0 ?? */
}
dwc2_hcd_reinit(hsotg);
hprt0 = dwc2_read_hprt0(hsotg);
/* Has vbus power been turned on in dwc2_core_host_init ? */
if (hprt0 & HPRT0_PWR) {
/* Enable external vbus supply before resuming root hub */
spin_unlock_irqrestore(&hsotg->lock, flags);
ret = dwc2_vbus_supply_init(hsotg);
if (ret)
return ret;
spin_lock_irqsave(&hsotg->lock, flags);
}
/* Initialize and connect root hub if one is not already attached */
if (bus->root_hub) {
dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
/* Inform the HUB driver to resume */
usb_hcd_resume_root_hub(hcd);
}
spin_unlock_irqrestore(&hsotg->lock, flags);
return 0;
}
/*
* Halts the DWC_otg host mode operations in a clean manner. USB transfers are
* stopped.
*/
static void _dwc2_hcd_stop(struct usb_hcd *hcd)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
unsigned long flags;
u32 hprt0;
/* Turn off all host-specific interrupts */
dwc2_disable_host_interrupts(hsotg);
/* Wait for interrupt processing to finish */
synchronize_irq(hcd->irq);
spin_lock_irqsave(&hsotg->lock, flags);
hprt0 = dwc2_read_hprt0(hsotg);
/* Ensure hcd is disconnected */
dwc2_hcd_disconnect(hsotg, true);
dwc2_hcd_stop(hsotg);
hsotg->lx_state = DWC2_L3;
hcd->state = HC_STATE_HALT;
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
spin_unlock_irqrestore(&hsotg->lock, flags);
/* keep balanced supply init/exit by checking HPRT0_PWR */
if (hprt0 & HPRT0_PWR)
dwc2_vbus_supply_exit(hsotg);
usleep_range(1000, 3000);
}
static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&hsotg->lock, flags);
if (dwc2_is_device_mode(hsotg))
goto unlock;
if (hsotg->lx_state != DWC2_L0)
goto unlock;
if (!HCD_HW_ACCESSIBLE(hcd))
goto unlock;
if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
goto unlock;
if (hsotg->bus_suspended)
goto skip_power_saving;
if (hsotg->flags.b.port_connect_status == 0)
goto skip_power_saving;
switch (hsotg->params.power_down) {
case DWC2_POWER_DOWN_PARAM_PARTIAL:
/* Enter partial_power_down */
ret = dwc2_enter_partial_power_down(hsotg);
if (ret)
dev_err(hsotg->dev,
"enter partial_power_down failed\n");
/* After entering suspend, hardware is not accessible */
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
break;
case DWC2_POWER_DOWN_PARAM_HIBERNATION:
/* Enter hibernation */
spin_unlock_irqrestore(&hsotg->lock, flags);
ret = dwc2_enter_hibernation(hsotg, 1);
if (ret)
dev_err(hsotg->dev, "enter hibernation failed\n");
spin_lock_irqsave(&hsotg->lock, flags);
/* After entering suspend, hardware is not accessible */
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
break;
case DWC2_POWER_DOWN_PARAM_NONE:
/*
* If not hibernation nor partial power down are supported,
* clock gating is used to save power.
*/
if (!hsotg->params.no_clock_gating) {
dwc2_host_enter_clock_gating(hsotg);
/* After entering suspend, hardware is not accessible */
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
}
break;
default:
goto skip_power_saving;
}
spin_unlock_irqrestore(&hsotg->lock, flags);
dwc2_vbus_supply_exit(hsotg);
spin_lock_irqsave(&hsotg->lock, flags);
/* Ask phy to be suspended */
if (!IS_ERR_OR_NULL(hsotg->uphy)) {
spin_unlock_irqrestore(&hsotg->lock, flags);
usb_phy_set_suspend(hsotg->uphy, true);
spin_lock_irqsave(&hsotg->lock, flags);
}
skip_power_saving:
hsotg->lx_state = DWC2_L2;
unlock:
spin_unlock_irqrestore(&hsotg->lock, flags);
return ret;
}
static int _dwc2_hcd_resume(struct usb_hcd *hcd)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
unsigned long flags;
u32 hprt0;
int ret = 0;
spin_lock_irqsave(&hsotg->lock, flags);
if (dwc2_is_device_mode(hsotg))
goto unlock;
if (hsotg->lx_state != DWC2_L2)
goto unlock;
hprt0 = dwc2_read_hprt0(hsotg);
/*
* Added port connection status checking which prevents exiting from
* Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
* Power Down mode.
*/
if (hprt0 & HPRT0_CONNSTS) {
hsotg->lx_state = DWC2_L0;
goto unlock;
}
switch (hsotg->params.power_down) {
case DWC2_POWER_DOWN_PARAM_PARTIAL:
ret = dwc2_exit_partial_power_down(hsotg, 0, true);
if (ret)
dev_err(hsotg->dev,
"exit partial_power_down failed\n");
/*
* Set HW accessible bit before powering on the controller
* since an interrupt may rise.
*/
set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
break;
case DWC2_POWER_DOWN_PARAM_HIBERNATION:
ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
if (ret)
dev_err(hsotg->dev, "exit hibernation failed.\n");
/*
* Set HW accessible bit before powering on the controller
* since an interrupt may rise.
*/
set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
break;
case DWC2_POWER_DOWN_PARAM_NONE:
/*
* If not hibernation nor partial power down are supported,
* port resume is done using the clock gating programming flow.
*/
spin_unlock_irqrestore(&hsotg->lock, flags);
dwc2_host_exit_clock_gating(hsotg, 0);
/*
* Initialize the Core for Host mode, as after system resume
* the global interrupts are disabled.
*/
dwc2_core_init(hsotg, false);
dwc2_enable_global_interrupts(hsotg);
dwc2_hcd_reinit(hsotg);
spin_lock_irqsave(&hsotg->lock, flags);
/*
* Set HW accessible bit before powering on the controller
* since an interrupt may rise.
*/
set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
break;
default:
hsotg->lx_state = DWC2_L0;
goto unlock;
}
/* Change Root port status, as port status change occurred after resume.*/
hsotg->flags.b.port_suspend_change = 1;
/*
* Enable power if not already done.
* This must not be spinlocked since duration
* of this call is unknown.
*/
if (!IS_ERR_OR_NULL(hsotg->uphy)) {
spin_unlock_irqrestore(&hsotg->lock, flags);
usb_phy_set_suspend(hsotg->uphy, false);
spin_lock_irqsave(&hsotg->lock, flags);
}
/* Enable external vbus supply after resuming the port. */
spin_unlock_irqrestore(&hsotg->lock, flags);
dwc2_vbus_supply_init(hsotg);
/* Wait for controller to correctly update D+/D- level */
usleep_range(3000, 5000);
spin_lock_irqsave(&hsotg->lock, flags);
/*
* Clear Port Enable and Port Status changes.
* Enable Port Power.
*/
dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
HPRT0_ENACHG, HPRT0);
/* Wait for controller to detect Port Connect */
spin_unlock_irqrestore(&hsotg->lock, flags);
usleep_range(5000, 7000);
spin_lock_irqsave(&hsotg->lock, flags);
unlock:
spin_unlock_irqrestore(&hsotg->lock, flags);
return ret;
}
/* Returns the current frame number */
static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
return dwc2_hcd_get_frame_number(hsotg);
}
static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
char *fn_name)
{
#ifdef VERBOSE_DEBUG
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
char *pipetype = NULL;
char *speed = NULL;
dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
dev_vdbg(hsotg->dev, " Device address: %d\n",
usb_pipedevice(urb->pipe));
dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "IN" : "OUT");
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
pipetype = "CONTROL";
break;
case PIPE_BULK:
pipetype = "BULK";
break;
case PIPE_INTERRUPT:
pipetype = "INTERRUPT";
break;
case PIPE_ISOCHRONOUS:
pipetype = "ISOCHRONOUS";
break;
}
dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
"IN" : "OUT");
switch (urb->dev->speed) {
case USB_SPEED_HIGH:
speed = "HIGH";
break;
case USB_SPEED_FULL:
speed = "FULL";
break;
case USB_SPEED_LOW:
speed = "LOW";
break;
default:
speed = "UNKNOWN";
break;
}
dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
dev_vdbg(hsotg->dev, " Max packet size: %d (%d mult)\n",
usb_endpoint_maxp(&urb->ep->desc),
usb_endpoint_maxp_mult(&urb->ep->desc));
dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
urb->transfer_buffer_length);
dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
urb->transfer_buffer, (unsigned long)urb->transfer_dma);
dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
urb->setup_packet, (unsigned long)urb->setup_dma);
dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
int i;
for (i = 0; i < urb->number_of_packets; i++) {
dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
urb->iso_frame_desc[i].offset,
urb->iso_frame_desc[i].length);
}
}
#endif
}
/*
* Starts processing a USB transfer request specified by a USB Request Block
* (URB). mem_flags indicates the type of memory allocation to use while
* processing this URB.
*/
static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
gfp_t mem_flags)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
struct usb_host_endpoint *ep = urb->ep;
struct dwc2_hcd_urb *dwc2_urb;
int i;
int retval;
int alloc_bandwidth = 0;
u8 ep_type = 0;
u32 tflags = 0;
void *buf;
unsigned long flags;
struct dwc2_qh *qh;
bool qh_allocated = false;
struct dwc2_qtd *qtd;
struct dwc2_gregs_backup *gr;
gr = &hsotg->gr_backup;
if (dbg_urb(urb)) {
dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
}
if (hsotg->hibernated) {
if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
else
retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
if (retval)
dev_err(hsotg->dev,
"exit hibernation failed.\n");
}
if (hsotg->in_ppd) {
retval = dwc2_exit_partial_power_down(hsotg, 0, true);
if (retval)
dev_err(hsotg->dev,
"exit partial_power_down failed\n");
}
if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
hsotg->bus_suspended) {
if (dwc2_is_device_mode(hsotg))
dwc2_gadget_exit_clock_gating(hsotg, 0);
else
dwc2_host_exit_clock_gating(hsotg, 0);
}
if (!ep)
return -EINVAL;
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
spin_lock_irqsave(&hsotg->lock, flags);
if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
alloc_bandwidth = 1;
spin_unlock_irqrestore(&hsotg->lock, flags);
}
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
ep_type = USB_ENDPOINT_XFER_CONTROL;
break;
case PIPE_ISOCHRONOUS:
ep_type = USB_ENDPOINT_XFER_ISOC;
break;
case PIPE_BULK:
ep_type = USB_ENDPOINT_XFER_BULK;
break;
case PIPE_INTERRUPT:
ep_type = USB_ENDPOINT_XFER_INT;
break;
}
dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
mem_flags);
if (!dwc2_urb)
return -ENOMEM;
dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
usb_pipeendpoint(urb->pipe), ep_type,
usb_pipein(urb->pipe),
usb_endpoint_maxp(&ep->desc),
usb_endpoint_maxp_mult(&ep->desc));
buf = urb->transfer_buffer;
if (hcd_uses_dma(hcd)) {
if (!buf && (urb->transfer_dma & 3)) {
dev_err(hsotg->dev,
"%s: unaligned transfer with no transfer_buffer",
__func__);
retval = -EINVAL;
goto fail0;
}
}
if (!(urb->transfer_flags & URB_NO_INTERRUPT))
tflags |= URB_GIVEBACK_ASAP;
if (urb->transfer_flags & URB_ZERO_PACKET)
tflags |= URB_SEND_ZERO_PACKET;
dwc2_urb->priv = urb;
dwc2_urb->buf = buf;
dwc2_urb->dma = urb->transfer_dma;
dwc2_urb->length = urb->transfer_buffer_length;
dwc2_urb->setup_packet = urb->setup_packet;
dwc2_urb->setup_dma = urb->setup_dma;
dwc2_urb->flags = tflags;
dwc2_urb->interval = urb->interval;
dwc2_urb->status = -EINPROGRESS;
for (i = 0; i < urb->number_of_packets; ++i)
dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
urb->iso_frame_desc[i].offset,
urb->iso_frame_desc[i].length);
urb->hcpriv = dwc2_urb;
qh = (struct dwc2_qh *)ep->hcpriv;
/* Create QH for the endpoint if it doesn't exist */
if (!qh) {
qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
if (!qh) {
retval = -ENOMEM;
goto fail0;
}
ep->hcpriv = qh;
qh_allocated = true;
}
qtd = kzalloc(sizeof(*qtd), mem_flags);
if (!qtd) {
retval = -ENOMEM;
goto fail1;
}
spin_lock_irqsave(&hsotg->lock, flags);
retval = usb_hcd_link_urb_to_ep(hcd, urb);
if (retval)
goto fail2;
retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
if (retval)
goto fail3;
if (alloc_bandwidth) {
dwc2_allocate_bus_bandwidth(hcd,
dwc2_hcd_get_ep_bandwidth(hsotg, ep),
urb);
}
spin_unlock_irqrestore(&hsotg->lock, flags);
return 0;
fail3:
dwc2_urb->priv = NULL;
usb_hcd_unlink_urb_from_ep(hcd, urb);
if (qh_allocated && qh->channel && qh->channel->qh == qh)
qh->channel->qh = NULL;
fail2:
spin_unlock_irqrestore(&hsotg->lock, flags);
urb->hcpriv = NULL;
kfree(qtd);
fail1:
if (qh_allocated) {
struct dwc2_qtd *qtd2, *qtd2_tmp;
ep->hcpriv = NULL;
dwc2_hcd_qh_unlink(hsotg, qh);
/* Free each QTD in the QH's QTD list */
list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
qtd_list_entry)
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
dwc2_hcd_qh_free(hsotg, qh);
}
fail0:
kfree(dwc2_urb);
return retval;
}
/*
* Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
*/
static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
int status)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
int rc;
unsigned long flags;
dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
spin_lock_irqsave(&hsotg->lock, flags);
rc = usb_hcd_check_unlink_urb(hcd, urb, status);
if (rc)
goto out;
if (!urb->hcpriv) {
dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
goto out;
}
rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
usb_hcd_unlink_urb_from_ep(hcd, urb);
kfree(urb->hcpriv);
urb->hcpriv = NULL;
/* Higher layer software sets URB status */
spin_unlock(&hsotg->lock);
usb_hcd_giveback_urb(hcd, urb, status);
spin_lock(&hsotg->lock);
dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
out:
spin_unlock_irqrestore(&hsotg->lock, flags);
return rc;
}
/*
* Frees resources in the DWC_otg controller related to a given endpoint. Also
* clears state in the HCD related to the endpoint. Any URBs for the endpoint
* must already be dequeued.
*/
static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
dev_dbg(hsotg->dev,
"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
ep->desc.bEndpointAddress, ep->hcpriv);
dwc2_hcd_endpoint_disable(hsotg, ep, 250);
}
/*
* Resets endpoint specific parameter values, in current version used to reset
* the data toggle (as a WA). This function can be called from usb_clear_halt
* routine.
*/
static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
unsigned long flags;
dev_dbg(hsotg->dev,
"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
ep->desc.bEndpointAddress);
spin_lock_irqsave(&hsotg->lock, flags);
dwc2_hcd_endpoint_reset(hsotg, ep);
spin_unlock_irqrestore(&hsotg->lock, flags);
}
/*
* Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
* there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
* interrupt.
*
* This function is called by the USB core when an interrupt occurs
*/
static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
return dwc2_handle_hcd_intr(hsotg);
}
/*
* Creates Status Change bitmap for the root hub and root port. The bitmap is
* returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
* is the status change indicator for the single root port. Returns 1 if either
* change indicator is 1, otherwise returns 0.
*/
static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
return buf[0] != 0;
}
/* Handles hub class-specific requests */
static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
u16 windex, char *buf, u16 wlength)
{
int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
wvalue, windex, buf, wlength);
return retval;
}
/* Handles hub TT buffer clear completions */
static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
struct dwc2_qh *qh;
unsigned long flags;
qh = ep->hcpriv;
if (!qh)
return;
spin_lock_irqsave(&hsotg->lock, flags);
qh->tt_buffer_dirty = 0;
if (hsotg->flags.b.port_connect_status)
dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
spin_unlock_irqrestore(&hsotg->lock, flags);
}
/*
* HPRT0_SPD_HIGH_SPEED: high speed
* HPRT0_SPD_FULL_SPEED: full speed
*/
static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
if (hsotg->params.speed == speed)
return;
hsotg->params.speed = speed;
queue_work(hsotg->wq_otg, &hsotg->wf_otg);
}
static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
if (!hsotg->params.change_speed_quirk)
return;
/*
* On removal, set speed to default high-speed.
*/
if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
udev->parent->speed < USB_SPEED_HIGH) {
dev_info(hsotg->dev, "Set speed to default high-speed\n");
dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
}
}
static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
{
struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
if (!hsotg->params.change_speed_quirk)
return 0;
if (udev->speed == USB_SPEED_HIGH) {
dev_info(hsotg->dev, "Set speed to high-speed\n");
dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
} else if ((udev->speed == USB_SPEED_FULL ||
udev->speed == USB_SPEED_LOW)) {
/*
* Change speed setting to full-speed if there's
* a full-speed or low-speed device plugged in.
*/
dev_info(hsotg->dev, "Set speed to full-speed\n");
dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
}
return 0;
}
static struct hc_driver dwc2_hc_driver = {
.description = "dwc2_hsotg",
.product_desc = "DWC OTG Controller",
.hcd_priv_size = sizeof(struct wrapper_priv_data),
.irq = _dwc2_hcd_irq,
.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
.start = _dwc2_hcd_start,
.stop = _dwc2_hcd_stop,
.urb_enqueue = _dwc2_hcd_urb_enqueue,
.urb_dequeue = _dwc2_hcd_urb_dequeue,
.endpoint_disable = _dwc2_hcd_endpoint_disable,
.endpoint_reset = _dwc2_hcd_endpoint_reset,
.get_frame_number = _dwc2_hcd_get_frame_number,
.hub_status_data = _dwc2_hcd_hub_status_data,
.hub_control = _dwc2_hcd_hub_control,
.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
.bus_suspend = _dwc2_hcd_suspend,
.bus_resume = _dwc2_hcd_resume,
.map_urb_for_dma = dwc2_map_urb_for_dma,
.unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
};
/*
* Frees secondary storage associated with the dwc2_hsotg structure contained
* in the struct usb_hcd field
*/
static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
{
u32 ahbcfg;
u32 dctl;
int i;
dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
/* Free memory for QH/QTD lists */
dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
/* Free memory for the host channels */
for (i = 0; i < MAX_EPS_CHANNELS; i++) {
struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
if (chan) {
dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
i, chan);
hsotg->hc_ptr_array[i] = NULL;
kfree(chan);
}
}
if (hsotg->params.host_dma) {
if (hsotg->status_buf) {
dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
hsotg->status_buf,
hsotg->status_buf_dma);
hsotg->status_buf = NULL;
}
} else {
kfree(hsotg->status_buf);
hsotg->status_buf = NULL;
}
ahbcfg = dwc2_readl(hsotg, GAHBCFG);
/* Disable all interrupts */
ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
dwc2_writel(hsotg, ahbcfg, GAHBCFG);
dwc2_writel(hsotg, 0, GINTMSK);
if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
dctl = dwc2_readl(hsotg, DCTL);
dctl |= DCTL_SFTDISCON;
dwc2_writel(hsotg, dctl, DCTL);
}
if (hsotg->wq_otg) {
if (!cancel_work_sync(&hsotg->wf_otg))
flush_workqueue(hsotg->wq_otg);
destroy_workqueue(hsotg->wq_otg);
}
cancel_work_sync(&hsotg->phy_reset_work);
del_timer(&hsotg->wkp_timer);
}
static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
{
/* Turn off all host-specific interrupts */
dwc2_disable_host_interrupts(hsotg);
dwc2_hcd_free(hsotg);
}
/*
* Initializes the HCD. This function allocates memory for and initializes the
* static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
* USB bus with the core and calls the hc_driver->start() function. It returns
* a negative error on failure.
*/
int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
{
struct platform_device *pdev = to_platform_device(hsotg->dev);
struct resource *res;
struct usb_hcd *hcd;
struct dwc2_host_chan *channel;
u32 hcfg;
int i, num_channels;
int retval;
if (usb_disabled())
return -ENODEV;
dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
retval = -ENOMEM;
hcfg = dwc2_readl(hsotg, HCFG);
dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
sizeof(*hsotg->frame_num_array),
GFP_KERNEL);
if (!hsotg->frame_num_array)
goto error1;
hsotg->last_frame_num_array =
kcalloc(FRAME_NUM_ARRAY_SIZE,
sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
if (!hsotg->last_frame_num_array)
goto error1;
#endif
hsotg->last_frame_num = HFNUM_MAX_FRNUM;
/* Check if the bus driver or platform code has setup a dma_mask */
if (hsotg->params.host_dma &&
!hsotg->dev->dma_mask) {
dev_warn(hsotg->dev,
"dma_mask not set, disabling DMA\n");
hsotg->params.host_dma = false;
hsotg->params.dma_desc_enable = false;
}
/* Set device flags indicating whether the HCD supports DMA */
if (hsotg->params.host_dma) {
if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
dev_warn(hsotg->dev, "can't set DMA mask\n");
if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
}
if (hsotg->params.change_speed_quirk) {
dwc2_hc_driver.free_dev = dwc2_free_dev;
dwc2_hc_driver.reset_device = dwc2_reset_device;
}
if (hsotg->params.host_dma)
dwc2_hc_driver.flags |= HCD_DMA;
hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
if (!hcd)
goto error1;
hcd->has_tt = 1;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
retval = -EINVAL;
goto error2;
}
hcd->rsrc_start = res->start;
hcd->rsrc_len = resource_size(res);
((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
hsotg->priv = hcd;
/*
* Disable the global interrupt until all the interrupt handlers are
* installed
*/
dwc2_disable_global_interrupts(hsotg);
/* Initialize the DWC_otg core, and select the Phy type */
retval = dwc2_core_init(hsotg, true);
if (retval)
goto error2;
/* Create new workqueue and init work */
retval = -ENOMEM;
hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
if (!hsotg->wq_otg) {
dev_err(hsotg->dev, "Failed to create workqueue\n");
goto error2;
}
INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
/* Initialize the non-periodic schedule */
INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
/* Initialize the periodic schedule */
INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
INIT_LIST_HEAD(&hsotg->split_order);
/*
* Create a host channel descriptor for each host channel implemented
* in the controller. Initialize the channel descriptor array.
*/
INIT_LIST_HEAD(&hsotg->free_hc_list);
num_channels = hsotg->params.host_channels;
memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
for (i = 0; i < num_channels; i++) {
channel = kzalloc(sizeof(*channel), GFP_KERNEL);
if (!channel)
goto error3;
channel->hc_num = i;
INIT_LIST_HEAD(&channel->split_order_list_entry);
hsotg->hc_ptr_array[i] = channel;
}
/* Initialize work */
INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
/*
* Allocate space for storing data on status transactions. Normally no
* data is sent, but this space acts as a bit bucket. This must be
* done after usb_add_hcd since that function allocates the DMA buffer
* pool.
*/
if (hsotg->params.host_dma)
hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
DWC2_HCD_STATUS_BUF_SIZE,
&hsotg->status_buf_dma, GFP_KERNEL);
else
hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
GFP_KERNEL);
if (!hsotg->status_buf)
goto error3;
/*
* Create kmem caches to handle descriptor buffers in descriptor
* DMA mode.
* Alignment must be set to 512 bytes.
*/
if (hsotg->params.dma_desc_enable ||
hsotg->params.dma_desc_fs_enable) {
hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
sizeof(struct dwc2_dma_desc) *
MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
NULL);
if (!hsotg->desc_gen_cache) {
dev_err(hsotg->dev,
"unable to create dwc2 generic desc cache\n");
/*
* Disable descriptor dma mode since it will not be
* usable.
*/
hsotg->params.dma_desc_enable = false;
hsotg->params.dma_desc_fs_enable = false;
}
hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
sizeof(struct dwc2_dma_desc) *
MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
if (!hsotg->desc_hsisoc_cache) {
dev_err(hsotg->dev,
"unable to create dwc2 hs isoc desc cache\n");
kmem_cache_destroy(hsotg->desc_gen_cache);
/*
* Disable descriptor dma mode since it will not be
* usable.
*/
hsotg->params.dma_desc_enable = false;
hsotg->params.dma_desc_fs_enable = false;
}
}
if (hsotg->params.host_dma) {
/*
* Create kmem caches to handle non-aligned buffer
* in Buffer DMA mode.
*/
hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
SLAB_CACHE_DMA, NULL);
if (!hsotg->unaligned_cache)
dev_err(hsotg->dev,
"unable to create dwc2 unaligned cache\n");
}
hsotg->otg_port = 1;
hsotg->frame_list = NULL;
hsotg->frame_list_dma = 0;
hsotg->periodic_qh_count = 0;
/* Initiate lx_state to L3 disconnected state */
hsotg->lx_state = DWC2_L3;
hcd->self.otg_port = hsotg->otg_port;
/* Don't support SG list at this point */
hcd->self.sg_tablesize = 0;
if (!IS_ERR_OR_NULL(hsotg->uphy))
otg_set_host(hsotg->uphy->otg, &hcd->self);
/*
* Finish generic HCD initialization and start the HCD. This function
* allocates the DMA buffer pool, registers the USB bus, requests the
* IRQ line, and calls hcd_start method.
*/
retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
if (retval < 0)
goto error4;
device_wakeup_enable(hcd->self.controller);
dwc2_hcd_dump_state(hsotg);
dwc2_enable_global_interrupts(hsotg);
return 0;
error4:
kmem_cache_destroy(hsotg->unaligned_cache);
kmem_cache_destroy(hsotg->desc_hsisoc_cache);
kmem_cache_destroy(hsotg->desc_gen_cache);
error3:
dwc2_hcd_release(hsotg);
error2:
usb_put_hcd(hcd);
error1:
#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
kfree(hsotg->last_frame_num_array);
kfree(hsotg->frame_num_array);
#endif
dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
return retval;
}
/*
* Removes the HCD.
* Frees memory and resources associated with the HCD and deregisters the bus.
*/
void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
{
struct usb_hcd *hcd;
dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
hcd = dwc2_hsotg_to_hcd(hsotg);
dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
if (!hcd) {
dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
__func__);
return;
}
if (!IS_ERR_OR_NULL(hsotg->uphy))
otg_set_host(hsotg->uphy->otg, NULL);
usb_remove_hcd(hcd);
hsotg->priv = NULL;
kmem_cache_destroy(hsotg->unaligned_cache);
kmem_cache_destroy(hsotg->desc_hsisoc_cache);
kmem_cache_destroy(hsotg->desc_gen_cache);
dwc2_hcd_release(hsotg);
usb_put_hcd(hcd);
#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
kfree(hsotg->last_frame_num_array);
kfree(hsotg->frame_num_array);
#endif
}
/**
* dwc2_backup_host_registers() - Backup controller host registers.
* When suspending usb bus, registers needs to be backuped
* if controller power is disabled once suspended.
*
* @hsotg: Programming view of the DWC_otg controller
*/
int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
{
struct dwc2_hregs_backup *hr;
int i;
dev_dbg(hsotg->dev, "%s\n", __func__);
/* Backup Host regs */
hr = &hsotg->hr_backup;
hr->hcfg = dwc2_readl(hsotg, HCFG);
hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
for (i = 0; i < hsotg->params.host_channels; ++i)
hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
hr->hprt0 = dwc2_read_hprt0(hsotg);
hr->hfir = dwc2_readl(hsotg, HFIR);
hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
hr->valid = true;
return 0;
}
/**
* dwc2_restore_host_registers() - Restore controller host registers.
* When resuming usb bus, device registers needs to be restored
* if controller power were disabled.
*
* @hsotg: Programming view of the DWC_otg controller
*/
int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
{
struct dwc2_hregs_backup *hr;
int i;
dev_dbg(hsotg->dev, "%s\n", __func__);
/* Restore host regs */
hr = &hsotg->hr_backup;
if (!hr->valid) {
dev_err(hsotg->dev, "%s: no host registers to restore\n",
__func__);
return -EINVAL;
}
hr->valid = false;
dwc2_writel(hsotg, hr->hcfg, HCFG);
dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
for (i = 0; i < hsotg->params.host_channels; ++i)
dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
dwc2_writel(hsotg, hr->hprt0, HPRT0);
dwc2_writel(hsotg, hr->hfir, HFIR);
dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
hsotg->frame_number = 0;
return 0;
}
/**
* dwc2_host_enter_hibernation() - Put controller in Hibernation.
*
* @hsotg: Programming view of the DWC_otg controller
*/
int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
{
unsigned long flags;
int ret = 0;
u32 hprt0;
u32 pcgcctl;
u32 gusbcfg;
u32 gpwrdn;
dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
ret = dwc2_backup_global_registers(hsotg);
if (ret) {
dev_err(hsotg->dev, "%s: failed to backup global registers\n",
__func__);
return ret;
}
ret = dwc2_backup_host_registers(hsotg);
if (ret) {
dev_err(hsotg->dev, "%s: failed to backup host registers\n",
__func__);
return ret;
}
/* Enter USB Suspend Mode */
hprt0 = dwc2_readl(hsotg, HPRT0);
hprt0 |= HPRT0_SUSP;
hprt0 &= ~HPRT0_ENA;
dwc2_writel(hsotg, hprt0, HPRT0);
/* Wait for the HPRT0.PrtSusp register field to be set */
if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
dev_warn(hsotg->dev, "Suspend wasn't generated\n");
/*
* We need to disable interrupts to prevent servicing of any IRQ
* during going to hibernation
*/
spin_lock_irqsave(&hsotg->lock, flags);
hsotg->lx_state = DWC2_L2;
gusbcfg = dwc2_readl(hsotg, GUSBCFG);
if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
/* ULPI interface */
/* Suspend the Phy Clock */
pcgcctl = dwc2_readl(hsotg, PCGCTL);
pcgcctl |= PCGCTL_STOPPCLK;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
udelay(10);
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn |= GPWRDN_PMUACTV;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
} else {
/* UTMI+ Interface */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn |= GPWRDN_PMUACTV;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
pcgcctl = dwc2_readl(hsotg, PCGCTL);
pcgcctl |= PCGCTL_STOPPCLK;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
udelay(10);
}
/* Enable interrupts from wake up logic */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn |= GPWRDN_PMUINTSEL;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
/* Unmask host mode interrupts in GPWRDN */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn |= GPWRDN_DISCONN_DET_MSK;
gpwrdn |= GPWRDN_LNSTSCHG_MSK;
gpwrdn |= GPWRDN_STS_CHGINT_MSK;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
/* Enable Power Down Clamp */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn |= GPWRDN_PWRDNCLMP;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
/* Switch off VDD */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn |= GPWRDN_PWRDNSWTCH;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
hsotg->hibernated = 1;
hsotg->bus_suspended = 1;
dev_dbg(hsotg->dev, "Host hibernation completed\n");
spin_unlock_irqrestore(&hsotg->lock, flags);
return ret;
}
/*
* dwc2_host_exit_hibernation()
*
* @hsotg: Programming view of the DWC_otg controller
* @rem_wakeup: indicates whether resume is initiated by Device or Host.
* @param reset: indicates whether resume is initiated by Reset.
*
* Return: non-zero if failed to enter to hibernation.
*
* This function is for exiting from Host mode hibernation by
* Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
*/
int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
int reset)
{
u32 gpwrdn;
u32 hprt0;
int ret = 0;
struct dwc2_gregs_backup *gr;
struct dwc2_hregs_backup *hr;
gr = &hsotg->gr_backup;
hr = &hsotg->hr_backup;
dev_dbg(hsotg->dev,
"%s: called with rem_wakeup = %d reset = %d\n",
__func__, rem_wakeup, reset);
dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
hsotg->hibernated = 0;
/*
* This step is not described in functional spec but if not wait for
* this delay, mismatch interrupts occurred because just after restore
* core is in Device mode(gintsts.curmode == 0)
*/
mdelay(100);
/* Clear all pending interupts */
dwc2_writel(hsotg, 0xffffffff, GINTSTS);
/* De-assert Restore */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn &= ~GPWRDN_RESTORE;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
/* Restore GUSBCFG, HCFG */
dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
dwc2_writel(hsotg, hr->hcfg, HCFG);
/* De-assert Wakeup Logic */
gpwrdn = dwc2_readl(hsotg, GPWRDN);
gpwrdn &= ~GPWRDN_PMUACTV;
dwc2_writel(hsotg, gpwrdn, GPWRDN);
udelay(10);
hprt0 = hr->hprt0;
hprt0 |= HPRT0_PWR;
hprt0 &= ~HPRT0_ENA;
hprt0 &= ~HPRT0_SUSP;
dwc2_writel(hsotg, hprt0, HPRT0);
hprt0 = hr->hprt0;
hprt0 |= HPRT0_PWR;
hprt0 &= ~HPRT0_ENA;
hprt0 &= ~HPRT0_SUSP;
if (reset) {
hprt0 |= HPRT0_RST;
dwc2_writel(hsotg, hprt0, HPRT0);
/* Wait for Resume time and then program HPRT again */
mdelay(60);
hprt0 &= ~HPRT0_RST;
dwc2_writel(hsotg, hprt0, HPRT0);
} else {
hprt0 |= HPRT0_RES;
dwc2_writel(hsotg, hprt0, HPRT0);
/* Wait for Resume time and then program HPRT again */
mdelay(100);
hprt0 &= ~HPRT0_RES;
dwc2_writel(hsotg, hprt0, HPRT0);
}
/* Clear all interrupt status */
hprt0 = dwc2_readl(hsotg, HPRT0);
hprt0 |= HPRT0_CONNDET;
hprt0 |= HPRT0_ENACHG;
hprt0 &= ~HPRT0_ENA;
dwc2_writel(hsotg, hprt0, HPRT0);
hprt0 = dwc2_readl(hsotg, HPRT0);
/* Clear all pending interupts */
dwc2_writel(hsotg, 0xffffffff, GINTSTS);
/* Restore global registers */
ret = dwc2_restore_global_registers(hsotg);
if (ret) {
dev_err(hsotg->dev, "%s: failed to restore registers\n",
__func__);
return ret;
}
/* Restore host registers */
ret = dwc2_restore_host_registers(hsotg);
if (ret) {
dev_err(hsotg->dev, "%s: failed to restore host registers\n",
__func__);
return ret;
}
if (rem_wakeup) {
dwc2_hcd_rem_wakeup(hsotg);
/*
* Change "port_connect_status_change" flag to re-enumerate,
* because after exit from hibernation port connection status
* is not detected.
*/
hsotg->flags.b.port_connect_status_change = 1;
}
hsotg->hibernated = 0;
hsotg->bus_suspended = 0;
hsotg->lx_state = DWC2_L0;
dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
return ret;
}
bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
{
struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
/* If the controller isn't allowed to wakeup then we can power off. */
if (!device_may_wakeup(dwc2->dev))
return true;
/*
* We don't want to power off the PHY if something under the
* root hub has wakeup enabled.
*/
if (usb_wakeup_enabled_descendants(root_hub))
return false;
/* No reason to keep the PHY powered, so allow poweroff */
return true;
}
/**
* dwc2_host_enter_partial_power_down() - Put controller in partial
* power down.
*
* @hsotg: Programming view of the DWC_otg controller
*
* Return: non-zero if failed to enter host partial power down.
*
* This function is for entering Host mode partial power down.
*/
int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
{
u32 pcgcctl;
u32 hprt0;
int ret = 0;
dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
/* Put this port in suspend mode. */
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_SUSP;
dwc2_writel(hsotg, hprt0, HPRT0);
udelay(5);
/* Wait for the HPRT0.PrtSusp register field to be set */
if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
dev_warn(hsotg->dev, "Suspend wasn't generated\n");
/* Backup all registers */
ret = dwc2_backup_global_registers(hsotg);
if (ret) {
dev_err(hsotg->dev, "%s: failed to backup global registers\n",
__func__);
return ret;
}
ret = dwc2_backup_host_registers(hsotg);
if (ret) {
dev_err(hsotg->dev, "%s: failed to backup host registers\n",
__func__);
return ret;
}
/*
* Clear any pending interrupts since dwc2 will not be able to
* clear them after entering partial_power_down.
*/
dwc2_writel(hsotg, 0xffffffff, GINTSTS);
/* Put the controller in low power state */
pcgcctl = dwc2_readl(hsotg, PCGCTL);
pcgcctl |= PCGCTL_PWRCLMP;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
udelay(5);
pcgcctl |= PCGCTL_RSTPDWNMODULE;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
udelay(5);
pcgcctl |= PCGCTL_STOPPCLK;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
/* Set in_ppd flag to 1 as here core enters suspend. */
hsotg->in_ppd = 1;
hsotg->lx_state = DWC2_L2;
hsotg->bus_suspended = true;
dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
return ret;
}
/*
* dwc2_host_exit_partial_power_down() - Exit controller from host partial
* power down.
*
* @hsotg: Programming view of the DWC_otg controller
* @rem_wakeup: indicates whether resume is initiated by Reset.
* @restore: indicates whether need to restore the registers or not.
*
* Return: non-zero if failed to exit host partial power down.
*
* This function is for exiting from Host mode partial power down.
*/
int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
int rem_wakeup, bool restore)
{
u32 pcgcctl;
int ret = 0;
u32 hprt0;
dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
pcgcctl = dwc2_readl(hsotg, PCGCTL);
pcgcctl &= ~PCGCTL_STOPPCLK;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
udelay(5);
pcgcctl = dwc2_readl(hsotg, PCGCTL);
pcgcctl &= ~PCGCTL_PWRCLMP;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
udelay(5);
pcgcctl = dwc2_readl(hsotg, PCGCTL);
pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
dwc2_writel(hsotg, pcgcctl, PCGCTL);
udelay(100);
if (restore) {
ret = dwc2_restore_global_registers(hsotg);
if (ret) {
dev_err(hsotg->dev, "%s: failed to restore registers\n",
__func__);
return ret;
}
ret = dwc2_restore_host_registers(hsotg);
if (ret) {
dev_err(hsotg->dev, "%s: failed to restore host registers\n",
__func__);
return ret;
}
}
/* Drive resume signaling and exit suspend mode on the port. */
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_RES;
hprt0 &= ~HPRT0_SUSP;
dwc2_writel(hsotg, hprt0, HPRT0);
udelay(5);
if (!rem_wakeup) {
/* Stop driveing resume signaling on the port. */
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 &= ~HPRT0_RES;
dwc2_writel(hsotg, hprt0, HPRT0);
hsotg->bus_suspended = false;
} else {
/* Turn on the port power bit. */
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_PWR;
dwc2_writel(hsotg, hprt0, HPRT0);
/* Connect hcd. */
dwc2_hcd_connect(hsotg);
mod_timer(&hsotg->wkp_timer,
jiffies + msecs_to_jiffies(71));
}
/* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
hsotg->in_ppd = 0;
hsotg->lx_state = DWC2_L0;
dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
return ret;
}
/**
* dwc2_host_enter_clock_gating() - Put controller in clock gating.
*
* @hsotg: Programming view of the DWC_otg controller
*
* This function is for entering Host mode clock gating.
*/
void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
{
u32 hprt0;
u32 pcgctl;
dev_dbg(hsotg->dev, "Entering host clock gating.\n");
/* Put this port in suspend mode. */
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_SUSP;
dwc2_writel(hsotg, hprt0, HPRT0);
/* Set the Phy Clock bit as suspend is received. */
pcgctl = dwc2_readl(hsotg, PCGCTL);
pcgctl |= PCGCTL_STOPPCLK;
dwc2_writel(hsotg, pcgctl, PCGCTL);
udelay(5);
/* Set the Gate hclk as suspend is received. */
pcgctl = dwc2_readl(hsotg, PCGCTL);
pcgctl |= PCGCTL_GATEHCLK;
dwc2_writel(hsotg, pcgctl, PCGCTL);
udelay(5);
hsotg->bus_suspended = true;
hsotg->lx_state = DWC2_L2;
}
/**
* dwc2_host_exit_clock_gating() - Exit controller from clock gating.
*
* @hsotg: Programming view of the DWC_otg controller
* @rem_wakeup: indicates whether resume is initiated by remote wakeup
*
* This function is for exiting Host mode clock gating.
*/
void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
{
u32 hprt0;
u32 pcgctl;
dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
/* Clear the Gate hclk. */
pcgctl = dwc2_readl(hsotg, PCGCTL);
pcgctl &= ~PCGCTL_GATEHCLK;
dwc2_writel(hsotg, pcgctl, PCGCTL);
udelay(5);
/* Phy Clock bit. */
pcgctl = dwc2_readl(hsotg, PCGCTL);
pcgctl &= ~PCGCTL_STOPPCLK;
dwc2_writel(hsotg, pcgctl, PCGCTL);
udelay(5);
/* Drive resume signaling and exit suspend mode on the port. */
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 |= HPRT0_RES;
hprt0 &= ~HPRT0_SUSP;
dwc2_writel(hsotg, hprt0, HPRT0);
udelay(5);
if (!rem_wakeup) {
/* In case of port resume need to wait for 40 ms */
msleep(USB_RESUME_TIMEOUT);
/* Stop driveing resume signaling on the port. */
hprt0 = dwc2_read_hprt0(hsotg);
hprt0 &= ~HPRT0_RES;
dwc2_writel(hsotg, hprt0, HPRT0);
hsotg->bus_suspended = false;
hsotg->lx_state = DWC2_L0;
} else {
mod_timer(&hsotg->wkp_timer,
jiffies + msecs_to_jiffies(71));
}
}